


MCS-011 
PROBLEM SOLVING AND  

PROGRAMMING 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Block 

1 
AN INTRODUCTION TO C  

UNIT 1 

Problem Solving                            7 

UNIT 2                                   
Basics of C                                          23 

UNIT 3 
Variables and Constants                                                          37 

UNIT 4 
Expressions and Operators                                                 47  

 Indira Gandhi 
 National Open University 
 School of Computer and   
              Information Sciences 

     



 
 

Programme / Course Design Committee 
 

Prof. Sanjeev K. Aggarwal, IIT, Kanpur 
Prof. M. Balakrishnan, IIT , Delhi 
Prof Harish Karnick, IIT, Kanpur 
Prof. C. Pandurangan, IIT, Madras 
Dr. Om Vikas, Sr. Director, MIT 
Prof P. S. Grover, Sr. Consultant, 
SOCIS, IGNOU 
 

Faculty of School of Computer and 
Information Sciences 
Shri Shashi Bhushan 
Shri Akshay Kumar 
Prof Manohar Lal 
Shri V.V. Subrahmanyam 
Shri P.Venkata Suresh 
 

Block Preparation Team  
 

Prof P. S. Grover (Content Editor) 
(Sr Consultant 
SOCIS, IGNOU) 
 
Ms. Charu Devgon 
Dept. of Computer Science 
A N Dev College 
University of Delhi 
 
Ms. Namita Gupta 
Dept. of Computer Science 
Maharaja Agrasen Institute  
of Technology 
Delhi 

Ms. Priti Sehgal 
Dept. of Computer Science 
Keshav Mahavidyalya 
University of Delhi 
 
Shri V.V. Subrahmanyam 
SOCIS, IGNOU 
 
Shri S.S. Rana 
New Delhi                        Language  
                                         Editors                    
Prof Sunaina Kumar, 
SOH, IGNOU 
 

Course Coordinator : V.V. Subrahmanyam 

 

Block Production Team 
 
Shri H.K Som, SOCIS 
 
 

 
 

Acknowledgements  

To all the faculty of SOCIS, IGNOU for their comments on the course material;                
to Shri Vikas Kumar for help in finalizing the CRC. 
 
 
 
 
 
 
 
 
 
April, 2004 
 
©Indira Gandhi National Open University, 2004 
 

ISBN-81-266-1201-0 
 
All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means, 
without permission in writing from the Indira Gandhi National Open University. 
 
Further information on the Indira Gandhi National Open University courses may be obtained from the 
University’s office at Maidan Garhi, New Delhi-110 068. 
 
Printed and published on behalf on the Indira Gandhi National Open University, New Delhi by Director, SOCIS 
 



COURSE INTRODUCTION 
 

“The best way to escape from a problem is to solve it.” 
                                                                                           - Alan Saporta

 
 
Solving a problem means finding a way out of a difficulty, a way around an obstacle, attaining an 
aim which was not immediately attainable. Solving problems is the specific achievement of 
intelligence, and intelligence is the specific gift of mankind: solving problems can be regarded as 
the most characteristically human activity… It is a practical art, like swimming, or skiing, or 
playing the piano: you learn it only by imitation and practice. ... if you wish to learn swimming 
you have to go into the water, and if you wish to become a problem solver you have to solve 
problems.  
 
Today, the usage of computers appears everywhere, especially in the educational, business, 
research and especially in scientific fields. Computer usage is a powerful resource and one that 
will grow and eventually become an integral part of all our lives.  A computer is simply a logic 
machine that performs computations and calculations at an incredible speed. Introducing the 
usage of computers to solve problems, basic programming skills, and encouraging students to 
think logically about solving problems will help them immensely when they enter the job market. 
The purpose of this course is to act as an introduction to the thinking world of computers, to help 
students develop the logic, ability to solve the problems efficiently. 
 
Students in every discipline need to appreciate computers not only for the applications they can 
run, but also for the problems they can solve. Problem Solving with Computers introduces the 
concepts of algorithms, iteration and conditionals, top-down design, testing and debugging and 
analysis of solution using any programming language or any package. 
 
Knowledge in a programming language is prerequisite to the study of most of computer science 
courses. This knowledge area consists of those skills and concepts that are essential to problem 
solving and programming practice independent of the underlying paradigm.  All programming 
languages will share one similarity, i.e., all are based on logic. A programming language is a 
programmer’s principal interface with the computer. More than just knowing how to program in a 
single language, programmers need to understand the different styles of programming promoted 
by different languages. Later in your professional life, you will be working with many different 
programming languages and styles at once, and will encounter many different languages over the 
course of your career. Understanding the variety of programming languages and the design 
tradeoffs between the different programming paradigms makes it much easier to master new 
languages quickly.  
 
We will discuss various concepts about learning and techniques for problem solving; emphasizing 
structured programming. In this course, you will learn concepts of computer programming, and 
how to implement those ideas using C programs.  
 
This course introduces you the fundamental techniques of C programming as a foundation for 
more advanced study of computer science. We will discuss various concepts about learning and 
techniques for problem solving, emphasizing structured programming. Our goal will be to 
improve your reasoning and thinking skills, which should prove helpful, not only in future 
programming, but throughout your academic and professional career. In this course, the topics 
include the problem solving strategies, concept of an algorithm, flowcharting, standard C 



programming constructs, primitive data types and fundamental data structures (strings, arrays, 
and structures and unions), files and pointers.  
  
Upon completing this course, you should be able to:  
 
• apply problem solving techniques; 
• design algorithms and flowcharts;  
• develop a working knowledge of the C language and its uses, characteristics, and capabilities; 
• define problems and create solutions that can be converted into modular, structured C 

programs; 
• use libraries of C functions; 
• to use arrays and structures to organize data; 
• make a righteous stab at understanding pointers; 
• read and write data to and from files. 
 
This course consists of 3 blocks and is organized in the following manner: 
 
Block - 1 covers the problem solving skills and the basic programming constructs of C .  
 
Block - 2 covers the control statements, arrays, strings and functions 
 
Block - 3 covers the structures, pointers and the file handling in C. 
 
After going through this course, you should be able to write fairly complex programs using C 
programming language. To get the maximum benefit from this, it is necessary that you should 
understand and execute all the example programs given in this course, as well, complete the 
assignment problems given in the lab manual also.  
 
This course is very much helpful and first step for program development, which will be beneficial 
for the future courses like Data Structures, Design and Analysis of Algorithms and other 
programming languages. 
 
 
Happy programming! 



BLOCK INTRODUCTION 
 

This block is on problem solving techniques and basic programming constructs of C language.  
 
Problem-solving skills are recognized as an integral component of computer programming and in 
this block the primary focus of this course is to teach the basic programming constructs of C 
language. Emphasis is placed on developing the student's ability to apply problem-solving 
strategies to design algorithms and to implement these algorithms in a structured procedural 
programming language. This course includes a laboratory component also where in which the 
student gets the hands on experience. Basically one must explore possible avenues to a solution 
one by one until s/he comes across a right path to an optimize and efficient solution. In general, as 
one gains experience in solving problems, one develops one's own techniques and strategies, 
though they are often intangible.  
 
This block consists of 4 units and is organized as follows: 
 
Unit - 1 provides an overview of problem solving techniques, algorithm design, top – down 
design, analysis of algorithm efficiency and complexity. 
 
Unit - 2 introduces the history of C language, salient features of C, structure of a C program, way 
to write, compile, link and run a C program. 
 
Unit - 3 outlines the basic programming constructs of C language. 
 
Unit - 4 provides the overview of the various operators and  primitive data types in C. 
 
 
 
 



programming constructs, primitive data types and fundamental data structures (strings, arrays, 
and structures and unions), files and pointers.  
  
Upon completing this course, you should be able to:  
 
• apply problem solving techniques; 
• design algorithms and flowcharts;  
• develop a working knowledge of the C language and its uses, characteristics, and capabilities; 
• define problems and create solutions that can be converted into modular, structured C 

programs; 
• use libraries of C functions; 
• to use arrays and structures to organize data; 
• make a righteous stab at understanding pointers; 
• read and write data to and from files. 
 
This course consists of 3 blocks and is organized in the following manner: 
 
Block - 1 covers the problem solving skills and the basic programming constructs of C .  
 
Block - 2 covers the control statements, arrays, strings and functions 
 
Block - 3 covers the structures, pointers and the file handling in C. 
 
After going through this course, you should be able to write fairly complex programs using C 
programming language. To get the maximum benefit from this, it is necessary that you should 
understand and execute all the example programs given in this course, as well, complete the 
assignment problems given in the lab manual also.  
 
This course is very much helpful and first step for program development, which will be beneficial 
for the future courses like Data Structures, Design and Analysis of Algorithms and other 
programming languages. 
 
 
Happy programming! 



BLOCK INTRODUCTION 
 

This block is on problem solving techniques and basic programming constructs of C language.  
 
Problem-solving skills are recognized as an integral component of computer programming and in 
this block the primary focus of this course is to teach the basic programming constructs of C 
language. Emphasis is placed on developing the student's ability to apply problem-solving 
strategies to design algorithms and to implement these algorithms in a structured procedural 
programming language. This course includes a laboratory component also where in which the 
student gets the hands on experience. Basically one must explore possible avenues to a solution 
one by one until s/he comes across a right path to an optimize and efficient solution. In general, as 
one gains experience in solving problems, one develops one's own techniques and strategies, 
though they are often intangible.  
 
This block consists of 4 units and is organized as follows: 
 
Unit - 1 provides an overview of problem solving techniques, algorithm design, top – down 
design, analysis of algorithm efficiency and complexity. 
 
Unit - 2 introduces the history of C language, salient features of C, structure of a C program, way 
to write, compile, link and run a C program. 
 
Unit - 3 outlines the basic programming constructs of C language. 
 
Unit - 4 provides the overview of the various operators and  primitive data types in C. 
 
 
 
 



 

 
7 

 

Problem  Solving 
UNIT 1 PROBLEM SOLVING 

Structure 

1.0  Introduction 
1.1     Objectives 
1.2  Problem - Solving Techniques 

1.2.1  Steps for Problem - Solving 
1.2.2  Using Computer as a Problem-Solving Tool 

1.3    Design of Algorithms 
1.3.1  Definition 

 1.3.2  Features of Algorithm 
 1.3.3  Criteria to be followed by an Algorithm 
 1.3.4  Top Down Design 
1.4 Analysis of Algorithm Efficiency 

1.4.1  Redundant Computations 
 1.4.2  Referencing Array Elements 
 1.4.3  Inefficiency Due to Late Termination 
 1.4.4  Early Detection of Desired Output Condition 
 1.4.5  Trading Storage for Efficient Gains 
1.5     Analysis of Algorithm Complexity 
 1.5.1  Computational Complexity 
 1.5.2  The Order of Notation 
 1.5.3  Rules for using the Big - O Notation 
 1.5.4  Worst and Average Case Behavior 
1.6 Flowcharts 
 1.6.1       Basic Symbols used in Flowchart Design 
1.7 Summary 
1.8 Solutions / Answers 
1.8 Further Readings 
 

1.0 INTRODUCTION 
 
In our daily life, we routinely encounter and solve problems.  We pose problems that 
we need or want to solve. For this, we make use of available resources, and solve 
them. Some categories of resources include: the time and efforts of yours and others; 
tools; information; and money. Some of the problems that you encounter and solve are 
quite simple. But some others may be very complex. 
 
In this unit we introduce you to the concepts of problem-solving, especially as they 
pertain to computer programming.   

The problem-solving is a skill and there are no universal approaches one can take to 
solving problems. Basically one must explore possible avenues to a solution one by 
one until s/he comes across a right path to a solution. In general, as one gains 
experience in solving problems, one develops one’s own techniques and strategies, 
though they are often intangible. Problem-solving skills are recognized as an integral 
component of computer programming. It is a demand and intricate process which is 
equally important throughout the project life cycle especially – study, designing, 
development, testing and implementation stages.  The computer problem solving 
process requires: 

• Problem anticipation 
• Careful planning 
• Proper thought process 
• Logical precision 
• Problem analysis  
• Persistence and attention. 
 



 

 
8 

 

An Introduction to C At the same time it requires personal creativity, analytic ability and expression.  The 
chances of success are amplified when the problem solving is approached in a 
systematic way and satisfaction is achieved once the problem is satisfactorily solved. 
The problems should be anticipated in advance as far as possible and properly defined 
to help the algorithm definition and development process.   
 
Computer is a very powerful tool for solving problems. It is a symbol-manipulating 
machine that follows a set of stored instructions called a program. It performs these 
manipulations very quickly and has memory for storing input, lists of commands and 
output. A computer cannot think in the way we associate with humans. When using 
the computer to solve a problem, you must specify the needed initial data, the 
operations which need to be performed (in order of performance) and what results you 
want for output. If any of these instructions are missing, you will get either no results 
or invalid results. In either case, your problem has not yet been solved. Therefore, 
several steps need to be considered before writing a program. These steps may free 
you from hours of finding and removing errors in your program (a process called 
debugging). It should also make the act of problem solving with a computer a much 
simpler task. 
 
All types of computer programs are collectively referred to as software. Programming 
languages are also part of it. Physical computer equipment such as electronic circuitry, 
input/output devices, storage media etc. comes under hardware. Software governs the 
functioning of hardware. Operations performed by software may be built into the 
hardware, while instructions executed by the hardware may be generated in software. 
The decision to incorporate certain functions in the hardware and others in the 
software is made by the manufacturer and designer of the software and hardware. 
Normal considerations for this are: cost, speed, memory required, adaptability and 
reliability of the system. Set of instructions of the high level language used to code a 
problem to find its solution is referred to as Source Program. A translator program 
called a compiler or interpreter, translates the source program into the object 
program. This is the compilation or interpretation phase. All the testing of the source 
program as regards the correct format of instructions is performed at this stage and the 
errors, if any, are printed. If there is no error, the source program is transformed into 
the machine language program called Object Program. The Object Program is 
executed to perform calculations. This stage is the execution phase. Data, if required 
by the program, are supplied now and the results are obtained on the output device. 
 
