

MCS - 011
PROBLEM SOLVING AND

PROGRAMMING

Block

3
STRUCTURES, POINTERS AND FILE
HANDLING

UNIT 9

Structures and Unions 5

UNIT 10
Pointers 20

UNIT 11
The C Preprocessor 42

UNIT 12
Files 58

 Indira Gandhi
 National Open University
 School of Computer and
 Information Sciences

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur
Prof. M. Balakrishnan, IIT , Delhi
Prof Harish Karnick, IIT, Kanpur
Prof. C. Pandurangan, IIT, Madras
Dr. Om Vikas, Sr. Director, MIT
Prof P. S. Grover, Sr. Consultant,
SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences
Shri Shashi Bhushan
Shri Akshay Kumar
Prof Manohar Lal
Shri V.V. Subrahmanyam
Shri P.Venkata Suresh

Block Preparation Team

Prof P. S. Grover (Content Editor)
(Sr Consultant
SOCIS, IGNOU)

Ms. Sumita Kulshreshtha
Dept. of Computer Science
Hansraj College
University of Delhi

Mr. Madana Mohan Babu
Deputy Manager
NSIC-TSC
New Delhi

Ms. Priti Sehgal
Dept. of Computer Science
Keshav Mahavidyalya
University of Delhi

Ms. Usha
Dept. of Computer Science
New Era Institute of IT & Professional
Studies
New Delhi

Shri V.V. Subrahmanyam
SOCIS
IGNOU

Shri S.S. Rana
New Delhi Language
 Editors
Prof Sunaina Kumar
SOH, IGNOU

Course Coordinator : V.V. Subrahmanyam

Block Production Team

Shri H.K Som, SOCIS

Acknowledgements

To all the faculty members of SOCIS, IGNOU for their valuable comments and
suggestions on the course material. .

May, 2004

©Indira Gandhi National Open University, 2004

ISBN-81-266-1231-2

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means,
without permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the
University’s office at Maidan Garhi, New Delhi-110 068.

Printed and published on behalf on the Indira Gandhi National Open University, New Delhi by The Director,
SOCIS.

BLOCK INTRODUCTION

In the previous two blocks, we had discussed the basic constructs in C programming language,
Decision and Loop control structures, Arrays, Strings and Functions in C. Block-3 introduces
you the Structures, Pointers, Preprocessor directives and File handling in C.

In C programming, a structure is a convenient way of grouping several pieces of related
information together just like a record. It is a collection of variables under a single name. These
variables can be of different types, and each has a name which is used to select it from the
structure. It can use other structures, arrays or pointers as some of its members, though this can
get complicated unless you are careful. The concept of Structures is explained in Unit 9.

Unit - 10 introduces you to pointers which is a central part of C programming. A pointer is a
variable that holds the address of another variable; a pointer is said to “point to” the variable
whose address it holds. The special features of pointer arithmetic make it easy to access array
elements using pointers. Array subscript notation is in fact a special form of pointer notation.
Pointers and arrays have a special relationship which is discussed in this unit.

Preprocessor directives, such as #define and #ifdef, are typically used to make source programs
easy to change and easy to compile in different execution environments. Directives in the source
file tell the preprocessor to perform specific actions. The C preprocessor supports several
directives and is covered in the Unit-11.

In any programming language, storage of data in variables, arrays or dynamic data structures is
temporary. When the program terminates, all data is lost. Files are used for the retention of large
amounts of data. Detail discussion regarding the file streams, types of files and their accessing
mechanisms is provided in Unit-12.

The block contains a wide variety of programming examples to support the concepts given in the
material. Whenever possible, examples contain complete programs or functions rather than
incomplete program fragments. To get the maximum benefit from this, it is necessary that you
should understand and execute all the example programs given in this block, as well, complete
the assignment problems given in the lab manual also.

This block consists of 4 units and is organized as follows:

Unit - 9 provides an overview of the user defined data-type called as the Structures.

Unit - 10 introduces you the concept of Pointers.

Unit - 11 outlines the various preprocessor directives and their application in C programming.

Unit - 12 provides the overview of the File Handling in C.

Happy Programming!

5

Structures and
Unions UNIT 9 STRUCTURES AND UNIONS

Structure

9.0 Introduction
9.1 Objectives
9.2 Declaration of Structures
9.3 Accessing the Members of a Structure
9.4 Initializing Structures
9.5 Structures as Function Arguments
9.6 Structures and Arrays
9.7 Unions
9.8 Initializing an Union
9.9 Accessing the Members of an Union
9.10 Summary
9.11 Solutions / Answers
9.12 Further Readings

9.0 INTRODUCTION

We have seen so far how to store numbers, characters, strings, and even large sets of
these primitives using arrays, but what if we want to store collections of different
kinds of data that are somehow related. For example, a file about an employee will
probably have his/her name, age, the hours of work, salary, etc. Physically, all of that
is usually stored in someone’s filing cabinet. In programming, if you have lots of
related information, you group it together in an organized fashion. Let’s say you have
a group of employees, and you want to make a database! It just wouldn’t do to have
tons of loose variables hanging all over the place. Then we need to have a single data
entity where we will be able to store all the related information together. But this can’t
be achieved by using the arrays alone, as in the case of arrays, we can group multiple
data elements that are of the same data type, and is stored in consecutive memory
locations, and is individually accessed by a subscript. That is where the user-defined
datatype Structures come in.

Structure is commonly referred to as a user-defined data type. C’s structures allow
you to store multiple variables of any type in one place (the structure). A structure can
contain any of C’s data types, including arrays and other structures. Each variable
within a structure is called a member of the structure. They can hold any number of
variables, and you can make arrays of structures. This flexibility makes structures
ideally useful for creating databases in C. Similar to the structure there is another user
defined data type called Union which allows the programmer to view a single storage
in more than one way i.e., a variable declared as union can store within its storage
space, the data of different types, at different times. In this unit, we will be discussing
the user-defined data type structures and unions.

9.1 OBJECTIVES

After going through this unit you should be able to:

• declare and initialize the members of the structures;
• access the members of the structures;
• pass the structures as function arguments;
• declare the array of structures;
• declare and define union; and
• perform all operations on the variables of type Union.