 
 
 
 
 
 
 

Data, 
if 

required 

Object 
Program 

Computer 
System 

Source 
Program 

Results  
 
 

1.1 OBJECTIVES 

After going through this unit, you should be able to: 

• apply problem solving techniques; 
• define an algorithm and its features; 
• describe the analysis of algorithm efficiency; 
• discuss the analysis of algorithm complexity; and 
• design flowcharts. 
 



 

 
9 

 

Problem Solving 
1.2 PROBLEM - SOLVING TECHNIQUES  

Problem solving is a creative process which defines systematization and 
mechanization. There are a number of steps that can be taken to raise the level of 
one’s performance in problem solving.  
 
1.2.1  Steps for Problem - Solving 

A problem-solving technique follows certain steps in finding the solution to a problem. 
Let us look into the steps one by one: 
 
Problem definition phase 

The success in solving any problem is possible only after the problem has been fully 
understood. That is, we cannot hope to solve a problem, which we do not understand. 
So, the problem understanding is the first step towards the solution of the problem. In 
problem definition phase, we must emphasize what must be done rather than how is it 
to be done. That is, we try to extract the precisely defined set of tasks from the 
problem statement. Inexperienced problem solvers too often gallop ahead with the 
task of problem - solving only to find that they are either solving the wrong problem 
or solving just one particular problem. 
 
Getting started on a problem 

There are many ways of solving a problem and there may be several solutions. So, it 
is difficult to recognize immediately which path could be more productive. Sometimes 
you do not have any idea where to begin solving a problem, even if the problem has 
been defined. Such block sometimes occurs because you are overly concerned with 
the details of the implementation even before you have completely understood or 
worked out a solution. The best advice is not to get concerned with the details. Those 
can come later when the intricacies of the problem has been understood. 
 
The use of specific examples 

To get started on a problem, we can make use of heuristics i.e., the rule of thumb. This 
approach will allow us to start on the problem by picking a specific problem we wish 
to solve and try to work out the mechanism that will allow solving this particular 
problem. It is usually much easier to work out the details of a solution to a specific 
problem because the relationship between the mechanism and the problem is more 
clearly defined. This approach of focusing on a particular problem can give us the 
foothold we need for making a start on the solution to the general problem. 
 
Similarities among problems 

One way to make a start is by considering a specific example. Another approach is to 
bring the experience to bear on the current problem. So, it is important to see if there 
are any similarities between the current problem and the past problems which we have 
solved. The more experience one has the more tools and techniques one can bring to 
bear in tackling the given problem. But sometimes, it blocks us from discovering a 
desirable or better solution to the problem.  A skill that is important to try to develop 
in problem - solving is the ability to view a problem from a variety of angles. One 
must be able to metaphorically turn a problem upside down, inside out, sideways, 
backwards, forwards and so on. Once one has developed this skill it should be 
possible to get started on any problem. 
 
Working backwards from the solution 

In some cases we can assume that we already have the solution to the problem and 
then try to work backwards to the starting point. Even a guess at the solution to the 



 

 
10 

 

An Introduction to C problem may be enough to give us a foothold to start on the problem. We can 
systematize the investigations and avoid duplicate efforts by writing down the various 
steps taken and explorations made. Another practice that helps to develop the problem 
solving skills is, once we have solved a problem, to consciously reflect back on the 
way we went about discovering the solution.  
 
1.2.2  Using Computer as a Problem - Solving Tool 
 
The computer is a resource - a versatile tool - that can help you solve some of the 
problems that you encounter. A computer is a very powerful general-purpose tool. 
Computers can solve or help to solve many types of problems. There are also many 
ways in which a computer can enhance the effectiveness of the time and effort that 
you are willing to devote to solving a problem. Thus, it will prove to be well worth the 
time and effort you spend to learn how to make effective use of this tool. 

In this section, we discuss the steps involved in developing a program. Program 
development is a multi-step process that requires you to understand the problem, 
develop a solution, write the program, and then test it. This critical process determines 
the overall quality and success of your program. If you carefully design each program 
using good structured development techniques, your programs will be efficient, error-
free, and easy to maintain. The following are the steps in detail: 

1. Develop an Algorithm and a Flowchart.  
2. Write the program in a computer language (for example say C programming 

language).  
3. Enter the program using some editor.  
4. Test and debug the program.  
5. Run the program, input data, and get the results.  

 

1.3 DESIGN OF ALGORITHMS 

The first step in the program development is to devise and describe a precise plan of 
what you want the computer to do. This plan, expressed as a sequence of operations, 
is called an algorithm.  An algorithm is just an outline or idea behind a program. 
something resembling C or Pascal, but with some statements in English rather than 
within the programming language. It is expected that one could translate each pseudo-
code statement to a small number of lines of actual code, easily and mechanically.  

1.3.1  Definition 

An algorithm is a finite set of steps defining the solution of a particular problem. An 
algorithm is expressed in pseudocode - something resembling C language or Pascal, 
but with some statements in English rather than within the programming language. 
Developing an efficient algorithm requires lot of practice and skill. It must be noted 
that an efficient algorithm is one which is capable of giving the solution to the 
problem by using minimum resources of the system such as memory and processor’s  
time. Algorithm is a language independent, well structured and detailed. It will enable 
the programmer to translate into a computer program using any high-level language. 
 
1.3.2  Features of Algorithm 

Following features should be present in an algorithm: 

Proper understanding of the problem 

For designing an efficient algorithm, the expectations from the algorithm should be 
clearly defined so that the person developing the algorithm can understand the 
expectations from it. This is normally the outcome of the problem definition phase. 
 



 

 
11 

 

Problem Solving Use of procedures / functions to emphasize modularity 

To assist the development, implementation and readability of the program, it is 
usually helpful to modularize (section) the program. Independent functions perform 
specific and well defined tasks. In applying modularization, it is important to watch 
that the process is not taken so far to a point at which the implementation becomes 
difficult to read because of fragmentation. The program then can be implemented as 
calls to the various procedures that will be needed in the final implementations. 
 
Choice of variable names 

Proper variable names and constant names can make the program more meaningful 
and easier to understand. This practice tends to make the program more self 
documenting. A clear definition of all variables and constants at the start of the 
procedure / algorithm can also be helpful. For example, it is better to use variable day 
for the day of the weeks, instead of the variable a or something else. 
 
Documentation of the program 

Brief information about the segment of the code can be included in the program to 
facilitate debugging and providing information. A related part of the documentation is 
the information that the programmer presents to the user during the execution of the 
program. Since, the program is often to be used by persons who are unfamiliar with 
the working and input requirements of the program, proper documentation must be 
provided. That is, the program must specify what responses are required from the user. 
Care should also be taken to avoid ambiguities in these specifications. Also the 
program should “catch” incorrect responses to its requests and inform the user in an 
appropriate manner. 
 
1.3.3  Criteria to be followed by an Algorithm 

The following is the criteria to be followed by an algorithm: 

• Input: There should be zero or more values which are to be supplied. 
• Output: At least one result is to be produced. 
• Definiteness: Each step must be clear and unambiguous. 
• Finiteness: If we trace the steps of an algorithm, then for all cases, the algorithm 

must terminate after a finite number of steps. 
• Effectiveness: Each step must be sufficiently basic that a person using only paper 

and pencil can in principle carry it out. In addition, not only each step is definite, 
it must also be feasible. 

 
Example 1.1 

Let us try to develop an algorithm to compute and display the sum of two numbers 
 
1. Start 
2. Read two numbers a and b 
3. Calculate the sum of a and b and store it in sum 
4. Display the value of sum 
5. Stop 
 
Example 1.2 
 
Let us try to develop an algorithm to compute and print the average of a set of data 
values.  
 
1.  Start 
2.  Set the sum of the data values and the count to zero.  



 

 
12 

 

An Introduction to C 3.  As long as the data values exist, add the next data value to the sum and add 1 to 
the count.  

4. To compute the average, divide the sum by the count. 
5. Display the average.  
6. Stop 

Example 1.3 
 
Write an algorithm to calculate the factorial of a given number. 
 
1. Start 
2. Read the number n 
3. [Initialize] 
 i ← 1 , fact  ← 1 
4. Repeat steps 4 through 6 until i = n 
5. fact ← fact * i 
6. i ← i + 1 
7. Print fact 
8. Stop 
 
Example 1.4 
 
Write an algorithm to check that whether the given number is prime or not. 
 
1. Start 
2. Read the number num 
3. [Initialize] 
 i ← 2 , flag  ← 1 
4. Repeat steps 4 through 6 until i < num or flag = 0 
5. rem  ← num mod i 
6. if  rem = 0 then  
 flag ← 0 
  else 
     i ← i + 1 
7. if flag = 0 then 
           Print Number is not prime 
  Else 
      Print Number is prime 
8. Stop 

1.3.4 Top Down Design  

Once we have defined the problem and have an idea of how to solve it, we can then 
use the powerful techniques for designing algorithms. Most of the problems are 
complex or large problems and to solve them we have to focus on to comprehend at 
one time, a very limited span of logic or instructions. A technique for algorithm 
design that tries to accommodate this human limitation is known as top-down design 
or stepwise refinement. 
 
Top down design provides the way of handling the logical complexity and detail 
encountered in computer algorithm. It allows building solutions to problems in step by 
step. In this way, specific and complex details of the implementation are encountered 
only at the stage when sufficient groundwork on the overall structure and relationships 
among the various parts of the problem. 
 
Before the top down design can be applied to any problem, we must at least have the 
outlines of a solution. Sometimes this might demand a lengthy and creative 



 

 
13 

 

Problem Solving investigation into the problem while at another time the problem description may in 
itself provide the necessary starting point for the top-down design.  
 
Top-down design suggests taking the general statements about the solution one at a 
time, and then breaking them down into a more precise subtask / sub-problem. These 
sub-problems should more accurately describe how the final goal can be reached. The 
process of repeatedly breaking a task down into a subtask and then each subtask into 
smaller subtasks must continue until the sub-problem can be implemented as the 
program statement. With each spitting, it is essential to define how sub-problems 
interact with each other. In this way, the overall structure of the solution to the 
problem can be maintained. Preservation of the overall structure is important for 
making the algorithm comprehensible and also for making it possible to prove the 
correctness of the solution. 
 
 

 

 
Figure 1.1:    Schematic breakdown of  a problem into subtasks as employed in   
                     top down design 
 

1.4 ANALYSIS OF ALGORITHM EFFICENCY                                     

Every algorithm uses some of the computer’s resources like central processing time 
and internal memory to complete its task. Because of high cost of computing 
resources, it is desirable to design algorithms that are economical in the use of CPU 
time and memory. Efficiency considerations for algorithms are tied in with the design, 
implementation and analysis of algorithm. Analysis of algorithms is less obviously 
necessary, but has several purposes: 

 
• Analysis can be more reliable than experimentation. If we experiment, we 

only know the behavior of a program on certain specific test cases, while 
analysis can give us guarantees about the performance on all inputs.  

• It helps one choose among different solutions to problems. As we will see, 
there can be many different solutions to the same problem. A careful analysis 
and comparison can help us decide which one would be the best for our 
purpose, without requiring that all be implemented and tested.  



 

 
14 

 

An Introduction to C • We can predict the performance of a program before we take the time to write 
code. In a large project, if we waited until after all the code was written to 
discover that something runs very slowly, it could be a major disaster, but if 
we do the analysis first we have time to discover speed problems and work 
around them.  

• By analyzing an algorithm, we gain a better understanding of where the fast 
and slow parts are, and what to work on or work around in order to speed it 
up.  

There is no simpler way of designing efficient algorithm, but a few suggestions as 
shown below can sometimes be useful in designing an efficient algorithm. 
 
1.4.1 Redundant Computations 

Redundant computations or unnecessary computations result in inefficiency in the 
implementation of the algorithms. When redundant calculations are embedded inside 
the loop for the variable which remains unchanged throughout the entire execution 
phase of the loop, the results are more serious. For example, consider the following 
code in which the value a*a*a*c is redundantly calculated in the loop: 

x=0; 
for i=0 to n 
 x=x+1; 
 y=(a*a*a*c)*x*x+b*b*x; 
 print x,y  
next i 
 
This redundant calculation can be removed by small modification in the program: 

x=0; 
d=a*a*a*c; 
e= b*b; 
for i = 0 to n 
 x = x+1; 
 y = d*x*x+e*x; 
 print x,y 
next i 
 
1.4.2 Referencing Array Elements 
For using the array element, we require two memory references and an additional 
operation to locate the correct value for use. So, efficient program must not refer to 
the same array element again and again if the value of the array element does not 
change. We must store the value of array element in some variable and use that 
variable in place of referencing the array element. For example: 
Version (1) 
x=1;  
for i = 0 to n 
 if (a[i] > a[x]) x=i; 
next i 
max = a[x]; 
Version (2) 
x=1;  
max=a[1]; 
for i = 0 to n  
 if(a[i]>max)  

x=i; 
max=a[i]; 

next i  
 
Version (2) is more efficient algorithm than version (1) algorithm.  



 

 
15 

 

Problem Solving  
1.4.3 Inefficiency Due to Late Termination 

Another place where inefficiency can come into an implementation is where 
considerably more tests are done than are required to solve the problem at hand. For 
example, if in the linear search process, all the list elements are checked for a 
particular element  even if the point is reached where it was known that the element 
cannot occur later (in case of sorted list). Second example can be in case of the bubble 
sort algorithm, where the inner loop should not proceed beyond n-i, because last i 
elements are already sorted (in the algorithm given below). 

for  i = 0 to n 
 for j = 0 to n – 1  
  if(a[j] > a[j+1])  
   //swap values a[j], a[j+1] 
 
The efficient algorithm in which the inner loop terminates much before is given as: 

for i=0 to n 
 for j=0 to n – 1  
  if(a[j]>a[j+1])  
   //swap values a[j], a[j+1] 
 
1.4.4 Early Detection of Desired Output Condition 

Sometimes the loops can be terminated early, if the desired output conditions are met. 
This saves a lot of unfruitful execution. For example, in the bubble sort algorithm, if 
during the current pass of the inner loop there are no exchanges in the data, then the 
list can be assumed to be sorted and the search can be terminated before running the 
outer loop for n times. 
 
1.4.5 Trading Storage for Efficient Gains 

A trade between storage and efficiency is often used to improve the performance of an 
algorithm. This can be done if we save some intermediary results and avoid having to 
do a lot of unnecessary testing and computation later on. 
 
One strategy for speeding up the execution of an algorithm is to implement it using 
the least number of loops. It may make the program much harder to read and debug. It 
is therefore sometimes desirable that each loop does one job and sometimes it is 
required for computational speedup or efficiency that the same loop must be used for 
different jobs so as to reduce the number of loops in the algorithm. A kind of trade off 
is to be done while determining the approach for the same.  
 

1.5  ANALYSIS OF ALGORITHM COMPLEXITY                                   

Algorithms usually possess the following qualities and capabilities: 

• Easily modifiable if necessary. 
• They are easy, general and powerful. 
• They are correct for clearly defined solution. 
• Require less computer time, storage and peripherals i.e. they are more economical. 
• They are documented well enough to be used by others who do not have a 

detailed knowledge of the inner working. 
• They are not dependable on being run on a particular computer. 
• The solution is pleasing and satisfying to its designer and user. 
• They are able to be used as a sub-procedure for other problems. 
 



 

 
16 

 

An Introduction to C Two or more algorithms can solve the same problem in different ways. So, 
quantitative measures are valuable in that they provide a way of comparing the 
performance of two or more algorithms that are intended to solve the same problem. 
This is an important step because the use of an algorithm that is more efficient in 
terms of time, resources required, can save time and money. 
 
1.5.1 Computational Complexity 

We can characterize an algorithm’s performance in terms of the size (usually n) of the 
problem being solved. More computing resources are needed to solve larger problems 
in the same class. The table below illustrates the comparative cost of solving the 
problem for a range of n values. 
 

Log2 n n n log2 n n2 n3 2n 
1 2 2 4 8 4 

3.322 10 33.22 102 103 >103 
6.644 102 664.4 104 106 >>1025 
9.966 103 9966.0 106 109 >>10250 

13.287 104 132877 108 1012 >>102500 
  
The above table shows that only very small problems can be solved with an algorithm 
that exhibit exponential behaviour. An exponential problem with n=100 would take 
immeasurably longer time. At the other extreme, for an algorithm with logarithmic 
dependency would merely take much less time (13 steps in case of log2n in the above 
table). These examples emphasize the importance of the way in which algorithms 
behave as a function of the problem size. Analysis of an algorithm also provides the 
theoretical model of the inherent computational complexity of a particular problem. 
 
To decide how to characterize the behaviour of an algorithm as a function of size of 
the problem n, we must study the mechanism very carefully to decide just what 
constitutes the dominant mechanism. It may be the number of times a particular 
expression is evaluated, or the number of comparisons or exchanges that must be 
made as n grows. For example, comparisons, exchanges, and moves count most in 
sorting algorithm. The number of comparisons usually dominates so we use 
comparisons in computational model for sorting algorithms. 
 
1.5.2 The Order of Notation 

The O-notation gives an upper bound to a function within a constant factor. For a 
given function g(n), we denote by O(g(n)) the set of functions. 
 
O(g(n)) = { f(n) : there exist positive constants c and n0, such that 0 <= f(n) <= cg(n) 
for all n >= n0 } 
 
Using O-notation, we can often describe the running time of an algorithm merely by 
inspecting the algorithm’s overall structure. For example a double nested loop 
structure of the following algorithm immediately yields O(n2) upper bound on the 
worst case running time. 
for i=0 to n 
 for j=0 to n 
  print i,j 
 next j 
next i  
 
What we mean by saying “the running time is O(n2)” is that the worst case running 
time ( which is a function of n) is O(n2). Or equivalently, no matter what particular 
input of size n is chosen for each value of n, the running time on that set of inputs is 
O(n2). 



 

 
17 

 

Problem Solving  
1.5.3 Rules for using the Big-O Notation 

Big-O bounds, because they ignore constants, usually allow for very simple 
expression for the running time bounds. Below are some properties of big-O that 
allow bounds to be simplified. The most important property is that big-O gives an 
upper bound only. If an algorithm is O(N2), it doesn’t have to take N2 steps (or a 
constant multiple of N2). But it can’t take more than N2. So any algorithm that is 
O(N), is also an O(N2) algorithm. If this seems confusing, think of big-O as being like 
“<”. Any number that is < N is also <N2. 
 
1.  Ignoring constant factors: O(c f(N)) = O(f(N)), where c is a constant; e.g. O(20 

N3)    = O(N3) 
2.   Ignoring smaller terms: If a<b then O(a+b) = O(b), for example, O(N2+N) = 

O(N2) 
3.  Upper bound only: If a<b then an O(a) algorithm is also an O(b) algorithm. For 

example, an O(N) algorithm is also an O(N2) algorithm (but not vice versa). 
4.  N and log N are bigger than any constant, from an asymptotic view (that means 

for large enough N). So if k is a constant, an O(N + k) algorithm is also O(N), by 
ignoring smaller terms. Similarly, an O(log N + k) algorithm is also O(log N). 

5.  Another consequence of the last item is that an O(N log N + N) algorithm, which 
is O(N(log N + 1)), can be simplified to O(N log N). 
 

1.5.4 Worst and Average Case Behavior 

Worst and average case behaviors of the algorithm are the two measures of 
performance that are usually considered. These two measures can be applied to both 
space and time complexity of an algorithm. The worst case complexity for a given 
problem of size n corresponds to the maximum complexity encountered among all 
problems of size n. For determination of the worst case complexity of an algorithm, 
we choose a set of input conditions that force the algorithm to make the least possible 
progress at each step towards its final goal. 
 
In many practical applications it is very important to have a measure of the expected 
complexity of an algorithm rather than the worst case behavior. The expected 
complexity gives a measure of the behavior of the algorithm averaged over all 
possible problems of size n. 
 
As a simple example: Suppose we wish to characterize the behavior of an algorithm 
that linearly searches an ordered list of elements for some value x. 
1 2 3 4 5 … … …. N 
 
In the worst case, the algorithm examines all n values in the list before terminating. 
 
In the average case, the probability that x will be found at position 1 is 1/n, at position 
2 is 2/n and so on. Therefore, 
 
Average search cost  = 1/n(1+2+3+ …..+n)  
   = 1/n(n/2(n+1)) = (n+1)/2 
                          
Let us see how to represent the algorithm in a graphical form using a flowchart in the 
following section. 
 

1.6 FLOWCHARTS 
 
The next step after the algorithm development is the flowcharting. Flowcharts are 
used in programming to diagram the path in which information is processed through a 
computer to obtain the desired results. Flowchart is a graphical representation of an 



 

 
18 

 

An Introduction to C algorithm. It makes use of symbols which are connected among them to indicate the 
flow of information and processing. It will show the general outline of how to solve a 
problem or perform a task. It is prepared for better understanding of the algorithm. 
 
1.6.1 Basic Symbols used in flowchart design 
 
                                                             Start/Stop  

 

 

 
                                                            Question, Decision (Use in  
                                                                Branching)  
 
 
 
 
 
 
                                                           Input/Output  
 
 
 
                                           Lines or arrows represent the direction of the  

                                                       flow of control.            
 
 
                                                             Connector (connect one part of the                     
                                                                flowchart to another)  
 
 
 
                                                             

Process, Instruction  
 
 
 
 
                                                           
                                                              Comments, Explanations,  
                                                              Definitions.  
 
Additional Symbols Related to more advanced programming 
                                     

                                                    Preparation (may be used with “do Loops” )  

 
                                                             

Refers to separate flowchart  
 
 
 
 
 



 

 
19 

Problem Solving Example 1.5 

The flowchart for the Example 1.1 is shown below: 

 Start 

 

 

                                                       Read a b 

 

                                                                 Sum = a + b  

                 

                                                                 Print sum 

                                                                                                                                    
Stop 

Example 1.6 

The flowchart for the Example 1.3 (to find factorial of a given number) is shown 
below: 

 
                                Start 

 

                                                       Read n 

 

  

                                                                    i = 1                                                                  

                                                                fact = 1                                     

                                                               

                                                            No 

                                                                Is i<= n ?                 

 

                                                                         yes                  

                                                     i = i + 1 

 

                                                                    Print fact              

                                                              fact = fact * i                                                                                    

 

                                                            

                                                                   Stop 



 
An Introduction to C  

                                                       

Example 1.7: 

The flowchart for Example 1.4 is shown below: 

 
20 

 

 Start 

      

 Read num

      

 
i = 2 

flag = 1  
 
  

nois 
i<num?

flag = 0 

no 

Print 
“Number 
is prime  

is  flag 
 = 1?

yes

no
is  

flag = 0?

yes 

rem = 
num mod i 

no 
is  rem 
!= 0?

yes

i = i + 1 

Print 
“number is 
not prime” 

yes

stop 



 

 
21 

 

Problem Solving 
Check Your Progress 

1. Differentiate between flowchart and algorithm. 
 ………………………………………………………………………………………

……………………………………………………………………………………… 

………………………………………………………………………………………

……………………………………………………………………………………… 

2. Compute and print the sum of a set of data values.  
 ………………………………………………………………………………………

……………………………………………………………………………………… 

 ………………………………………………………………………………………

……………………………………………………………………………………… 

3. Write the following steps are suggested to facilitate the problem solving process 
using computer. 

 ………………………………………………………………………………………

……………………………………………………………………………………… 

 ………………………………………………………………………………………

……………………………………………………………………………………… 

4. Draw an algorithm and flowchart to calculate the roots of quadratic equation 
 Ax^2 + Bx + C = 0. 
 ………………………………………………………………………………….…

……………………………………………………………………………………. 

 ………………………………………………………………………………………

……………………………………………………………………………………… 

 

1.7 SUMMARY 
 
To solve a problem different problem - solving tools are available that help in finding 
the solution to problem in an efficient and systematic way. Steps should be followed 
to solve the problem that includes writing the algorithm and drawing the flowchart for 
the solution to the stated problem. Top down design provides the way of handling the 
logical complexity and detail encountered in computer algorithm. It allows building 
solutions to problems in a stepwise fashion. In this way, specific and complex details 
of the implementation are encountered only at the stage when sufficient groundwork 
on the overall structure and relationships among the carious parts of the problem. We 
present C language - a standardized, industrial-strength programming language known 
for its power and portability as an implementation vehicle for these problem solving 
techniques using computer. 
 

1.8  SOLUTIONS / ANSWERS 

Check Your Progress  

1. The process to devise and describe a precise plan (in the form of sequence of 
operations)  of what you want the computer to do, is called an algorithm. An 
algorithm may be symbolized in a flowchart or pseudocode. 

 



 

 
22 

 

An Introduction to C 2. 1.  Start  
 2.  Set the sum of the data values and the count of the data values to zero.  
 3.  As long as the data values exist, add the next data value to the sum     
          and add 1 to the count.  
 4.  Display the average.  

5.    Stop 
 
3. The following steps are suggested to facilitate the problem solving process: 

a) Define the problem 
b) Formulate a mathematical model 
c) Develop an algorithm 
d) Design the flowchart  
e) Code the same using some computer language 
f) Test the program 

 

1.9 FURTHER READINGS 

1. How to solve it by Computer, 5th Edition, R G Dromey, PHI, 1992.  
2. Introduction to Computer Algorithms, Second Edition, Thomas H. Cormen, MIT  
 press, 2001. 
3. Fundamentals of Algorithmics, Gilles Brassword, Paul Bratley, PHI, 1996. 
4. Fundamental Algorithms, Third Edition, Donald E Knuth, Addison-Wesley, 1997. 
 



 

 23 

 

Basics of C  
UNIT 2 BASICS OF C  

Structure 

2.0 Introduction 
2.1    Objectives 
2.2    What is a Program and what is a Programming Language? 
2.3     C Language 
         2.3.1      History of C  

  2.3.2      Salient Features of C 
2.4     Structure of a C Program 

A simple C Program 
2.5     Writing a C Program 
2.6     Compiling a C Program 
 2.6.1      The C Compiler 

2.6.2      Syntax and Semantic Errors 
2.7     Link and Run the C Program 

2.7.1      Run the C Program through the Menu 
2.7.2      Run from an Executable File 
2.7.3      Linker Errors 
2.7.4      Logical and Runtime Errors 

2.8   Diagrammatic Representation of Program Execution Process 
2.9     Summary 
2.10   Solutions / Answers 
2.11 Further Readings 
 

2.0  INTRODUCTION 
 
In the earlier unit we introduced you to the concepts of problem-solving, especially as 
they pertain to computer programming.  In this unit we present C language - a 
standardized, industrial-strength programming language known for its power and 
portability as an implementation vehicle for these problem solving techniques using 
computer. 