6

Structures, Pointers
and File Handling 9.2 DECLARATION OF STRUCTURES

To declare a structure you must start with the keyword struct followed by the
structure name or structure tag and within the braces the list of the structure’s
member variables. Note that the structure declaration does not actually create any
variables. The syntax for the structure declaration is as follows:

struct structure-tag {
 datatype variable1;
 datatype variable2;
 dataype variable 3;
 ...
 };

For example, consider the student database in which each student has a roll number,
name and course and the marks obtained. Hence to group this data with a structure-tag
as student, we can have the declaration of structure as:

struct student {
 int roll_no;
 char name[20];
 char course[20];
 int marks_obtained ;
 };

The point you need to remember is that, till this time no memory is allocated to the
structure. This is only the definition of structure that tells us that there exists a user-
defined data type by the name of student which is composed of the following
members. Using this structure type, we have to create the structure variables:

 struct student stud1, stud2 ;

At this point, we have created two instances or structure variables of the user-defined
data type student. Now memory will be allocated. The amount of memory allocated
will be the sum of all the data members which form part of the structure template.

The second method is as follows:

struct {
 int roll_no;
 char name[20];
 char course[20];
 int marks_obtained ;
 } stud1, stud2 ;

In this case, a tag name student is missing, but still it happens to be a valid declaration
of structure. In this case the two variables are allocated memory equivalent to the
members of the structure.

The advantage of having a tag name is that we can declare any number of variables of
the tagged named structure later in the program as per requirement.

If you have a small structure that you just want to define in the program, you can do
the definition and declaration together as shown below. This will define a structure of
type struct telephone and declare three instances of it.

Consider the example for declaring and defining a structure for the telephone billing
with three instances:

7

Structures and
Unions

struct telephone{
 int tele_no;
 int cust_code;
 char cust_address[40];
 int bill_amt;
 } tele1, tele2, tele3;

The structure can also be declared by using the typedefinition or typedef. This can be
done as shown below:

typedef struct country{
 char name[20];
 int population;
 char language[10];
 } Country;

This defines a structure which can be referred to either as struct country or Country,
whichever you prefer. Strictly speaking, you don’t need a tag name both before and
after the braces if you are not going to use one or the other. But it is a standard
practice to put them both in and to give them the same name, but the one after the
braces starts with an uppercase letter.

The typedef statement doesn’t occupy storage: it simply defines a new type. Variables
that are declared with the typedef above will be of type struct country, just like
population is of type integer. The structure variables can be now defined as below:

Country Mexico, Canada, Brazil;

9.3 ACCESSING THE MEMBERS OF A
 STRUCTURE

Individual structure members can be used like other variables of the same type.
Structure members are accessed using the structure member operator (.), also called
the dot operator, between the structure name and the member name. The syntax for
accessing the member of the structure is:

structurevariable. member-name;

Let us take the example of the coordinate structure.

struct coordinate{
 int x;
 int y;
 };
Thus, to have the structure named first refer to a screen location that has coordinates

x=50, y=100, you could write as,

first.x = 50;
first.y = 100;
To display the screen locations stored in the structure second, you could write,

printf ("%d,%d", second.x, second.y);
The individual members of the structure behave like ordinary date elements and can
be accessed accordingly.

8

Structures, Pointers
and File Handling

Now let us see the following program to clarify our concepts. For example, let us see,
how will we go about storing and retrieving values of the individual data members of
the student structure.

Example 9.1

/*Program to store and retrieve the values from the student structure*/

#include<stdio.h>
struct student {
 int roll_no;
 char name[20];
 char course[20];
 int marks_obtained ;
 };
main()
{
student s1 ;
printf (“Enter the student roll number:”);
scanf (“%d”,&s1.roll_no);
printf (“\nEnter the student name: “);
scanf (“%s”,s1.name);
printf (“\nEnter the student course”);
scanf (“%s”,s1.course);
printf (“Enter the student percentage\n”);
scanf (“%d”,&s1.marks_obtained);
printf (“\nData entry is complete”);
printf (“\nThe data entered is as follows:\n”);
printf (“\nThe student roll no is %d”,s1.roll_no);
printf (“\nThe student name is %s”,s1.name);
printf (“\nThe student course is %s”,s1.course);
printf (“\nThe student percentage is %d”,s1.marks_obtained);
}

OUTPUT

Enter the student roll number: 1234
Enter the student name: ARUN
Enter the student course: MCA
Enter the student percentage: 84
Date entry is complete

The data entered is as follows:
The student roll no is 1234
The student name is ARUN
The student course is MCA
The student percentage is 84

Another way of accessing the storing the values in the members of a structure is by
initializing them to some values at the time when we create an instance of the data
type.

9.4 INITIALIZING STRUCTURES

Like other C variable types, structures can be initialized when they’re declared. This
procedure is similar to that for initializing arrays. The structure declaration is followed
by an equal sign and a list of initialization values is separated by commas and

9

Structures and
Unions

enclosed in braces. For example, look at the following statements for initializing the
values of the members of the mysale structure variable.

Example 9.2

struct sale {
 char customer[20];
 char item[20];
 float amt;

 } mysale = { "XYZ Industries",
 “toolskit",
 600.00
 };

In a structure that contains structures as members, list the initialization values in order.
They are placed in the structure members in the order in which the members are listed
in the structure definition. Here’s an example that expands on the previous one:

Example 9.3

struct customer {
 char firm[20];
 char contact[25];
 }

struct sale {
 struct customer buyer1;
 char item [20];
 float amt;
 } mysale = {
 { "XYZ Industries", "Tyran Adams"},
 "toolskit",
 600.00
 };

These statements perform the following initializations:
• the structure member mysale.buyer1.firm is initialized to the string “XYZ
 Industries”.

• the structure member mysale.buyer1.contact is initialized to the string “Tyran
 Adams”.
• the structure member mysale.item is initialized to the string "toolskit".
• the structure member mysale.amount is initialized to the amount 600.00.

For example let us consider the following program where the data members are
initialized to some value.

Example 9.4

Write a program to access the values of the structure initialized with some initial
values.

/* Program to illustrate to access the values of the structure initialized with some
initial values*/

#include<stdio.h>
struct telephone{
 int tele_no;

10

Structures, Pointers
and File Handling

 int cust_code;
 char cust_name[20];
 char cust_address[40];
 int bill_amt;
 };
main()
{
 struct telephone tele = {2314345,
 5463,
 "Ram",
 "New Delhi",
 2435 };

printf("The values are initialized in this program.");
printf("\nThe telephone number is %d",tele.tele_no);
printf("\nThe customer code is %d",tele.cust_code);
printf("\nThe customer name is %s",tele.cust_name);
printf("\nThe customer address is %s",tele.cust_address);
printf("\nThe bill amount is %d",tele.bill_amt);
}

OUTPUT

The values are initialized in this program.
The telephone number is 2314345
The customer code is 5463
The customer name is Ram
The customer Address is New Delhi
The bill amount is 2435

Check Your Progress 1

1. What is the difference between the following two declarations?
 struct x1{……….};
 typedef struct{………}x2;

…………………………………………………………………………………………

…………………………………………………………………………………………

2. Why can’t you compare structures?

…………………………………………………………………………………………

…………………………………………………………………………………………..

3. Why does size of report a larger size than, one expects, for a structure type, as if
 there were padding at the end?

…………………………………………………………………………………………

…………………………………………………………………………………………

4. Declare a structure and instance together to display the date.

…………………………………………………………………………………………

…………………………………………………………………………………………

11

Structures and
Unions

9.5 STRUCTURES AS FUNCTION ARGUMENTS

C is a structured programming language and the basic concept in it is the modularity
of the programs. This concept is supported by the functions in C language. Let us look
into the techniques of passing the structures to the functions. This can be achieved in
primarily two ways: Firstly, to pass them as simple parameter values by passing the
structure name and secondly, through pointers. We will be concentrating on the first
method in this unit and passing using pointers will be taken up in the next unit. Like
other data types, a structure can be passed as an argument to a function. The program
listing given below shows how to do this. It uses a function to display data on the
screen.

Example 9.5

Write a program to demonstrate passing a structure to a function.

/*Program to demonstrate passing a structure to a function.*/

#include <stdio.h>

/*Declare and define a structure to hold the data.*/

struct data{
 float amt;
 char fname [30];
 char lname [30];
 } per;

main()
{
void print_per (struct data x);
printf(“Enter the donor’s first and last names separated by a space:”);
scanf (“%s %s”, per.fname, per.lname);
printf (“\nEnter the amount donated in rupees:”);
scanf (“%f”, &per.amt);
print_per (per);
return 0;
 }

void print_per(struct data x)
{
 printf ("\n %s %s gave donation of amount Rs.%.2f.\n", x.fname, x.lname, x.amt);
}

OUTPUT

Enter the donor’s first and last names separated by a space: RAVI KANT
Enter the amount donated in rupees: 1000.00
RAVI KANT gave donation of the amount Rs. 1000.00.

You can also pass a structure to a function by passing the structure’s address (that is, a
pointer to the structure which we will be discussing in the next unit). In fact, in the
older versions of C, this was the only way to pass a structure as an argument. It is not
necessary now, but you might see the older programs that still use this method. If you
pass a pointer to a structure as an argument, remember that you must use the indirect
membership operator () to access structure members in the function.

12

Structures, Pointers
and File Handling

Please note the following points with respect to passing the structure as a parameter to
a function.
• The return value of the called function must be declared as the value that is being

returned from the function. If the function is returning the entire structure then the
return value should be declared as struct with appropriate tag name.

• The actual and formal parameters for the structure data type must be the same as
the struct type.

• The return statement is required only when the function is returning some data.
• When the return values of type is struct, then it must be assigned to the structure

of identical type in the calling function.

Let us consider another example as shown in the Example 9.6, where structure salary
has three fields related to an employee, namely - name, no_days_worked and
daily_wage. To accept the values from the user we first call the function get_data that
gets the values of the members of the structure. Then using the wages function we
calculate the salary of the person and display it to the user.

Example 9.6

Write a program to accept the data from the user and calculate the salary of the person
using concept of functions.

/* Program to accept the data from the user and calculate the salary of the person*/

#include<stdio.h>
main()
{
 struct sal {
 char name[30];
 int no_days_worked;
 int daily_wage; };
 struct sal salary;
 struct sal get_dat(struct); /* function prototype*/
 float wages(struct); /*function prototype*/
 float amount_payable; /* variable declaration*/
 salary = get_data(salary);
 printf(“The name of employee is %s”,salary.name);
 printf(“Number of days worked is %d”,salary.no_daya_worked);
 printf(“The daily wage of the employees is %d”,salary.daily_wage);
 amount_payable = wages(salary);
 printf(“The amount payable to %s is %f”,salary.name,amount_payable);
}

struct sal get_data(struct sal income)
 {
 printf(“Please enter the employee name:\n”);
 scanf(“%s”,income.name);
 printf(“Please enter the number of days worked:\n”);
 scanf(“%d”,&income.no_days_worked);
 printf(‘Please enter the employee daily wages:\n”);
 scanf(“%d”,&income.daily_wages);
 return(income);
 }

float wages(struct)
{
 struct sal amt;

13

Structures and
Unions

 int total_salary ;
 total_salary = amt.no_days_worked * amt.daily_wages;
 return(total_salary); }

Check Your Progress 2

1. How is structure passing and returning implemented?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2. How can I pass constant values to functions which accept structure arguments?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

3. What will be the output of the program?

 #include<stdio.h>
 main()
 {
 struct pqr{
 int x ;
 };
 struct pqr pqr ;
 pqr.x =10 ;
 printf (“%d”, pqr.x);
 }

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

9.6 STRUCTURES AND ARRAYS

Thus far we have studied as to how the data of heterogeneous nature can be grouped
together and be referenced as a single unit of structure. Now we come to the next step
in our real world problem. Let’s consider the example of students and their marks. In
this case, to avoid declaring various data variables, we grouped together all the data
concerning the student’s marks as one unit and call it student. The problem that arises
now is that the data related to students is not going to be of a single student only. We
will be required to store data for a number of students. To solve this situation one way
is to declare a structure and then create sufficient number of variables of that structure
type. But it gets very cumbersome to manage such a large number of data variables, so
a better option is to declare an array.

So, revising the array for a few moments we would refresh the fact that an array is
simply a collection of homogeneous data types. Hence, if we make a declaration as:

int temp[20];

14

Structures, Pointers
and File Handling

It simply means that temp is an array of twenty elements where each element is of
type integer, indicating homogenous data type. Now in the same manner, to extend the
concept a bit further to the structure variables, we would say,

struct student stud[20] ;

It means that stud is an array of twenty elements where each element is of the type
struct student (which is a user-defined data type we had defined earlier). The various
members of the stud array can be accessed in the similar manner as that of any other
ordinary array.

For example,
struct student stud[20], we can access the roll_no of this array as

stud[0].roll_no;
stud[1].roll_no;
stud[2].roll_no;
stud[3].roll_no;
…
…
…
stud[19].roll_no;

Please remember the fact that for an array of twenty elements the subscripts of the
array will be ranging from 0 to 19 (a total of twenty elements). So let us now start by
seeing how we will write a simple program using array of structures.

Example 9.7

Write a program to read and display data for 20 students.