A language is a mode of communication between two people. It is necessary for those 
two people to understand the language in order to communicate. But even if the two 
people do not understand the same language, a translator can help to convert one 
language to the other, understood by the second person. Similar to a translator is the 
mode of communication between a user and a computer is a computer language.  One 
form of the computer language is understood by the user, while in the other form it is 
understood by the computer. A translator (or compiler) is needed to convert from 
user’s form to computer’s form. Like other languages, a computer language also 
follows a particular grammar known as the syntax. 
 
In this unit we will introduce you the basics of programming language C.  
 

2.1  OBJECTIVES 

After going through this unit you will be able to: 

• define what is a program? 
• understand what is a C programming language? 
• compile a C program; 
• identify the syntax errors; 
• run a C program; and 
• understand what are run time and logical errors. 
 



 

 
24 

An Introduction to C 
2.2 WHAT IS A PROGRAM AND WHAT IS A 

PROGRAMMING LANGUAGE?      

We have seen in the previous unit that a computer has to be fed with a detailed set of 
instructions and data for solving a problem. Such a procedure which we call an 
algorithm is a series of steps arranged in a logical sequence. Also we have seen that a 
flowchart is a pictorial representation of a sequence of instructions given to the 
computer. It also serves as a document explaining the procedure used to solve a 
problem. In practice it is necessary to express an algorithm using a programming 
language. A procedure expressed in a programming language is known as a computer 
program.  
 
Computer programming languages are developed with the primary objective of 
facilitating a large number of people to use computers without the need for them to 
know in detail the internal structure of the computer. Languages are designed to be 
machine-independent. Most of the programming languages ideally designed, to 
execute a program on any computer regardless of who manufactured it or what model 
it is. 
 
Programming languages can be divided into two categories: 

(i) Low Level Languages or  Machine Oriented Languages:  The language 
whose design is governed by the circuitry and the structure of the machine is 
known as the Machine language. This language is difficult to learn and use. It 
is specific to a given computer and is different for different computers i.e. these 
languages are machine-dependent.  These languages have been designed to 
give a better machine efficiency, i.e. faster program execution. Such languages 
are also known as Low Level Languages. Another type of Low-Level Language 
is the Assembly Language. We will code the assembly language program in the 
form of mnemonics. Every machine provides a different set of mnemonics to be 
used for that machine only depending upon the processor that the machine is 
using. 

 
(ii) High Level Languages or Problem Oriented Languages:  These languages 

are particularly oriented towards describing the procedures for solving the 
problem in a concise, precise and unambiguous manner. Every high level 
language follows a precise set of rules. They are developed to allow application 
programs to be run on a variety of computers. These languages are machine-
independent. Languages falling in this category are FORTRAN, BASIC, 
PASCAL etc. They are easy to learn and programs may be written in these 
languages with much less effort. However, the computer cannot understand 
them and they need to be translated into machine language with the help of 
other programs known as Compilers or Translators.  

 
 

2.3 C  LANGUAGE 

Prior to writing C programs, it would be interesting to find out what really is C 
language, how it came into existence and where does it stand with respect to other 
computer languages. We will briefly outline these issues in the following section. 
 
2.3.1 History of  C   

C is a programming language developed at AT&T’s Bell Laboratory of USA in 1972. 
It was designed and written by Dennis Ritchie. As compared to other programming 
languages such as Pascal, C allows a precise control of input and output.  
 



 

 25 

 

Basics of C Now let us see its historical development. The late 1960s were a turbulent era for 
computer systems research at Bell Telephone Laboratories. By 1960, many 
programming languages came into existence, almost each for a specific purpose. For 
example COBOL was being used for Commercial or Business Applications, 
FORTRAN for Scientific Applications and so on. So, people started thinking why 
could not there be a one general purpose language. Therefore, an International 
Committee was set up to develop such a language, which came out with the invention 
of ALGOL60. But this language never became popular because it was too abstract and 
too general. To improve this, a new language called Combined Programming 
Language (CPL) was developed at Cambridge University. But this language was very 
complex in the sense that it had too many features and it was very difficult to learn. 
Martin Richards at Cambridge University reduced the features of CPL and developed 
a new language called Basic Combined Programming Language (BCPL). But 
unfortunately it turned out to be much less powerful and too specific. Ken Thompson 
at AT & T’s Bell Labs, developed a language called B at the same time as a further 
simplification of CPL. But like BCPL this was also too specific. Ritchie inherited the 
features of B and BCPL and added some features on his own and developed a 
language called C. C proved to be quite compact and coherent. Ritchie first 
implemented C on a DEC PDP-11 that used the UNIX Operating System. 
 
For many years the de facto standard for C was the version supplied with the UNIX 
version 5 operating system. The growing popularity of microcomputers led to the 
creation of large number of C implementations. At the source code level most of these 
implementations were highly compatible. However, since no standard existed there 
were discrepancies. To overcome this situation, ANSI established a committee in 
1983 that defined an ANSI standard for the C language.  
 
2.3.2 Salient features of  C 

C is a general purpose, structured programming language. Among the two types of 
programming languages discussed earlier, C lies in between these two categories. 
That’s why it is often called a middle level language. It means that it combines the 
elements of high level languages with the functionality of assembly language. It 
provides relatively good programming efficiency (as compared to machine oriented 
language) and relatively good machine efficiency as compared to high level 
languages). As a middle level language, C allows the manipulation of bits, bytes and 
addresses – the basic elements with which the computer executes the inbuilt and 
memory management functions. C code is very portable, that it allows the same C 
program to be run on machines with different hardware configurations. The flexibility 
of C allows it to be used for systems programming as well as for application 
programming. 
 
C is commonly called a structured language because of structural similarities to 
ALGOL and Pascal. The distinguishing feature of a structured language is 
compartmentalization of code and data. Structured language is one that divides the 
entire program into modules using top-down approach where each module executes 
one job or task. It is easy for debugging, testing, and maintenance if a language is a 
structured one. C supports several control structures such as while, do-while and for 
and various data structures such as strucs, files, arrays etc. as would be seen in the 
later units. The basic unit of a C program is a function - C’s standalone subroutine. 
The structural component of C makes the programming and maintenance easier. 
 
Check Your Progress 1 

1.  “A Program written in Low Level Language is faster.” Why? 
………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 



 

 
26 

An Introduction to C 2.  What is the difference between high level language and low level language? 
………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

3.  Why is C referred to as middle level language? 
………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 
 

2.4 STRUCTURE OF A  C PROGRAM 

As we have already seen, to solve a problem there are three main things to be 
considered. Firstly, what should be the output? Secondly, what should be the inputs 
that will be required to produce this output and thirdly, the steps of instructions which 
use these inputs to produce the required output. As stated earlier, every programming 
language follows a set of rules; therefore, a program written in C also follows 
predefined rules known as syntax. C is a case sensitive language. All C programs 
consist of one or more functions. One function that must be present in every C 
program is main(). This is the first function called up when the program execution 
begins. Basically, main() outlines what a program does. Although main is not given 
in the keyword list,it cannot be used for naming a variable.  The structure of a C 
program is illustrated in Figure.2.1 where functions func1( ) through funcn( ) 
represent user defined functions. 
 
                          

              Preprocessor directives  
                          Global data declarations 
                           main ( )      /* main function*/ 
                           { 
            Declaration part; 
          
   Program statements; 
    } 
                                
   /*User defined functions*/ 
                           func1( )        
                           { 
             ………… 
   } 
                               
                           func2 ( )    
                           { 
              …………  
    } 
    . 
    . 
    . 
                             funcn ( )  
                             { 
                …………  
           } 

 
Figure. 2.1: Structure of a C Program. 

 



 

 27 

 

Basics of C  
 
A Simple C Program 

From the above sections, you have become familiar with, a programming language 
and structure of a C program. It’s now time to write a simple C program. This 
program will illustrate how to print out the message “This is a C program”. 
 
Example 2.1: Write a program to print a message on the screen.  

/*Program to print a message*/ 
#include <stdio.h>  /* header file*/ 
main()    /* main function*/ 
{ 
  printf("This is a C program\n");  /* output statement*/ 
} 
 
Though the program is very simple, a few points must be noted.  
 
Every C program contains a function called main(). This is the starting point of the 
program. This is the point from where the execution begins. It will usually call other 
functions to help perform its job, some that we write and others from the standard 
libraries provided. 
 
#include <stdio.h> is a reference to a special file called stdio.h which contains 
information that must be included in the program when it is compiled. The inclusion 
of this required information will be handled automatically by the compiler. You will 
find it at the beginning of almost every C program.  Basically, all the statements 
starting with # in a C program are called preprocessor directives. These will be 
considered in the later units. Just remember, that this statement allows you to use 
some predefined functions such as, printf(), in this case. 
 
main() declares the start of the function, while the two curly brackets { } shows the 
start and finish of the function. Curly brackets in C are used to group statements 
together as a function, or in the body of a loop. Such a grouping is known as a 
compound statement or a block.  Every statement within a function ends with a 
terminator semicolon (;). 
 
printf(“This is a C program\n”); prints the words on the screen. The text to be 
printed is enclosed in double quotes. The \n at the end of the text tells the program to 
print a newline as part of the output.  That means now if we give a second printf 
statement, it will be printed in the next line. 
 
Comments may appear anywhere within a program, as long as they are placed within 
the delimiters /* and */. Such comments are helpful in identifying the program’s 
principal features or in explaining the underlying logic of various program features. 
While useful for teaching, such a simple program has few practical uses. Let us 
consider something rather more practical. Let us look into the example given below,  
the complete program development life cycle. 
 
Example 2.1  
 
Develop an algorithm, flowchart and program to add two numbers.  
 
Algorithm 
1. Start 
2. Input the two numbers a and b 
3. Calculate the sum as a+b 
4. Store the result in sum 



 

 
28 

An Introduction to C 5. Display the result 
6. Stop. 
 
Flowchart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         

PRINT 
Sum

   STOP 

Sum = a + b 

INPUT    
  a, b

     START 

               Figure 2.2: Flow chart to add two numbers 
 
Program  
 
#include <stdio.h> 
 
main() 
{ 
   int a,b,sum;                            /* variables declaration*/ 
    
   printf(“\n Enter the values for a and b: \n”); 
   scanf(“%d, %d”, &a, &b); 
    
   sum=a+b;  
    
   printf("\nThe sum is %d",sum);     /*output statement*/ 
} 
 
OUTPUT 
Enter the values of a and b: 
2 3 
The sum is  5 
 
In the above program considers two variables a and b. These variables are declared as 
integers (int), it is the data type to indicate integer values. Next statement is the printf 
statement meant for prompting the user to input the values of a and b. scanf is the 
function to intake the values into the program provided by the user. Next comes the 
processing / computing part which computes the sum. Again the printf statement is a 



 

 29 

 

Basics of C bit different from the first program; it includes a format specifier (%d). The format 
specifier indicates the kind of value to be printed. We will study about other data 
types and format specifiers in detail in the following units. In the printf statement 
above, sum is not printed in double quotes because we want its value to be printed. 
The number of format specifiers and the variable should match in the printf statement.  
 
At this stage, don’t go much in detail. However, in the following units you will be 
learning all these details. 
 

2.5  WRITING A C PROGRAM 

A C program can be executed on platforms such as DOS, UNIX etc. DOS stores C  
program with a file extension .c. Program text can be entered using any text editor 
such as EDIT or any other. To edit a file called testprog.c using edit editor, gives: 

C:> edit   testprog.c 
 
If you are using Turbo C, then Turbo C provides its own editor which can be used for 
writing the program. Just give the full pathname of the executable file of Turbo C and 
you will get the editor in front of you. For example: 

C:> turboc\bin\tc 

Here, tc.exe is stored in bin subdirectory of turboc directory. After you get the menu 
just type the program and store it in a file using the menu provided. The file 
automatically gets the extension of .c. 
 
UNIX also stores C program in a file with extension is .c.  This identifies it as a C 
program. The easiest way to enter your text is using a text editor like vi, emacs or 
xedit. To edit a file called testprog.c using vi type  
 
$ vi   testprog.c 

The editor is also used to make subsequent changes to the program. 
 
2.6 COMPILING A C PROGRAM 

After you have written the program the next step is to save the program in a file with 
extension . c . This program is in high-level language. But this language is not 
understood by the computer.  So, the next step is to convert the high-level language 
program (source code) to machine language (object code). This task is performed by a 
software or program known as a compiler. Every language has its own compiler that 
converts the source code to object code. The compiler will compile the program 
successfully if the program is syntactically correct; else the object code will not be 
produced. This is explained pictorially in Figure 2.3. 
 
 
 
 
 
 
                  Source                                                                   Object 

Machine 
Language 
Program 

Translator 
(Compiler) 

High Level 
Language 
Program 

                    Code                                                                      Code 
Figure 2.3: Process of Translation 



 

 
30 

An Introduction to C 2.6.1 The  C Compiler 

If you are working on UNIX platform, then if the name of the program file is 
testprog.c, to compile it, the simplest method is to type  
 
cc testprog.c 
 
This will compile testprog.c, and, if successful, will produce a executable file called 
a.out. If you want to give the executable file any other, you can type  
 
cc testprog.c -o testprog 
 
This will compile testprog.c, creating an executable file testprog.  
 
If you are working with TurboC on DOS platform then the option for compilation is 
provided on the menu. If the program is syntactically correct then this will produce a 
file named as testprog.obj. If not, then the syntax errors will be displayed on the 
screen and the object file will not be produced. The errors need to be removed before 
compiling the program again. This process of removing the errors from the program is 
called as the debugging. 
 
2.6.2 Syntax and Semantic Errors 

Every language has an associated grammar, and the program written in that language 
has to follow the rules of that grammar. For example in English a sentence such a   
“Shyam, is playing, with a ball”. This sentence is syntactically incorrect because 
commas should not come the way they are in the sentence.  