/*Program to read and print the data for 20 students*/

#include <stdio.h>
struct student { int roll_no;
 char name[20];
 char course[20];
 int marks_obtained ;
 };
main()
{
 struct student stud [20];
 int i;
 printf (“Enter the student data one by one\n”);
 for(i=0; i<=19; i++)
 {
 printf (“Enter the roll number of %d student”,i+1);
 scanf (“%d”,&stud[i].roll_no);
 printf (“Enter the name of %d student”,i+1);
 scanf (“%s”,stud[i].name);
 printf (“Enter the course of %d student”,i+1);
 scanf (“%d”,stud[i].course);
 printf (“Enter the marks obtained of %d student”,i+1);
 scanf (“%d”,&stud[i].marks_obtained);
 }
 printf (“the data entered is as follows\n”);
 for (i=0;i<=19;i++)
 {

15

Structures and
Unions

 printf (“The roll number of %d student is %d\n”,i+1,stud[i].roll_no);
 printf (“The name of %d student is %s\n”,i+1,stud[i].name);
 printf (“The course of %d student is %s\n”,i+1,stud[i].course);
 printf (“The marks of %d student is %d\n”,i+1,stud[i].marks_obtained);
 }
}

The above program explains to us clearly that the array of structure behaves as any
other normal array of any data type. Just by making use of the subscript we can access
all the elements of the structure individually.

Extending the above concept where we can have arrays as the members of the
structure. For example, let’s see the above example where we have taken a structure
for the student record. Hence in this case it is a real world requirement that each
student will be having marks of more than one subject. Hence one way to declare the
structure, if we consider that each student has 3 subjects, will be as follows:

struct student {
 int roll_no;
 char name [20];
 char course [20];
 int subject1 ;
 int subject2;
 int subject3;

 };

The above described method is rather a bit cumbersome, so to make it more efficient
we can have an array inside the structure, that is, we have an array as the member of
the structure.
struct student {
 int roll_no;
 char name [20];
 char course [20];
 int subject [3] ;
 };

Hence to access the various elements of this array we can the program logic as
follows:

Example 9.8

/*Program to read and print data related to five students having marks of three
subjects each using the concept of arrays */

#include<stdio.h>
struct student {
 int roll_no;
 char name [20];
 char course [20];
 int subject [3] ;
 };
main()
{
 struct student stud[5];
 int i,j;
printf (“Enter the data for all the students:\n”);
for (i=0;i<=4;i++)
{

16

Structures, Pointers
and File Handling

printf (“Enter the roll number of %d student”,i+1);
scanf (“%d”,&stud[i].roll_no);
printf(“Enter the name of %d student”,i+1);
scanf (“%s”,stud[i].name);
printf (“Enter the course of %d student”,i+1);
scanf (“%s”,stud[i].course);
for (j=0;j<=2;j++)
 {
 printf (“Enter the marks of the %d subject of the student %d:\n”,j+1,i+1);
 scanf (“%d”,&stud[i].subject[j]);
 }
}
printf (“The data you have entered is as follows:\n”);
for (i=0;i<=4;i++)
 {

printf (“The %d th student's roll number is %d\n”,i+1,stud[i].roll_no);
printf (“The %d the student's name is %s\n”,i+1,stud[i].name);
printf (“The %d the student's course is %s\n”,i+1,stud[i].course);
for (j=0;j<=2;j++)

 {
printf (“The %d the student's marks of %d I subject are %d\n”,i+1, j+1,
stud[i].subject[j]);

 }
 }
 printf (“End of the program\n”);
}

Hence as described in the example above, the array as well as the arrays of structures
can be used with efficiency to resolve the major hurdles faced in the real world
programming environment.

9.7 UNIONS

Structures are a way of grouping homogeneous data together. But it often happens that
at any time we require only one of the member’s data. For example, in case of the
support price of shares you require only the latest quotations. And only the ones that
have changed need to be stored. So if we declare a structure for all the scripts, it will
only lead to crowding of the memory space. Hence it is beneficial if we allocate space
to only one of the members. This is achieved with the concepts of the UNIONS.
UNIONS are similar to STRUCTURES in all respects but differ in the concept of
storage space.

A UNION is declared and used in the same way as the structures. Yet another
difference is that only one of its members can be used at any given time. Since all
members of a Union occupy the same memory and storage space, the space allocated
is equal to the largest data member of the Union. Hence, the member which has been
updated last is available at any given time.

For example a union can be declared using the syntax shown below:

union union-tag {
 datatype variable1;
 datatype variable2;
 ...
 };

For example,
union temp{

17

Structures and
Unions

 int x;
 char y;
 float z;
 };

In this case a float is the member which requires the largest space to store its value
hence the space required for float (4 bytes) is allocated to the union. All members
share the same space. Let us see how to access the members of the union.

Example 9.9

Write a program to illustrate the concept of union.

/* Declare a union template called tag */
union tag {
 int nbr;
 char character;
 }
/* Use the union template */
union tag mixed_variable;
/* Declare a union and instance together */
union generic_type_tag {
 char c;
 int i;
 float f;
 double d;
 } generic;

9.8 INITIALIZING AN UNION

Let us see, how to initialize a Union with the help of the following example:

Example 9.10

union date_tag {
 char complete_date [9];
 struct part_date_tag {
 char month[2];
 char break_value1;
 char day[2];
 char break_value2;
 char year[2];
 } parrt_date;
 }date = {“01/01/05”};

9.9 ACCESSING THE MEMBERS OF AN UNION

Individual union members can be used in the same way as the structure members, by
using the member operator or dot operator (.). However, there is an important
difference in accessing the union members. Only one union member should be
accessed at a time. Because a union stores its members on top of each other, it’s
important to access only one member at a time. Trying to access the previously stored
values will result in erroneous output.

Check Your Progress 3

1. What will be the output?

18

Structures, Pointers
and File Handling

#include<stdio.h>
main()
{
union{
 struct{

 char x;
 char y;
 char z;
 char w;

}xyz;

 struct{
 int p;
 int q ;

}pq;
 long a ;
 float b;
 double d;
 }prq;
 printf (“%d”,sizeof(prq));
 }

9.10 SUMMARY

In this unit, we have learnt how to use structures, a data type that you design to meet
the needs of a program. A structure can contain any of C’s data types, including other
structures, pointers, and arrays. Each data item within a structure, called a member, is
accessed using the structure member operator (.) between the structure name and the
member name. Structures can be used individually, and can also be used in arrays.

Unions were presented as being similar to structures. The main difference between a
union and a structure is that the union stores all its members in the same area. This
means that only one member of a union can be used at a time.

9.11 SOLUTIONS / ANSWERS

Check Your Progress 1

1. The first form declares a structure tag; the second declares a typedef. The main

difference is that the second declaration is of a slightly more abstract type - users
do not necessarily know that it is a structure, and the keyword struct is not used
while declaring an instance.