Likewise, C also follows certain syntax rules. When a C program is compiled, the 
compiler will check that the program is syntactically correct. If there are any syntax 
errors in the program, those will be displayed on the screen with the corresponding 
line numbers. 

Let us consider the following program. 
 
Example 2.3: Write a program to print a message on the screen. 
 
/* Program to print a message on the screen*/ 
 
#include <stdio.h 
 
main( ) 
{ 
   printf(“Hello, how are you\n”) 
 
Let the name of the program be test.c .If we compile the above program as it is we 
will get the following errors: 

Error test.c 1:No file name ending 
Error test.c 5: Statement missing ; 
Error test.c 6: Compound statement missing } 
 
Edit the program again, correct the errors mentioned and the corrected version appears 
as follows: 

#include <stdio.h> 
main( ) 
{ 
   printf (“Hello, how are you\n”); 
} 



 

 31 

 

Basics of C Apart from syntax errors, another type of errors that are shown while compilation are 
semantic errors. These errors are displayed as warnings. These errors are shown if a 
particular statement has no meaning. The program does compile with these errors, but 
it is always advised to correct them also, since they may create problems while 
execution. The example of such an error is that say you have declared a variable but 
have not used it, and then you get a warning “code has no effect”. These variables are 
unnecessarily occupying the memory. 
 
Check Your Progress 2 

1.  What is the basic unit of a C program? 
……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

2.   “The program is syntactically correct”. What does it mean? 
……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

3.  Indicate the syntax errors in the following program code: 
 

include <stdio.h> 
 
main( ) 
[ 
   printf(“hello\n”); 
] 

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

 

2.7 LINK AND RUN THE C PROGRAM 

After compilation, the next step is linking the program. Compilation produces a file 
with an extension .obj.  Now this .obj file cannot be executed since it contains calls to 
functions defined in the standard library (header files) of C language. These functions 
have to be linked with the code you wrote. C comes with a standard library that 
provides functions that perform most commonly needed tasks. When you call a 
function that is not the part of the program you wrote, C remembers its name. Later 
the linker combines the code you wrote with the object code already found in the 
standard library. This process is called linking. In other words, Linker is a program 
that links separately compiled functions together into one program. It combines the 
functions in the standard C library with the code that you wrote. The output of the 
linker in an executable program i.e., a file with an extension .exe. 
 
2.7.1  Run the C Program Through the Menu 

When we are working with TurboC in DOS environment, the menu in the GUI that 
pops up when we execute the executable file of TurboC contains several options for 
executing the program: 

i) Link , after compiling 
ii) Make, compiles as well as links 
iii) Run 

 



 

 
32 

An Introduction to C All these options create an executable file and when these options are used we also get 
the output on user screen. To see the output we have to shift to user screen window. 
 
2.7.2 Run From an Executable File 

An .exe file produced by can be directly executed.  
 
UNIX also includes a very useful program called make. Make allows very 
complicated programs to be compiled quickly, by reference to a configuration file 
(usually called makefile). If your C program is a single file, you can usually use make 
by simply typing –  
 
make testprog 
 
This will compile testprog.c as well as link your program with the standard library so 
that you can use the standard library functions such as printf and put the executable 
code in testprog.  
 
In case of DOS environment , the options provided above produce an executable file 
and this file can be directly executed from the DOS prompt just by typing its name 
without the extension. That is if the name of the program is test.c, after compiling and 
linking the new file produced is test.exe only if compilation and linking is successful. 
 
This can be executed as: 

     c>test 
 
2.7.3    Linker Errors 

If a program contains syntax errors then the program does not compile, but it may 
happen that the program compiles successfully but we are unable to get the executable 
file, this happens when there are certain linker errors in the program. For example, the 
object code of certain standard library function is not present in the standard C library; 
the definition for this function is present in the header file that is why we do not get a 
compiler error. Such kinds of errors are called linker errors. The executable file would 
be created successfully only if these linker errors are corrected. 
 
2.7.4 Logical and Runtime Errors 

After the program is compiled and linked successfully we execute the program. Now 
there are three possibilities: 

1) The program executes and we get correct results, 
2) The program executes and we get wrong results, and 
3) The program does not execute completely and aborts in between. 
 
The first case simply means that the program is correct. In the second case, we get 
wrong results; it means that there is some logical mistake in our program. This kind of 
error is known as logical error. This error is the most difficult to correct. This error is 
corrected by debugging. Debugging is the process of removing the errors from the 
program. This means manually checking the program step by step and verifying the 
results at each step. Debugging can be made easier by a tracer provided in Turbo C 
environment. Suppose we have to find the average of three numbers and we write the 
following code: 
 
Example 2.4: Write a C program to compute the average of three numbers 
 
/* Program to compute average of three numbers *? 
#include<stdio.h> 
 



 

 33 

 

Basics of C main( ) 
 { 
    int a,b,c,sum,avg; 
 
    a=10; 
    b=5; 
    c=20; 
     
    sum = a+b+c;  
    avg = sum / 3; 
    printf(“The average is %d\n”, avg); 
} 
 
OUTPUT 
 
The average is 8. 
 
The exact value of average is 8.33 and the output we got is 8. So we are not getting 
the actual result, but a rounded off result. This is due to the logical error. We have 
declared variable avg as an integer but the average calculated is a real number, 
therefore only the integer part is stored in avg. Such kinds of errors which are not 
detected by the compiler or the linker are known as logical errors. 
 
The third kind of error is only detected during execution. Such errors are known as 
run time errors. These errors do not produce the result at all, the program execution 
stops in between and the run time error message is flashed on the screen. Let us look 
at the following example: 
 
Example 2.5: Write a program to divide a sum of two numbers by their       
                        difference 
 
/* Program to divide a sum of two numbers by their difference*/ 
 
#include <stdio.h> 
 
 main( ) 
 {  
     
    int a,b; 
    float c; 
 
    a=10; 
    b=10; 
     
    c = (a+b) / (a-b); 
    printf(“The value of the result is %f\n”,c); 
} 
 
The above program will compile and link successfully, it will execute till the first 
printf statement and we will get the message in this statement, as soon as the next 
statement is executed we get a runtime error of “Divide by zero” and the program 
halts. Such kinds of errors are runtime errors.  
 

2.8 DIAGRAMMATIC REPRESENTATION OF 
PROGRAM EXECUTION PROCESS 

The following figure 2.4 shows the diagrammatic representation of the program 
execution process. 



 

 
34 

An Introduction to C  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  

COMPILE THE PROGRAM

DEBUG SYNTAX 
ERRORS (IF ANY), 
SAVE AND RECOMPILE

     LINK THE PROGRAM 

 
EXECUTE THE PROGRAM 

TEST AND VERIFY THE 
RESULTS

WRITE A C PROGRAM 

 
 
 
 
 
 
 
  
                    Figure 2.4: Program Execution Process 
 
Check Your Progress 3 

1.  What is the extension of an executable file? 
……………………………………………………………………………………

…………………………………………………………………………………… 

…………………………………………………………………………………… 

2.  What is the need for linking a compiled file? 
……………………………………………………………………………………

…………………………………………………………………………………… 

…………………………………………………………………………………… 

3. How do you correct the logical errors in the program? 
……………………………………………………………………………………

…………………………………………………………………………………… 

…………………………………………………………………………………… 

 
2.9  SUMMARY 

In this unit, you have learnt about a program and a programming language. You can 
now differentiate between high level and low level languages. You can now define 
what is C, features of C. You have studied the emergence of C. You have seen how C 



 

 35 

 

Basics of C is different, being a middle level Language, than other High Level languages. The 
advantage of high level language over low level language is discussed.  
 
You have seen how you can convert an algorithm and flowchart into a C program. We 
have discussed the process of writing and storing a C program in a file in case of 
UNIX as well as DOS environment.  
 
You have learnt about compiling and running a C program in UNIX as well as on 
DOS environment. We have also discussed about the different types of errors that are 
encountered during the whole process, i.e. syntax errors, semantic errors, logical 
errors, linker errors and runtime errors. You have also learnt how to remove these 
errors. You can now write simple C programs involving simple arithmetic operators 
and the printf( ) statement. With these basics, now we are ready to learn the C 
language in detail in the following units. 
 
2.10  SOLUTIONS / ANSWERS  

Check Your Progress 1 

1.  A program written in  Low Level Language is faster to execute  since it needs no 
conversion while a high level language  program need to be converted into low 
level language. 

 
2.  Low level languages express algorithms on the form of numeric or mnemonic 

codes while High Level Languages express algorithms in the using concise, 
precise and unambiguous notation. Low level languages are machine dependent 
while High level languages are machine independent. Low level languages are 
difficult to program and to learn, while High level languages are easy to program 
and learn. Examples of High level languages are FORTRAN, Pascal and 
examples of Low level languages are machine language and assembly language. 

 
3.  C is referred to as middle level language as with C we are able to manipulate 

bits, bytes and addresses i.e. interact with the hardware directly. We are also able 
to carry out memory management functions. 

 
Check Your Progress 2 

1.  The basic unit of a C program is a C function. 
 
2. It means that program contains no grammatical or syntax errors. 
 
3.  Syntax errors: 

a)  # not present with include 
b)  {brackets should be present instead of [ brackets. 

 
Check Your Progress 3 
 
1.  The extension of an executable file is .exe. 
 
2.  The C program contains many C pre-defined functions present in the C library. 

These functions need to be linked with the C program for execution; else the C 
program may give a linker error indicating that the function is not present. 

 
3.  Logical errors can be corrected through debugging or self checking. 
 
 
 
 



 

 
36 

An Introduction to C  
       

2.11  FURTHER READINGS 

1. The C Programming Language, Kernighan & Richie, PHI Publication. 
2. Programming with C, Second Edition, Byron Gottfried,  Tata Mc Graw Hill, 

2003. 
3. The C Complete Reference, Fourth Editon, Herbert Schildt, Tata Mc Graw Hill, 

2002. 
4. Programming with ANSI and Turbo C, Ashok N. Kamthane, Pearson Education 

Asia, 2002. 
5. Computer Science A structured programming approach using C Second Edition, 

Behrouza A. Forouzan, Richard F. Gilberg, Brooks/Cole, Thomson Learning, 
2001. 

 
 



 
Variables and 

Constants UNIT 3 VARIABLES AND CONSTANTS  

Structure 

 

3.0 Introduction 
3.1 Objectives 
3.2 Character Set 
3.3 Identifiers and Keywords 

3.3.1 Rules for Forming Identifiers 
3.3.2 Keywords 

3.4 Data Types and Storage 
3.5 Data Type Qualifiers 
3.6 Variables 
3.7 Declaring Variables 
3.8 Initialising Variables 
3.9 Constants 

3.9.1 Integer Constants 
3.9.2 Floating Point Constants 
3.9.3 Character Constants 
3.9.4 String Constants 

3.10 Symbolic Constants 
3.11 Summary  
3.12 Solutions / Answers 
3.13 Further Readings 
 

3.0 INTRODUCTION 

As every natural language has a basic character set, computer languages also have a 
character set, rules to define words. Words are used to form statements. These in turn 
are used to write the programs.  

Computer programs usually work with different types of data and need a way to store 
the values being used. These values can be numbers or characters. C language has two 
ways of storing number values—variables and constants—with many options for 
each. Constants and variables are the fundamental elements of each program. Simply 
speaking, a program is nothing else than defining them and manipulating them. A 
variable is a data storage location that has a value that can change during program 
execution. In contrast, a constant has a fixed value that can’t change.   

This unit is concerned with the basic elements used to construct simple C program 
statements. These elements include the C character set, identifiers and keywords, data 
types, constants, variables and arrays, declaration and naming conventions of 
variables. 
 

3.1  OBJECTIVES 
After going through this unit, you will be able to: 

• define identifiers, data types and keywords in C; 
• know name the identifiers as per the conventions; 
• describe memory requirements for different types of variables; and 
• define constants, symbolic constants and their use in programs. 
 

3.2  CHARACTER SET   
 
When you write a program, you express C source files as text lines containing 
characters from the character set. When a program executes in the target environment, 

 
37 



 
An Introduction to C it uses characters from the character set. These character sets are related, but need not 

have the same encoding or all the same members. 
 
Every character set contains a distinct code value for each character in the basic C 
character set. A character set can also contain additional characters with other code 
values. The C language character set has alphabets, numbers, and special characters as 
shown below: 

1. Alphabets including both lowercase and uppercase alphabets -  A-Z and a-z.  
 
2. Numbers      0-9 
 
3. Special characters include: 
 

;  :  { , ‘ “ |  
}  >  < / \ ~ _  
[  ]  ! $ ? * +  
=  (  ) - % # ^       
@  &    . 

 
 

3.3 IDENTIFIERS AND KEYWORDS  

Identifiers are the names given to various program elements such as constants, 
variables, function names and arrays etc. Every element in the program has its own 
distinct name but one cannot select any name unless it conforms to valid name in C 
language. Let us study first the rules to define names or identifiers. 
 
3.3.1 Rules for Forming Identifiers  

Identifiers are defined according to the following rules: 

1.  It consists of letters and digits. 
2.  First character must be an alphabet or underscore. 
3.  Both upper and lower cases are allowed. Same text of different case is not     
 equivalent, for  example: TEXT is not same as text. 
4.  Except the special character underscore ( _ ),  no other special symbols can be 

used.  
 
For example, some valid identifiers are shown below: 

 X  
X123 
_XI 
temp 
tax_rate 
  
For example, some invalid identifiers are shown below: 

123  First character to be alphabet. 
“X.”  Not allowed. 
order-no               Hyphen allowed. 
error flag Blankspace allowed.  
 