2. There is no single correct way for a compiler to implement a structure comparison

consistent with C’s low-level flavor. A simple byte-by-byte comparison could
detect the random bits present in the unused “holes” in the structure (such padding
is used to keep the alignment of later fields correct). A field-by-field comparison
for a large structure might require an inordinate repetitive code.

3. Structures may have this padding (as well as internal padding), to ensure that

alignment properties will be preserved when an array of contiguous structures is
allocated. Even when the structure is not part of an array, the end padding remains,
so that sizeof can always return a consistent size.

4. struct date {

19

Structures and
Unions

 char month[2];
 char day[2];
 char year[4];

 } current_date;

Check Your Progress 2

1. When structures are passed as arguments to functions, the entire structure is

typically pushed on the stack, using as many words. (Programmers often choose
to use pointers instead, to avoid this overhead). Some compilers merely pass a
pointer to the structure, though they may have to make a local copy to preserve
pass-by value semantics.

 Structures are often returned from functions in a pointed location by an extra,
compiler-supplied “hidden” argument to the function. Some older compilers used
a special, static location for structure returns, although this made structure -
valued functions non-reentrant, which ANSI C disallows.

2. C has no way of generating anonymous structure values. You will have to use a

temporary structure variable or a little structure - building function.

3. 10

Check Your Progress 3

1. 8

9.12 FURTHER READINGS

1. The C Programming Language, Kernighan & Richie, PHI Publication, 2002.
2. Computer Science A structured programming approach using C,

Behrouza .Forouzan, Richard F. Gilberg, Second Edition, Brooks/Cole, Thomson
Learning, 2001.

3. Programming with C, Schaum Outlines, Second Edition, Gottfried, Tata McGraw
Hill, 2003.

20

Structures, Pointers
and File Handling UNIT 10 POINTERS

Structure

10.0 Introduction
10.1 Objectives
10.2 Pointers and their Characteristics
10.3 Address and Indirection Operators
10.4 Pointer Type Declaration and Assignment
 10.4.1 Pointer to a Pointer
 10.4.2 Null Pointer Assignment
10.5 Pointer Arithmetic
10.6 Passing Pointers to Functions
 10.6.1 A Function Returning More than One Value
 10.6.2 Function Returning a Pointer
10.7 Arrays and Pointers
10.8 Array of Pointers
10.9 Pointers and Strings
10.10 Summary
10.11 Solutions / Answers
10.12 Further Readings

10.0 INTRODUCTION

If you want to be proficient in the writing of code in the C programming language,
you must have a thorough working knowledge of how to use pointers. One of those
things, beginners in C find difficult is the concept of pointers. The purpose of this
unit is to provide an introduction to pointers and their efficient use in the C
programming. Actually, the main difficulty lies with the C’s pointer terminology than
the actual concept.

C uses pointers in three main ways. First, they are used to create dynamic data
structures: data structures built up from blocks of memory allocated from the heap at
run-time. Second, C uses pointers to handle variable parameters passed to functions.
And third, pointers in C provide an alternative means of accessing information stored
in arrays, which is especially valuable when you work with strings.

A normal variable is a location in memory that can hold a value. For example, when
you declare a variable i as an integer, four bytes of memory is set aside for it. In your
program, you refer to that location in memory by the name i. At the machine level,
that location has a memory address, at which the four bytes can hold one integer value.
A pointer is a variable that points to another variable. This means that it holds the
memory address of another variable. Put another way, the pointer does not hold a
value in the traditional sense; instead, it holds the address of another variable. It points
to that other variable by holding its address.

Because a pointer holds an address rather than a value, it has two parts. The pointer
itself holds the address. That addresses points to a value. There is the pointer and the
value pointed to. As long as you’re careful to ensure that the pointers in your
programs always point to valid memory locations, pointers can be useful, powerful,
and relatively trouble-free tools.

We will start this unit with a basic introduction to pointers and the concepts
surrounding pointers, and then move on to the three techniques described above.
Thorough knowledge of the pointers is very much essential for your future courses
like the datastructures, design and analysis of algorithms etc..

21

Pointers

10.1 OBJECTIVES

After going through this unit you should be able to:

• understand the concept and use pointers;
• address and use of indirection operators;
• make pointer type declaration, assignment and initialization;
• use null pointer assignment;
• use the pointer arithmetic;
• handle pointers to functions;
• see the underlying unit of arrays and pointers; and
• understand the concept of dynamic memory allocation.

10.2 POINTERS AND THEIR CHARACTERISTICS

Computer’s memory is made up of a sequential collection of storage cells called
bytes. Each byte has a number called an address associated with it. When we declare
a variable in our program, the compiler immediately assigns a specific block of
memory to hold the value of that variable. Since every cell has a unique address, this
block of memory will have a unique starting address. The size of this block depends
on the range over which the variable is allowed to vary. For example, on 32 bit PC’s
the size of an integer variable is 4 bytes. On older 16 bit PC’s integers were 2 bytes.
In C the size of a variable type such as an integer need not be the same on all types of
machines. If you want to know the size of the various data types on your system,
running the following code given in the Example 10.1 will give you the information.

Example 10.1

Write a program to know the size of the various data types on your system.

include <stdio.h>
main()
{
 printf (“n Size of a int = %d bytes”, sizeof (int));
 printf (“\n Size of a float = %d bytes”, sizeof (float));
 printf (“\n Size of a char = %d bytes”, sizeof (char));
}

OUTPUT

Size of int = 2 bytes
Size of float = 4 bytes
Size of char = 1 byte

An ordinary variable is a location in memory that can hold a value. For example,
when you declare a variable num as an integer, the compiler sets aside 2 bytes of
memory (depends up the PC) to hold the value of the integer. In your program, you
refer to that location in memory by the name num. At the machine level that location
has a memory address.

int num = 100;

We can access the value 100 either by the name num or by its memory address. Since
addresses are simply digits, they can be stored in any other variable. Such variables
that hold addresses of other variables are called Pointers. In other words, a pointer is

22

Structures, Pointers
and File Handling

simply a variable that contains an address, which is a location of another variable in
memory. A pointer variable “points to” another variable by holding its address.
Since a pointer holds an address rather than a value, it has two parts. The pointer
itself holds the address. That addresses points to a value. There is a pointer and the
value pointed to. This fact can be a little confusing until you get comfortable with it,
but once you get familiar with it, then it is extremely easy and very powerful. One
good way to visualize this concept is to examine the figure 10.1 given below:

num

ch

temp

ptr1

ptr2

 Figure 10.1: Concept of pointer variables

Let us see the important features of the pointers as follows:

Characteristic features of Pointers:

With the use of pointers in programming,

i. The program execution time will be faster as the data is manipulated with the

help of addresses directly.
ii. Will save the memory space.

iii. The memory access will be very efficient.
iv. Dynamic memory is allocated.