3.3.2  Keywords  

Keywords are reserved words which have standard, predefined meaning in C. They 
cannot be used as program-defined identifiers.  

 
38  



 
Variables and 

Constants 
The lists of C keywords are as follows: 

  char  while  do  typedef  auto 
 int   if  else  switch  case 

printf  double  struct  break  static 
long  enum  register  extern  return 
union  const  float  short  unsigned 
continue  for  signed  void  default 
goto  sizeof  volatile  

 
Note: Generally all keywords are in lower case although uppercase of same names 

can be used as identifiers.  
 

3.4  DATA TYPES AND STORAGE  

To store data inside the computer we need to first identify the type of data elements 
we need in our program. There are several different types of data, which may be 
represented differently within the computer memory. The data type specifies two 
things: 

1. Permissible range of values that it can store. 
2. Memory requirement to store a data type. 
 
C Language provides four basic data types viz. int, char, float and double. Using 
these, we can store data in simple ways as single elements or we can group them 
together and use different ways (to be discussed later) to store them as per 
requirement. The four basic data types are described in the following table 3.1: 
 

Table 3.1: Basic Data Types 
 
DATA TYPE TYPE OF DATA MEMORY RANGE 
int Integer  2 Bytes  − 32,768 to 32,767 
char character 1 Byte − 128 to 128 
float  Floating point number  4 bytes          3.4e − 38 to 3.4e 

+38 
double Floating point number 

with higher precision 
8 bytes 1.7e − 308 to 1.7e 

+ 308  
 
Memory requirements or size of data associated with a data type indicates the range of 
numbers that can be stored in the data item of that type. 
 

3.5 DATA TYPE QUALIFIERS  

Short, long, signed, unsigned are called the data type qualifiers and can be used with 
any data type. A short int requires less space than int and long int may require more 
space than int. If int and short int takes 2 bytes, then long int takes 4 bytes. 
  
Unsigned bits use all bits for magnitude; therefore, this type of number can be larger. 
For example signed int ranges from –32768 to +32767 and unsigned int ranges from 
0 to 65,535. Similarly, char data type of data is used to store a character. It requires 1 
byte. Signed char values range from –128 to 127 and unsigned char value range from 
0 to 255. These can be summarized as follows: 

Data type  Size (bytes)  Range 

Short int or int               2   −32768 to 32,767 
 

 
39 Long int         4   −2147483648 to 2147483647 



 
An Introduction to C         

Signed int               2                 −32768 to 32767 
 
Unsigned int               2                         0 to 65535 
 
Signed char               1        −128 to 127 
 
Unsigned char               1            0 to 255 
 

3.6  VARIABLES   
 
Variable is an identifier whose value changes from time to time during execution. It is 
a named data storage location in your computer’s memory. By using a variable’s 
name in your program, you are, in effect, referring to the data stored there. A variable 
represents a single data item i.e. a numeric quantity or a character constant or a string 
constant. Note that a value must be assigned to the variables at some point of time in 
the program which is termed as assignment statement. The variable can then be 
accessed later in the program. If the variable is accessed before it is assigned a value, 
it may give garbage value. The data type of a variable doesn’t change whereas the 
value assigned to can change. All variables have three essential attributes: 
 
• the name  
• the value  
• the memory, where the value is stored.  
 
For example, in the following C program a, b, c, d are the variables but variable e is 
not declared and is used before declaration. After compiling the source code and look 
what gives? 

 
 main( ) 
{ 
     int  a, b, c; 
     char  d; 
  a = 3; 
 b = 5; 
 c = a + b; 
 d = ‘a’; 
             e=d;  
 ………. 
 ………. 
 } 
After compiling the code, this will generate the message that variable e not defined.                   
 

3.7 DECLARING VARIABLES 

Before any data can be stored in the memory, we must assign a name to these 
locations of memory. For this we make declarations. Declaration associates a group of 
identifiers with a specific data type. All of them need to be declared before they 
appear in program statements, else accessing the variables results in junk values or a 
diagnostic error. The syntax for declaring variables is as follows: 

data- type variable-name(s); 
  
For example, 

 int  a; 

 
40 

 short int   a, b; 



 
Variables and 

Constants 
 int  c, d; 
 long  c, f; 
 float  r1, r2; 
 
 

3.8 INITIALISING VARIABLES  

When variables are declared initial, values can be assigned to them in two ways: 

a)  Within a Type declaration 

The value is assigned at the declaration time. 

For example, 
 
int  a = 10; 
float b = 0.4 e –5; 
char  c = ‘a’; 
 
b)  Using Assignment statement 

The values are assigned just after the declarations are made. 

For example, 
 
a = 10; 
b = 0.4 e –5; 
c = ‘a’; 
 
Check Your Progress 1 

1)  Identify keywords and valid identifiers among the following: 

 hello  function day-of-the-week 
 student_1  max_value “what” 
 1_student  int  union 
 

………………………………………………………………………………………

……………………………………………………………………………………… 

 ……………………………………………………………………………………… 

  

2) Declare type variables for roll no, total_marks and percentage. 
 

………………………………………………………………………………………

……………………………………………………………………………………… 

……………………………………………………………………………………… 

 
3)  How many bytes are assigned to store for the following? 
 
 a) Unsigned character    b) Unsigned integer   c) Double 
 

………………………………………………………………………………………

……………………………………………………………………………………… 

……………………………………………………………………………………… 

 
41 



 
An Introduction to C  

 

3.9  CONSTANTS  

A constant is an identifier whose value can not be changed throughout the execution 
of a program whereas the variable value keeps on changing. In C there are four basic 
types of constants. They are:  

1. Integer constants 
2.      Floating point constants 
3.      Character constants 
4.      String constants 
  
Integer and Floating Point constants are numeric constants and represent numbers. 

 
Rules to form Integer and Floating Point Constants 

• No comma or blankspace is allowed in a constant. 
• It can be preceded by – (minus) sign if desired. 
• The value should lie within a minimum and maximum permissible range decided 

by the word size of the computer. 
 

3.9.1  Integer Constants 

Further, these constant can be classified according to the base of the numbers as: 

1.  Decimal integer constants 

These consist of digits 0 through 9 and first digit should not be 0. 
 
For example, 
 
1  443   32767   
are valid decimal integer constants. 

 
2.  Invalid Decimal integer Constants  

 12 ,45         , not allowed  
36.0 Illegal char. 
1 010  Blankspace not allowed  
10 – 10  Illegal char –  
0900   The first digit should not be a zero 
 

3.  Octal integer constants 

These consist of digits 0 through 7. The first digit must be zero in order to 
identify the constant as an octal number. 

 
Valid Octal INTEGER constants are: 

0   01   0743   0777 
 

 
Invalid Octal integer constants are: 

743  does not begin with 0 
0438  illegal character 8 
0777.77  illegal char .  

  

 
42 

4.  Hexadecimal integer constants 



 
Variables and 

Constants 
These constants begin with 0x or OX and are followed by combination of digits 
taken from hexadecimal digits 0 to 9, a to f or A to F. 

 
 Valid Hexadecimal integer constants are: 

  OX0   OX1  OXF77  Oxabcd. 
  
 Invalid Hexadecimal integer constants are: 

 OBEF    x is not included 
 Ox.4bff        illegal char (.) 
 OXGBC      illegal char G 
 
 Maximum values these constants can have are as follows: 

 Integer constants           Maximum value 
 
 Decimal integer        32767 
 Octal integer          77777 
 Hexadecimal integer          7FFF 
 

Unsigned interger constants: Exceed the ordinary integer by magnitude of 2, 
they are not negative. A character U or u is prefixed to number to make it 
unsigned. 

 
Long Integer constants: These are used to exceed the magnitude of ordinary 
integers and are appended by L. 

  
 For example, 

 50000U  decimal unsigned. 
 1234567889L decimal long. 
 0123456L  otal long. 
 0777777U  otal unsigned. 
  

3.9.2 Floating Point Constants  

What is a base 10 number containing decimal point or an exponent. 
  
Examples of valid floating point numbers are: 

0.  1.   
000.2  5.61123456 
50000.1  0.000741 
1.6667E+3 0.006e-3 
  
Examples of Invalid Floating Point numbers are: 

1                   decimal or exponent required. 
1,00.0 comma not allowed. 
2E+10.2 exponent is written after integer quantity. 
3E  10 no blank space. 

 
A Floating Point number taking the value of 5 x 104 can be represented as:  
  
5000.  5e4  
5e+4  5E4 
5.0e+4  .5e5  

  

 
43 



 
An Introduction to C The magnitude of floating point numbers range from 3.4E –38 to a maximum of 

3.4E+38, through 0.0. They are taken as double precision numbers. Floating Point 
constants occupy 2 words = 8 bytes. 

 
 3.9.3 Character Constants 

 This constant is a single character enclosed in apostrophes ‘ ’ .  

For example, some of the character constants are shown below: 

‘A’, ‘x’,  ‘3’,  ‘$’   
 

‘\0’ is a null character having value zero.  
 

Character constants have integer values associated depending on the character set 
adopted for the computer. ASCII character set is in use which uses 7-bit code with 27 

= 128 different characters. The digits 0-9 are having ASCII value of 48-56 and  ‘A’ 
have ASCII value from 65 and ‘a’ having value 97 are sequentially ordered. For 
example, 
 
‘A’ has 65, blank has 32 
  
ESCAPE SEQUENCE   
There are some non-printable characters that can be printed by preceding them with ‘\’ 
backslash character. Within character constants and string literals, you can write a 
variety of escape sequences. Each escape sequence determines the code value for a 
single character. You can use escape sequences to represent character codes: 
• you cannot otherwise write (such as \n)  
• that can be difficult to read properly (such as \t)  
• that might change value in different target character sets (such as \a)  
• that must not change in value among different target environments (such as \0)  
 
The following is the list of the escape sequences:  
 
Character    Escape Sequence 
"             \" 
'             \' 
?             \? 
\             \\ 
BEL          \a 
BS           \b 
FF           \f 
NL           \n 
CR           \r 
HT            \t 
VT            \v 

 
3.9.4 String Constants 

It consists of sequence of characters enclosed within double quotes. For example, 

“ red ”   “ Blue Sea ”   “ 41213*(I+3) ”. 
 

3.10  SYMBOLIC CONSTANTS  

 
44 

Symbolic Constant is a name that substitutes for a sequence of characters or a numeric 
constant, a character constant or a string constant. When program is compiled each 
occurrence of a symbolic constant is replaced by its corresponding character 
sequence. The syntax is as follows: 



 
Variables and 

Constants 
#define  name  text 

  
where name implies symbolic name in caps. 

text implies value or the text. 
 
For example, 
 
#define   printf   print  
#define   MAX    100 
#define   TRUE   1 
#define   FALSE  0 
#define    SIZE    10   

 
The # character is used for preprocessor commands. A preprocessor is a system 
program, which comes into action prior to Compiler, and it replaces the replacement 
text by the actual text. This will allow correct use of the statement printf. 
 
Advantages of using Symbolic Constants are: 

• They can be used to assign names to values 
 
• Replacement of value has to be done at one place and wherever the name 

appears in the text it gets the value by execution of the preprocessor. This 
saves time. if the Symbolic Constant appears 20 times in the program; it needs 
to be changed at one place only. 

 
Check Your Progress 2 

1)  Write a preprocessor directive statement to define a constant PI having the value 
3.14. 

………………………………………………………………………………………

……………………………………………………………………………………… 

 
2)  Classify the examples into Interger, Character and String constants. 

  ‘A’   0147  0xEFH  
  077.7  “A”  26.4 
  “EFH” ‘\r’  abc 

………………………………………………………………………………………

……………………………………………………………………………………… 

3)  Name different categories of Constants.  
………………………………………………………………………………………

……………………………………………………………………………………… 

 

3.11  SUMMARY  

To summarize we have learnt certain basics, which are required to learn a computer 
language and form a basis for all languages. Character set includes alphabets, numeric 
characters, special characters and some graphical characters. These are used to form 
words in C language or names or identifiers. Variable are the identifiers, which 
change their values during execution of the program. Keywords are names with 
specific meaning and cannot be used otherwise. 
 

 
45 

We had discussed four basic data types - int, char, float and double. Some qualifiers 
are used as prefixes to data types like signed, unsigned, short, and long. 



 

 
46 

An Introduction to C  
The constants are the fixed values and may be either Integer or Floating point or 
Character or String type. Symbolic Constants are used to define names used for 
constant values. They help in using the name rather bothering with remembering and 
writing the values. 
 

3.12  SOLUTIONS / ANSWERS  

Check Your Progress 1 

1.  Keywords: int, union   
     Valid Identifiers:  hello, student_1, max_value  

 
2.   int rollno; 
      float total_marks, percentage; 

 
3.  a) 1 byte    b) 2 bytes c) 8 bytes 

 
Check Your Progress 2 

1. # define PI 3.14 
 
2.  Integer constant:  0147  
     Character constants:      ’A’,  ‘\r’ 
     String constants:           ”A”, “EFH” 
 
 

3.13  FURTHER READINGS  

1. The C Programming Language, Kernighan & Ritchie, PHI Publication. 
2. Computer Science A structured programming approach using C, Behrouza A. 

Forouzan, Richard F. Gilberg, Second Edition, Brooks/Cole, Thomson Learning, 
2001. 

3. Programming with C,  Gottfried, Second Edition, Schaum Outlines,  Tata Mc 
Graw Hill, 2003. 



 

 
47 

Expressions and 
OperatorsUNIT 4   EXPRESSIONS AND OPERATORS 

Structure 

 

4.0 Introduction 
4.1   Objectives 
4.2    Assignment Statements 
4.3   Arithmetic Operators  
4.4   Relational Operators 
4.5 Logical Operators 
4.6 Comma and Conditional Operators 
4.7 Type Cast Operator 
4.8 Size of Operator 
4.9 C Shorthand 
4.10 Priority of Operators 
4.11 Summary 
4.12 Solutions / Answers 
4.13 Further Readings 
 

4.0 INTRODUCTION 

In the previous unit we have learnt variables, constants, datatypes and how to declare 
them in C programming. The next step is to use those variables in expressions. For 
writing an expression we need operators along with variables. An expression is a 
sequence of operators and operands that does one or a combination of the following:  
• specifies the computation of a value  
• designates an object or function  
• generates side effects. 
An operator performs an operation (evaluation) on one or more operands. An operand 
is a subexpression on which an operator acts.  
 
This unit focuses on different types of operators available in C including the syntax 
and use of each operator and how they are used in C.  
 
A computer is different from calculator in a sense that it can solve logical expressions 
also. Therefore, apart from arithmetic operators, C also contains logical operators. 
Hence, logical expressions are also discussed in this unit. 
 

4.1 OBJECTIVES 

After going through this unit you will be able to: 

• write and evaluate arithmetic expressions; 
• express and evaluate relational expressions; 
• write and evaluate logical expressions; 
• write and solve compute complex expressions (containing arithmetic, relational 

and logical operators), and 
• check simple conditions using conditional operators. 
 

4.2 ASSIGNMENT STATEMENT 

In the previous unit, we have seen that variables are basically memory locations and 
they can hold certain values. But, how to assign values to the variables? C provides an 
assignment operator for this purpose. The function of this operator is to assign the 
values or values in variables on right hand side of an expression to variables on the 
left hand side.  



 

 
48 

An Introduction to C The syntax of the assignment expression is as follows: 

           Variable = constant / variable/  expression; 
 
The data type of the variable on left hand side should match the data type of 
constant/variable/expression on right hand side with a few exceptions where 
automatic type conversions are possible. Some examples of assignment statements are 
as follows: 

b  = a ;       /* b is assigned the value of a */ 
b = 5 ;       /* b is assigned the value 5*/ 
b = a+5;    /* b is assigned the value of expr  a+5 */ 
 
The expression on the right hand side of the assignment statement can be: 

• an arithmetic expression; 
• a relational expression; 
• a logical expression; 
• a mixed expression. 
 
The above mentioned expressions are different in terms of the type of operators 
connecting the variables and constants on the right hand side of the variable. 
Arithmetic operators, relational operators and logical operators are discussed in the 
following sections. 
 
For example, 

int a; 
float b,c ,avg, t; 

          avg = (b+c) / 2;                  /*arithmetic expression */ 
        a = b && c;                         /*logical expression*/ 
             a = (b+c) && (b<c);          /* mixed  expression*/ 
 
4.3  ARITHMETIC OPERATORS 

The basic arithmetic operators in C are the same as in most other computer languages, 
and correspond to our usual mathematical/algebraic symbolism. The following 
arithmetic operators are present in C:  

       Operator                                          Meaning  
 
               +                                                       Addition 
 
                -                                                        Subtraction 
 
               *                                                       Multiplication 

 
               /                                                        Division 
                     
              %                                                      Modular Division 
 
Some of the examples of algebraic expressions and their C notation are given below: 

  Expression   C notation 

b* g    (b *g) / d 
   d 
 
a3+cd    (a*a*a) + (c*d) 



 

 
49 

Expressions and 
Operators

 
The arithmetic operators are all binary operators i.e. all the operators have two 
operands. The integer division yields the integer result. For example, the expression 
10/3 evaluates to 3 and the expression 15/4 evaluates to 3. C provides the modulus 
operator, %, which yields the reminder after integer division. The modulus operator is 
an integer operator that can be used only with integer operands. The expression x%y 
yields the reminder after x is divided by y. Therefore, 10%3 yields 1 and 15%4 yields 
3. An attempt to divide by zero is undefined on computer system and generally results 
in a run- time error. Normally, Arithmetic expressions in C are written in straight-line 
form. Thus ‘a divided by b’ is written as a/b.  
 
The operands in arithmetic expressions can be of integer, float, double type. In order 
to effectively develop C programs, it will be necessary for you to understand the rules 
that are used for implicit conversation of floating point and integer values in C. 
 
They are mentioned below: 

• An arithmetic operator between an integer and integer always yields an integer 
result. 

• Operator between float and float yields a float result. 
• Operator between integer and float yields a float result.    

 
If the data type is double instead of float, then we get a result of double data type. 
 
For example, 

 
                   Operation                                              Result 

                              5/3                                                                 1      
   
                            5.0/3                                                              1.3  
 
                            5/3.0                                                              1.3 
 
                            5.0/3.0                                                           1.3 
 
Parentheses can be used in C expression in the same manner as algebraic expression 
For example, 

               a * (b + c). 
 
It may so happen that the type of the expression and the type of the variable on the left 
hand side of the assignment operator may not be same. In such a case the value for the 
expression is promoted or demoted depending on the type of the variable on left hand 
side of  = (assignment operator). For example, consider the following assignment 
statements: 

   int   i; 
   float b; 
   i = 4.6;  
   b = 20; 
   
In the first assignment statement, float  (4.6) is demoted to int. Hence i gets the value 
4. In the second statement int (20) is promoted to float, b gets 20.0. If we have a 
complex expression like: 

  float   a, b, c; 
  int   s;              
  s = a * b / 5.0 * c; 



 

 
50 

An Introduction to C  
Where some operands are integers and some are float, then int will be promoted or 
demoted depending on left hand side operator. In this case, demotion will take place 
since s is an integer. 
 
The rules of arithmetic precedence are as follows:  

1.  Parentheses are at the “highest level of precedence”. In case of nested parenthesis, 
the innermost parentheses are evaluated first. 

 
For example, 
 
( ((3+4)*5)/6 ) 
 
The order of evaluation is given below. 
 

         (  ( (3+4) * 5) / 6 ) 
 
                

                        
                       1      2       3 
   
2.  Multiplication, Division and Modulus operators are evaluated next. If an 

expression contains several multiplication, division and modulus operators, 
evaluation proceeds from left to right. These three are at the same level of 
precedence. 

 
For example, 
 
 5*5+6*7  
 
The order of evaluation is given below. 
                        

          5*5+6*7 
 
       
                        1        2               
                             3         
 
3. Addition, subtraction are evaluated last. If an expression contains several 

addition and subtraction operators, evaluation proceeds from left to right. Or the 
associativity is from left to right. 

 
For example, 
 
8/5-6+5/2 
 
The order of evaluation is given below. 
                               
                          8/5-6+5/2 
 
                                 
 
 
                          1  3  4  2 

 
 



 

 
51 

Expressions and 
Operators

Apart from these binary arithmetic operators, C also contains two unary operators 
referred to as   increment (++) and decrement (--) operators, which we are going to be 
discussed below:  
The two-unary arithmetic operators provided by C are: 
  
• Increment operator (++)  
• Decrement operator  (- -) 
 
The increment operator increments the variable by one and decrement operator 
decrements the variable by one. These operators can be written in two forms i.e. 
before a variable or after a variable. If an increment / decrement operator is written 
before a variable, it is referred to as preincrement / predecrement operators and if it is 
written after a variable, it is referred to as post increment / postdecrement operator. 

For example, 

a++ or ++a is equivalent to a = a+1 and 
a--  or  - -a  is equivalent to a = a -1 
 
The importance of pre and post operator occurs while they are used in the expressions. 
Preincrementing (Predecrementing) a variable causes the variable to be incremented 
(decremented) by 1, then the new value of the variable is used in the expression in 
which it appears. Postincrementing (postdecrementing) the variable causes the 
current value of the variable is used in the expression in which it appears, then the 
variable value is incremented (decrement) by 1. 
 
The explanation is given in the table below: 

Expression                            Explanation  

++a    Increment a by 1, then use the new value of a 
 
a++    Use value of a, then increment a by 1 
 
--b    Decrement b by 1, then use  the new value of b 
 
b--    Use the current value of b, then decrement by 1 
 
The precedence of these operators is right to left. Let us consider the following 
examples: 
              
int a = 2, b=3; 
int c; 
c = ++a  –  b- -; 
printf (“a=%d, b=%d,c=%d\n”,a,b,c); 
 
OUTPUT 
 
a = 3, b = 2, c = 0.  
 
Since the precedence of the operators is right to left, first b is evaluated, since it is a 
post decrement operator, current value of b will be used in the expression i.e. 3 and 
then b will be decremented by 1.Then, a preincrement operator is used with a, so first 
a is incremented to 3. Therefore, the value of the expression is evaluated to 0. 
  
Let us take another example, 
 
int  a = 1, b = 2, c = 3; 
int k; 



 

 
52 

An Introduction to C k = (a++)*(++b) + ++a - --c; 
printf(“a=%d,b=%d, c=%d, k=%d”,a,b,c,k); 
 
OUTPUT 
 
 a = 3, b = 3, c = 2, k = 6 
 
The evaluation is explained below: 

k  =  (a++) * (++b)+ ++a  - --c 
    =  (a++) * (3) + 2 - 2     step1 
    =  (2) * (3) + 2 - 2         step2 
    =  6                                final result 
 
Check Your Progress 1  

1.  Give the C expressions for the following algebraic expressions: 
 
i)   a*4c2 - d 
              m+n 
 
ii)  ab - (e+f)4 
                           c 

………………………………………………………………………………………

……………………………………………………………………………………… 

2.  Give the output of the following C code: 

  main() 
 { 
     int a=2,b=3,c=4; 
         k = ++b +  --a*c + a; 
                        printf(“a= %d b=%d c=%d k=%d\n”,a,b,c,k); 
 } 

………………………………………………………………………………………

……………………………………………………………………………………… 

   
3.  Point out the error: 

                  Exp = a**b; 
………………………………………………………………………………………

……………………………………………………………………………………… 
 

4.4  RELATIONAL OPERATORS 

Executable C statements either perform actions (such as calculations or input or 
output of data) or make decision. Using relational operators we can compare two 
variables in the program. The C relational operators are summarized below, with their 
meanings. Pay particular attention to the equality operator; it consists of two equal 
signs, not just one. This section introduces a simple version of C’s if control structure 
that allows a program to make a decision based on the result of some condition. If the 
condition is true then the statement in the body of if statement is executed else if the 
condition is false, the statement is not executed. Whether the body statement is 
executed or not, after the if structure completes, execution proceeds with the next 
statement after the if structure. Conditions in the if structure are formed with the 
relational operators which are summarized in the Table 4.1. 



 

 
53 

Expressions and 
Operators

                                   Table 1: Relational Operators in C 
 
Relational Operator            Condition              Meaning                         
==                                                x==y                     x is equal to y 
!=                                                 x!=y                      x is not equal to y               
<                                                  x<y                       x is less than y                       
<=                                                x<=y                     x is less than or equal to y    
>                                                  x>y                       x is greater than y                  
>=                                                x>=y                     x is greater or equal to y       
 

 
Relational operators usually appear in statements which are inquiring about the truth 
of some particular relationship between variables. Normally, the relational operators  
in C are the operators in the expressions that appear between the parentheses.  
For example, 
 
(i)    if (thisNum < minimumSoFar) minimumSoFar = thisNum  
 
(ii)   if (job == Teacher) salary == minimumWage  
 
(iii)  if (numberOfLegs != 8) thisBug = insect  
 
(iv)  if (degreeOfPolynomial < 2) polynomial = linear  
 
Let us see a simple C program containing the If statement (will be introduced in detail 
in the next unit). It displays the relationship between two numbers read from the 
keyboard. 
 
Example: 4.1 
 
/*Program to find relationship between two numbers*/ 
 
#include <stdio.h> 
main ( ) 
{ 
 
int a, b; 
printf ( “Please enter two integers: ”); 
scanf (“%d%d”, &a, &b); 
if (a <= b) 
printf (“ %d <= %d\n”,a,b); 
else 
printf (“%d > %d\n”,a,b); 
} 
 
OUTPUT 

Please enter two integers: 12 17 
12 <= 17 
 
We can change the values assigned to a and b and check the result. 
 

4.5  LOGICAL OPERATORS 

Logical operators in C, as with other computer languages, are used to evaluate 
expressions which may be true or false. Expressions which involve logical operations 
are evaluated and found to be one of two values: true or false. So far we have studied 
simple conditions. If we want to test multiple conditions in the process of making a 



 

 
54 

An Introduction to C decision, we have to perform simple tests in separate IF statements(will be introduced 
in detail in the next unit). C provides logical operators that may be used to form more 
complex conditions by combining simple conditions. 
 
The logical operators are listed below: 

        Operator                                                  Meaning 
 
             &&          Logical AND 
 
             ||           Logical OR 
 
             !      Logical NOT 
 
Thus logical operators (AND and OR) combine two conditions and logical NOT is 
used to negate the condition i.e. if the condition is true, NOT negates it to false and 
vice versa.Let us consider the following examples: 

(i)  Suppose the grade of the student is ‘B’ only if his marks lie within the range 65 to     
75,if the condition would be: 

if ((marks >=65) && (marks <= 75)) 
printf (“Grade is B\n”); 

 
(ii) Suppose we want to check that a student is eligible for admission if his PCM is 

greater than 85% or his aggregate is greater than 90%, then, 
 

if ((PCM >=85) ||(aggregate >=90)) 
printf (“Eligible for admission\n”); 

 
Logical negation (!) enables the programmer to reverse the meaning of the condition. 
Unlike the && and || operators, which combines two conditions (and are therefore 
Binary operators), the logical negation operator is a unary operator and has one single 
condition as an operand. Let us consider an example: 

if !(grade==’A’) 
printf (“the next grade is %c\n”, grade); 

 
The parentheses around the condition grade==A are needed because the logical 
operator has higher precedence than equality operator. In a condition if all the 
operators are present then the order of evaluation and associativity is provided in the 
table. The truth table of the logical AND (&&), OR (||) and NOT (!) are given below.  
 