10.3 THE ADDRESS AND INDIRECTION OPERATORS

Now we will consider how to determine the address of a variable. The operator that is
available in C for this purpose is “&” (address of) operator. The operator & and the
immediately preceding variable returns the address of the variable associated with it.
C’s other unary pointer operator is the “*”, also called as value at address or
indirection operator. It returns a value stored at that address. Let us look into the
illustrative example given below to understand how they are useful.

Example 10.2

Write a program to print the address associated with a variable and value
stored at that address.

/* Program to print the address associated with a variable and value stored at that
address*/

23

Pointers
include <stdio.h>
main()
{
 int qty = 5;
 printf ("Address of qty = %u\n",&qty);
 printf ("Value of qty = %d \n",qty);
 printf("Value of qty = %d",*(&qty));
 }

OUTPUT

Address of qty = 65524
Value of qty = 5
Value of qty = 5

Look at the printf statement carefully. The format specifier %u is taken to increase
the range of values the address can possibly cover. The system-generated address of
the variable is not fixed, as this can be different the next time you execute the same
program. Remember unary operator operates on single operands. When & is
preceded by the variable qty, has returned its address. Note that the & operator can
be used only with simple variables or array elements. It cannot be applied to
expressions, constants, or register variables.

Observe the third line of the above program. *(&qty) returns the value stored at
address 65524 i.e. 5 in this case. Therefore, qty and *(&qty) will both evaluate to 5.

10.4 POINTER TYPE DECLARATION AND
ASSIGNMENT

We have seen in the previous section that &qty returns the address of qty and this
address can be stored in a variable as shown below:

ptr = &qty;

In C, every variable must be declared for its data type before it is used. Even this
holds good for the pointers too. We know that ptr is not an ordinary variable like any
integer variable. We declare the data type of the pointer variable as that of the type of
the data that will be stored at the address to which it is pointing to. Since ptr is a
variable, which contains the address of an integer variable qty, it can be declared as:

int *ptr;

where ptr is called a pointer variable. In C, we define a pointer variable by preceding
its name with an asterisk(*). The “*” informs the compiler that we want a pointer
variable, i.e. to set aside the bytes that are required to store the address in memory.
The int says that we intend to use our pointer variable to store the address of an
integer. Consider the following memory map:

 ptr qty Variable

 Value

 65522 65524 Address

 100

 65524

Let us look into an example given below:

24

Structures, Pointers
and File Handling

Example 10.3

/* Program below demonstrates the relationships we have discussed so far */

include <stdio.h>
main()
{
 int qty = 5;
 int *ptr; /* declares ptr as a pointer variable that points to an integer variable
*/
 ptr = &qty; /* assigning qty’s address to ptr -> Pointer Assignment */

 printf ("Address of qty = %u \n", &qty);
 printf ("Address of qty = %u \n", ptr);
 printf ("Address of ptr = %u \n", &ptr);
 printf ("Value of ptr = %d \n", ptr);
 printf ("Value of qty = %d \n", qty);
 printf ("Value of qty = %d \n", *(&qty));
 printf ("Value of qty = %d", *ptr);
}

OUTPUT

Address of qty = 65524
Address of ptr = 65522
Value of ptr = 65524
Value of qty = 5
Value of qty = 5
Value of qty = 5

Try this as well:

Example 10.4

/* Program that tries to reference the value of a pointer even though the pointer is
uninitialized */

include <stdio.h>
main()
{
 int *p; /* a pointer to an integer */
 *p = 10;
 printf(“the value is %d”, *p);
 printf(“the value is %u”,p);
}

This gives you an error. The pointer p is uninitialized and points to a random location
in memory when you declare it. It could be pointing into the system stack, or the
global variables, or into the program’s code space, or into the operating system.
When you say *p=10; the program will simply try to write a 10 to whatever random
location p points to. The program may explode immediately. It may subtly corrupt
data in another part of your program and you may never realize it. Almost always, an
uninitialized pointer or a bad pointer address causes the fault.

This can make it difficult to track down the error. Make sure you initialize all
pointers to a valid address before dereferencing them.

25

Pointers Within a variable declaration, a pointer variable can be initialized by assigning it the
address of another variable. Remember the variable whose address is assigned to the
pointer variable must be declared earlier in the program. In the example given below,
let us assign the pointer p with an address and also a value 10 through the *p.

Example 10.5

Let us say,

int x; /* x is initialized to a value 10*/
p = &x; /* Pointer declaration & Assignment */
*p=10;

Let us write the complete program as shown below:

include <stdio.h>
main()
{
 int *p; /* a pointer to an integer */
 int x;
 p = &x;
 *p=10;
 printf("The value of x is %d",*p);
 printf("\nThe address in which the x is stored is %d",p);
}

OUTPUT

The value of x is 10
The address in which the x is stored is 52004

This statement puts the value of 20 at the memory location whose address is the value
of px. As we know that the value of px is the address of x and so the old value of x is
replaced by 20. This is equivalent to assigning 20 to x. Thus we can change the value
of a variable indirectly using a pointer and the indirection operator.

10.4.1 Pointer to a Pointer

The concept of pointer can be extended further. As we have seen earlier, a pointer
variable can be assigned the address of an ordinary variable. Now, this variable itself
could be another pointer. This means that a pointer can contain address of another
pointer. The following program will makes you the concept clear.

Example 10.6

/* Program that declares a pointer to a pointer */

include<stdio.h>
main()
{
 int i = 100;
 int *pi;
 int **pii;
 pi = &i;
 pii = π

 printf ("Address of i = %u \n", &i);

26

Structures, Pointers
and File Handling

 printf ("Address of i = %u \n", pi);
 printf ("Address of i = %u \n", *pii);
 printf ("Address of pi = %u \n", &pi);
 printf ("Address of pi = %u \n", pii);
 printf ("Address of pii = %u \n", &pii);
 printf ("Value of i = %d \n", i);
 printf ("Value of i = %d \n", *(&i));
 printf ("Value of i = %d \n", *pi);
 printf ("Value of i = %d", **pii);
}

OUTPUT

Address of i = 65524
Address of i = 65524
Address of i = 65524
Address of pi = 65522
Address of pi = 65522
Address of pii = 65520

Value of i = 100
Value of i = 100
Value of i = 100
Value of i = 100

Consider the following memory map for the above shown example:

 pii pi i Variable

 Value

 65520 65522 65524 Address

 100 65524 65522

10.4.2 Null Pointer Assignment

It does make sense to assign an integer value to a pointer variable. An exception is an
assignment of 0, which is sometimes used to indicate some special condition. A
macro is used to represent a null pointer. That macro goes under the name NULL.
Thus, setting the value of a pointer using the NULL, as with an assignment statement
such as ptr = NULL, tells that the pointer has become a null pointer. Similarly, as
one can test the condition for an integer value as zero or not, like if (i == 0), as well
we can test the condition for a null pointer using if (ptr == NULL) or you can even
set a pointer to NULL to indicate that it’s no longer in use. Let us see an example
given below.