These table show the possible combinations of zero (false) and nonzero (true) values 
of x (expression1) and y (expression2) and only one expression in case of NOT 
operator. The following table 4.2 is the truth table for && operator. 
 

Table 4. 2: Truth table for && operator 
 
x y x&&y 
zero 
 
Non zero                   
 
zero 
 
Non zero 
 

zero 
 
zero 
 
Non zero 
 
Non zero 

0 
 
0 
 
0 
 
1 

                                    



 

 
55 

Expressions and 
Operators

The following table 4.3 is the truth table for || operator. 
 
                           Table 4.3:  Truth table for || operator 
 
x y x || y  
zero 
 
Non zero               
 
zero 
 
Non zero 
 

zero 
 
zero 
 
Non zero 
 
Non zero 

0 
 
1 
 
1 
 
1 

 
The following table 4.4 is the truth table for ! operator. 
 
                            Table 4.4: Truth table for ! operator 
                               

x ! x 
zero 
 
Non zero 
 

1 
 
0 
 

 
The following table 4.5 shows the operator precedence and associativity 
         

      Table 4.5:  (Logical operators precedence and associativity) 
Operator Associativity 
! 
 
&& 
 
|| 
 

Right to left 
 
Left to right 
 
Left to right 

                                   
 

4.6 COMMA AND CONDITIONAL OPERATORS 
 
Conditional Operator 

C provides an  called as the conditional operator (?:) which is closely related to the 
if/else structure. The conditional operator is C’s only ternary operator - it takes three 
operands. The operands together with the conditional operator form a conditional 
expression. The first operand is a condition, the second operand represents the value 
of the entire conditional expression it is the condition is true and the third operand is 
the value for the entire conditional expression if the condition is false.  
 
The syntax is as follows: 

     (condition)? (expression1): (expression2); 
 
If condition is true, expression1 is evaluated else expression2 is evaluated. 
Expression1/Expression2 can also be further conditional expression i.e. the case of 
nested if statement (will be discussed in the next unit). 
 
 



 

 
56 

An Introduction to C Let us see the following examples: 
 
(i)  x= (y<20) ? 9: 10; 
     This means,   if (y<20), then x=9 else x=10; 
 

(ii) printf (“%s\n”, grade>=50? “Passed”: “failed”); 
      The above statement will print “passed” grade>=50 else it will print “failed” 
 
(iii) (a>b) ? printf (“a is greater than b \n”): printf (“b is greater than a \n”); 
 
If a is greater than b, then first printf statement is executed else second printf 
statement is executed. 
 
Comma Operator 
 
A comma operator is used to separate a pair of expressions. A pair of expressions 
separated by a comma is evaluated left to right, and the type and value of the result are 
the value of the type and value of the right operand. All side effects from the 
evaluation of the left operand are completed before beginning evaluation of the right 
operand. The left side of comma operator is always evaluated to void. This means that 
the expression on the right hand side becomes the value of the total comma-separated 
expression. For example, 

    x = (y=2, y - 1); 
 
first assigns y the value 2 and then x the value 1. Parenthesis is necessary since 
comma operator has lower precedence than assignment operator. 
 
Generally, comma operator (,) is used in the for loop (will be introduced in the next 
unit) 
 
For example, 

     for (i = 0,j = n;i<j; i++,j--) 
    {  
       printf (“A”); 
     } 
 
In this example for is the looping construct (discussed in the next unit). In this loop,    
i  = 0 and j = n are separated by comma (,) and i++ and j—are separated by comma (,). 
The example will be clear to you once you have learnt for loop (will be introduced in 
the next unit). 
 
Essentially, the comma causes a sequence of operations to be performed. When it is 
used on the right hand side of the assignment statement, the value assigned is the 
value of the last expression in the comma-separated list. 
 
Check Your Progress 2 

1.  Given a=3, b=4, c=2, what is the result of following logical expressions: 
         (a < --b) && (a==c) 

………………………………………………………………………………………

……………………………………………………………………………………… 

2.  Give the output of the following code: 
         main() 
         { 
            int a=10, b=15,x; 



 

 
57 

Expressions and 
Operators

            x = (a<b)?++a:++b; 
            printf(“x=%d a=%d b=%d\n”,x,a,b); 
         } 

………………………………………………………………………………………

……………………………………………………………………………………… 

………………………………………………………………………………………

……………………………………………………………………………………… 

 
 3.   What is the use of comma operator? 

………………………………………………………………………………………

……………………………………………………………………………………… 

………………………………………………………………………………………

……………………………………………………………………………………… 

 
4.7   TYPE CAST OPERATOR 

We have seen in the previous sections and last unit that when constants and variables 
of different types are mixed in an expression, they are converted to the same type.  
That is automatic type conversion takes place. The following type conversion rules are 
followed: 

1. All chars and short ints  are converted to ints. All floats are converted to 
doubles. 

 
2. In case of binary operators, if one of the two operands is a long double, the other 

operand is converted to long double, 

                  else if one operand is double, the other is converted to double, 
                  else if one operand is long, the other is converted to long, 
                  else if one operand is unsigned, the other is converted to unsigned, 
 
C converts all operands “up” to the type of largest operand (largest in terms of 
memory requirement for e.g. float requires 4 bytes of storage and int requires 2 bytes 
of storage so if one operand is int and the other is float, int is converted to float). 
 
All the above mentioned conversions are automatic conversions, but what if  int is to 
be converted to float. It is possible to force an expression to be of specific type by 
using operator called a cast. The syntax is as follows: 

         (type) expression 
 
where type is the standard C data type. For example, if you want to make sure that the 
expression a/5 would evaluate to type float you would write it as 

  ( float ) a/5 
 
cast is an unary operator and has the same precedence as any other unary operator.  
The use of cast operator is explained in the following example: 

          main() 
         { 
               int   num; 
               printf(“%f %f %f\n”, (float)num/2, (float)num/3, float)num/3); 
           } 
 



 

 
58 

An Introduction to C Tha cast operator in this example will ensure that fractional part is also displayed on 
the screen.            
  
 

4.8   SIZE OF OPERATOR 

C provides a compile-time unary operator called sizeof  that can be used to compute 
the size of any object. The expressions such as: 

           sizeof object        and      sizeof(type name) 
 
result in an unsigned  integer value  equal to the size of the specified object or type in 
bytes. Actually the resultant integer is the number of bytes required to store an object 
of the type of its operand. An object can be a variable or array or structure. An array 
and structure are data structures provided in C, introduced in latter units. A type name 
can be the name of any basic type like int or double or a derived type like a structure 
or a pointer. 
 
For example, 
                 sizeof(char)  =  1bytes 
                 sizeof(int) = 2 bytes  
 

4.9  C  SHORTHAND 

C has a special shorthand that simplifies coding of certain type of assignment 
statements. For example: 

      a = a+2; 
 
can be written as: 

    a += 2; 
 
The operator +=tells the compiler that a is assigned the value of a  + 2; 
This shorthand works for all binary operators in C. The general form is: 

             variable operator =  variable / constant / expression 
 
These operators are listed below: 

         Operators                       Examples                                Meaning 

              +=                                      a+=2                                            a=a+2 
        
              -=                                       a-=2           a=a-2 
 
              =         a*=2          a = a*2 
 
              /=         a/=2          a=a/2 
 
             %=          a%=2          a=a%2 
 
       Operators                        Examples                                 Meaning 

             &&=       a&&=c           a=a&&c 
 
              ||=                                      a||=c                    a=a||c 
 
 



 

 
59 

Expressions and 
Operators4.10  PRIORITY OF OPERATORS 

Since all the operators we have studied in this unit can be used together in an 
expression, C uses a certain hierarchy to solve such kind of mixed expressions. The 
hierarchy and associatively of the operators discussed so far is summarized in Table 6.  
The operators written in the same line have the same priority. The higher precedence 
operators are written first 

                                    Table 4.6:  Precedence of the operators 
 

Operators Associativity 
( ) 
! ++ -- (type) sizeof 
/ % 
+ - 
< <= > >= 
==  != 
&& 
|| 
?: 
= += -= *= /= %= &&= ||= 
, 

Left to right 
Right to left 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Right to left 
Right to left 
Left to right 

 
 
 
Check Your Progress 3 

1.   Give the output of the following C code: 

        main( ) 
        { 
              int a,b=5; 
              float f; 

 
  a=5/2; 
  f=(float)b/2.0; 
  (a<f)? b=1:b=0; 
  printf(“b = %d\n”,b); 

       } 
………………………………………………………………………………………

……………………………………………………………………………………… 

……………………………………………………………………………………… 

  
2.     What is the difference between && and &. Explain with an example. 

………………………………………………………………………………………

……………………………………………………………………………………… 

………………………………………………………………………………. 

3. Use of Bit Wise operators makes the execution of the program. 
………………………………………………………………………………………

……………………………………………………………………………………… 

……………………………………………………………………………………… 

 

 



 

 
60 

An Introduction to C  

4.11  SUMMARY 

In this unit, we discussed about the different types of operators, namely arithmetic, 
relational, logical present in C and their use. In the following units, you will study 
how these are used in C’s other constructs like control statements, arrays etc. 
 
This unit also focused on  type conversions. Type conversions are very important to 
understand because sometimes a programmer gets unexpected results (logical error) 
which are most often caused by type conversions in case user has used improper types 
or if he has not type cast to desired type. 
 
This unit also referred to C shorthand. C is referred to as a compact language which is 
because lengthy expressions can be written in short form. Conditional operator is one 
of the examples, which is the short form of writing the if/else construct (next unit). 
Also increment/decrement operators reduce a bit of coding when used in expressions.  
 
Since Logical operators are used further in all types of looping constructs and if/else 
construct (in the next unit), they should be thoroughly understood. 
 
 

4.12  SOLUTIONS / ANSWERS 

Check Your Progress 1 

1.    C expression would be 

       i) ((a*4*c*c)-d)/(m+n) 
        ii) a*b-(e+f)*4/c 
 

2. The output would be: 
            a=1 b=4 c=4 k=10 
 

3. There is no such operator as **. 
 

Check Your Progress 2 

1.    The expression is evaluated as under: 

                                     (3 < - -4) && (3== 2) 
(3 < 3) &&  (3==2) 
0  && 0 
0 

        Logical false evaluates to 0 and logical true evaluates to 1. 
 
2.  The output would be as follows: 

        x=11, a=11, b=16 
 
3.  Comma operator causes a sequence of operators to be performed. 
 
Check Your Progress 3 

1. Here a will evaluate to 2 and f will evaluate to 2.5 since type cast operator is 
used in the latter so data type of b changes to float in an expression. Therefore, 
output would be b=1. 

 



 

 
61 

Expressions and 
Operators

2. && operator is a logical and operator and & is a bit wise and operator. 
Therefore, && operator always evaluates to true or false i.e 1 or 0 respectively 
while & operator evaluates bit wise so the result can be any value. For example: 

 
2 && 5 => 1(true) 

          2 &  5 => 0(bit-wise anding) 
 
3.  Use of Bit Wise operators makes the execution of the program faster. 
 
 

4.13  FURTHER READINGS 

1. The C Programming Language, Kernighan & Richie, PHI Publication. 
2. Computer Science A structured programming approach using C, Behrouza A. 

Forouzan, Richard F. Gilberg, Second Edition, Brooks/Cole, Thomson Learning, 
2001. 

3. Programming with C,  Second Edition, Byron Gottfried,  Schaum Outline,  Tata 
Mc Graw Hill, 2003. 




	MCS-011 An Introduction to C
	Index
	Credit Page
	Course Introduction
	Block Introduction
	Unit 1 Problem Solving
	1.0 Introduction
	1.1 Objectives
	1.2 Problem- Solving Techniques
	1.3 Design of AlgorithmsDESIGN OF ALGORITHMS
	1.4 Analysis of Alogrithm Efficiency
	1.5 Analysis of Algorithm Complexity
	1.6 Flowcharts
	1.7 Summary
	1.8 Solutions / Answers
	1.9 Further 

	Unit 2 Basics of C
	2.0 Introduction
	2.1 Objectives
	2.2 What is a Program and What is a Programming Language?
	2.3 C Language
	2.4 Structure of a C Program
	2.5 Writing a C Program
	2.6 Compling a C Program
	2.7 Link and Run the C Program
	2.8 Diagrammatic Representation of Program Execution Process
	2.9 Summary
	2.10 Solutions / Answers
	2.11 Further Readings

	Unit 3 Variable and Constants
	3.0 Introduction
	3.1 Objectives
	3.2 Character Set
	3.3 Identifiers and Keywords
	3.4 Data Types and Storage
	3.5 Data Type Qualifiers
	3.6 Variables
	3.7 Declaring Variables
	3.8 Iinitialising Variables
	3.9 Constants
	3.10 Symbolic Constants
	3.11 Summary 
	3.12 Solutions / Answers
	3.13 Further Readings

	Unit 4 Expression and Operators
	4.0 Introduction
	4.1 Objectives
	4.2 Assignment Statement
	4.3 Arithmetic Operators
	4.4 Relational Operators
	4.5 Logical Operators
	4.6 Comma and Conditional Operators
	4.7 Type Cast Operator
	4.8 Size of Operator
	4.9 C Shorthand
	4.10 Priority of Operators
	4.11 Summary
	4.12 Solutions/Answers
	4.13 Further Readings