Example 10.7

include<stdio.h>
define NULL 0
main()
{
 int *pi = NULL;
 printf(“The value of pi is %u”, pi);
}

27

Pointers OUTPUT

The value of pi is 0

Check Your Progress 1

1. How is a pointer variable being declared? What is the purpose of data type

included in the pointer declaration?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2. What would be the output of following programs?

 (i) void main()
 {

 int i = 5;
 printf ("Value of i = %d Address of i = %u", i, &i);
 &i = 65534;
 printf ("\n New value of i = %d New Address of i = %u", i, &i);

 }

 (ii) void main()
 {

 int *i, *j;
 j = i * 2;
 printf ("j = %u", j);
 }

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

3. Explain the effect of the following statements:

(i) int x = 10, *px = &x;

(ii) char *pc;

(iii) int x;
 void *ptr = &x;
 *(int *) ptr = 10;

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

10.5 POINTER ARITHMETIC

Pointer variables can also be used in arithmetic expressions. The following
operations can be carried out on pointers:

1. Pointers can be incremented or decremented to point to different locations like

28

Structures, Pointers
and File Handling

 ptr1 = ptr2 + 3;
 ptr ++;
 -- ptr;

However, ptr++ will cause the pointer ptr to point the next address value of its type.
For example, if ptr is a pointer to float with an initial value of 65526, then after the
operation ptr ++ or ptr = ptr+1, the value of ptr would be 65530. Therefore, if we
increment or decrement a pointer, its value is increased or decreased by the length of
the data type that it points to.

2. If ptr1 and ptr2 are properly declared and initialized pointers, the following

operations are valid:

 res = res + *ptr1;
 *ptr1 = *ptr2 + 5;
 prod = *ptr1 * *ptr2;
 quo = *ptr1 / *ptr2;

Note that there is a blank space between / and * in the last statement because if you
write /* together, then it will be considered as the beginning of a comment and the
statement will fail.

3. Expressions like ptr1 == ptr2, ptr1 < ptr2, and ptr2 != ptr1 are permissible

provided the pointers ptr1 and ptr2 refer to same and related variables. These
comparisons are common in handling arrays.

Suppose p1 and p2 are pointers to related variables. The following operations cannot
work with respect to pointers:

1. Pointer variables cannot be added. For example, p1 = p1 + p2 is not valid.

2. Multiplication or division of a pointer with a constant is not allowed. For

example, p1 * p2 or p2 / 5 are invalid.

3. An invalid pointer reference occurs when a pointer’s value is referenced even

though the pointer doesn’t point to a valid block. Suppose p and q are two
pointers. If we say, p = q; when q is uninitialized. The pointer p will then
become uninitialized as well, and any reference to *p is an invalid pointer
reference.

10.6 PASSING POINTERS TO FUNCTIONS

As we have studied in the FUNCITONS that arguments can generally be passed to
functions in one of the two following ways:

1. Pass by value method
2. Pass by reference method

In the first method, when arguments are passed by value, a copy of the values of
actual arguments is passed to the calling function. Thus, any changes made to the
variables inside the function will have no effect on variables used in the actual
argument list.

However, when arguments are passed by reference (i.e. when a pointer is passed as
an argument to a function), the address of a variable is passed. The contents of that
address can be accessed freely, either in the called or calling function. Therefore, the
function called by reference can change the value of the variable used in the call.

29

Pointers
Here is a simple program that illustrates the difference.

Example 10.8

Write a program to swap the values using the pass by value and pass by reference
methods.

 /* Program that illustrates the difference between ordinary arguments, which are
passed by value, and pointer arguments, which are passed by reference */

include <stdio.h>
main()
{
 int x = 10;
 int y = 20;
 void swapVal (int, int); /* function prototype */
 void swapRef (int *, int *); /*function prototype*/
 printf("PASS BY VALUE METHOD\n");
 printf ("Before calling function swapVal x=%d y=%d",x,y);
 swapVal (x, y); /* copy of the arguments are passed */
 printf ("\nAfter calling function swapVal x=%d y=%d",x,y);
 printf("\n\nPASS BY REFERENCE METHOD");
 printf ("\nBefore calling function swapRef x=%d y=%d",x,y);
 swapRef (&x,&y); /*address of arguments are passed */
 printf("\nAfter calling function swapRef x=%d y=%d",x,y);
}

/* Function using the pass by value method*/
void swapVal (int x, int y)
{
 int temp;
 temp = x;
 x = y;
 y = temp;
 printf ("\nWithin function swapVal x=%d y=%d",x,y);
 return;
}

/*Function using the pass by reference method*/
void swapRef (int *px, int *py)
{
 int temp;
 temp = *px;
 *px = *py;
 *py = temp;
 printf ("\nWithin function swapRef *px=%d *py=%d",*px,*py);
 return;
}

OUTPUT

PASS BY VALUE METHOD
Before calling function swapVal x=10 y=20
Within function swapVal x=20 y=10
After calling function swapVal x=10 y=20

30

Structures, Pointers
and File Handling

PASS BY REFERENCE METHOD
Before calling function swapRef x=10 y=20
Within function swapRef *px=20 *py=10
After calling function swapRef x=20 y=10

This program contains two functions, swapVal and swapRef.

In the function swapVal, arguments x and y are passed by value. So, any changes to
the arguments are local to the function in which the changes occur. Note the values of
x and y remain unchanged even after exchanging the values of x and y inside the
function swapVal.

Now consider the function swapRef. This function receives two pointers to integer
variables as arguments identified as pointers by the indirection operators that appear
in argument declaration. This means that in the function swapRef, arguments x and y
are passed by reference. So, any changes made to the arguments inside the function
swapRef are reflected in the function main(). Note the values of x and y is
interchanged after the function call swapRef.

10.6.1 A Function returning more than one value

Using call by reference method we can make a function return more than one value at
a time, which is not possible in the call by value method. The following program will
makes you the concept very clear.

Example 10.9

Write a program to find the perimeter and area of a rectangle, if length and breadth
are given by the user.

/* Program to find the perimeter and area of a rectangle*/

#include <stdio.h>
void main()
{
float len,br;
float peri, ar;
void periarea(float length, float breadth, float *, float *);
printf("\nEnter the length and breadth of a rectangle in metres: \n");
scanf("%f %f",&len,&br);
periarea(len,br,&peri,&ar);
printf("\nPerimeter of the rectangle is %f metres", peri);
printf("\nArea of the rectangle is %f sq. metres", ar);
}

void periarea(float length, float breadth, float *perimeter, float *area)
{
*perimeter = 2 * (length +breadth);
*area = length * breadth;
}

OUTPUT

Enter the length and breadth of a rectangle in metres:
23.0 3.0
Perimeter of the rectangle is 52.000000 metres
Area of the rectangle is 69.000000 sq. metres

31

Pointers Here in the above program, we have seen that the function periarea is returning two
values. We are passing the values of len and br but, addresses of peri and ar. As we
are passing the addresses of peri and ar, any change that we make in values stored at
addresses contained in the variables *perimeter and *area, would make the change
effective even in main() also.

10.6.2 Function returning a pointer

A function can also return a pointer to the calling program, the way it returns an int, a
float or any other data type. To return a pointer, a function must explicitly mention in
the calling program as well as in the function prototype. Let’s illustrate this with an
example:

Example: 10.10

Write a program to illustrate a function returning a pointer.

/*Program that shows how a function returns a pointer */

include<stdio.h>

void main()
{
 float *a;
 float *func(); /* function prototype */
 a = func();
 printf ("Address = %u", a);
}
float *func()
{
 float r = 5.2;
 return (&r);
}

OUTPUT

Address = 65516

This program only shows how a function can return a pointer. This concept will be
used later while handling arrays.

Check Your Progress 2

1. Tick mark (√)whether each of the following statements are true or false.

(i) An integer is subtracted from a pointer variable. True False

(ii) Pointer variables can be compared. True False

(iii) Pointer arguments are passed by value. True False

(iv) Value of a local variable in a function can be
 changed by another function. True False

(v) A function can return more than one value. True False

(vi) A function can return a pointer. True False

32

Structures, Pointers
and File Handling

10.7 ARRAYS AND POINTERS

Pointers and arrays are so closely related. An array declaration such as int arr[5]
will lead the compiler to pick an address to store a sequence of 5 integers, and arr is a
name for that address. The array name in this case is the address where the sequence
of integers starts. Note that the value is not the first integer in the sequence, nor is it
the sequence in its entirety. The value is just an address.

Now, if arr is a one-dimensional array, then the address of the first array element can
be written as &arr[0] or simply arr. Moreover, the address of the second array
element can be written as &arr[1] or simply (arr+1). In general, address of array
element (i+1) can be expressed as either &arr[i] or as (arr+ i). Thus, we have two
different ways for writing the address of an array element. In the latter case i.e,
expression (arr+ i) is a symbolic representation for an address rather than an
arithmetic expression. Since &arr[i] and (ar+ i) both represent the address of the ith

element of arr, so arr[i] and *(ar + i) both represent the contents of that address i.e.,
the value of ith element of arr.

Note that it is not possible to assign an arbitrary address to an array name or to an
array element. Thus, expressions such as arr, (arr+ i) and arr[i] cannot appear on
the left side of an assignment statement. Thus we cannot write a statement such as:

&arr[0] = &arr[1]; /* Invalid */

However, we can assign the value of one array element to another through a pointer,
for example,

ptr = &arr[0]; /* ptr is a pointer to arr[0] */
arr[1] = *ptr; /* Assigning the value stored at address to arr[1] */

Here is a simple program that will illustrate the above-explained concepts:

Example 10.11

/* Program that accesses array elements of a one-dimensional array using pointers */

include<stdio.h>
main()
{

 int arr[5] = {10, 20, 30, 40, 50};
 int i;

 for (i = 0; i < 5; i++)
 {
 printf ("i=%d\t arr[i]=%d\t *(arr+i)=%d\t", i, arr[i], *(arr+i));
 printf ("&arr[i]=%u\t arr+i=%u\n", &arr[i], (arr+i)); }
 }

OUTPUT:

i=0 arr[i]=10 *(arr+i)=10 &arr[i]=65516 arr+i=65516
i=1 arr[i]=20 *(arr+i)=20 &arr[i]=65518 arr+i=65518
i=2 arr[i]=30 *(arr+i)=30 &arr[i]=65520 arr+i=65520
i=3 arr[i]=40 *(arr+i)=40 &arr[i]=65522 arr+i=65522
i=4 arr[i]=50 *(arr+i)=50 &arr[i]=65524 arr+i=65524

33

Pointers
Note that i is added to a pointer value (address) pointing to integer data type (i.e., the
array name) the result is the pointer is increased by i times the size (in bytes) of
integer data type. Observe the addresses 65516, 65518 and so on. So if ptr is a char
pointer, containing addresses a, then ptr+1 is a+1. If ptr is a float pointer, then ptr+
1 is a+ 4.

Pointers and Multidimensional Arrays

C allows multidimensional arrays, lays them out in memory as contiguous locations,
and does more behind the scenes address arithmetic. Consider a 2-dimensional array.

int arr[3][3] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

The compiler treats a 2 dimensional array as an array of arrays. As you know, an
array name is a pointer to the first element within the array. So, arr points to the first
3-element array, which is actually the first row (i.e., row 0) of the two-dimensional
array. Similarly, (arr + 1) points to the second 3-element array (i.e., row 1) and so
on. The value of this pointer, *(arr + 1), refers to the entire row. Since row 1 is a one-
dimensional array, (arr + 1) is actually a pointer to the first element in row 1. Now
add 2 to this pointer. Hence, (*(arr + 1) + 2) is a pointer to element 2 (i.e., the third
element) in row 1. The value of this pointer, *(*(arr + 1) + 2), refers to the element
in column 2 of row 1. These relationships are illustrated below:

 arr First 1-d array 1 2 3

 y
(arr+1) Second 1-d array

(arr + 2) Third 1-d array

 *(arr + 2) *(*(arr+2) + 2)

10.8 ARRAY OF POINTERS

The way there can be an array of integers, or an array of float numbers, similarly,
there can be array of pointers too. Since a pointer contains an address, an array of
pointers would be a collection of addresses. For example, a multidimensional array
can be expressed in terms of an array of pointers rather than a pointer to a group of
contiguous arrays.

 4 5 6

 7 8 9

Two-dimensional array can be defined as a one-dimensional array of integer pointers
by writing:

int *arr[3];

rather than the conventional array definition,

int arr[3][5];

Similarly, an n-dimensional array can be defined as (n-1)-dimensional array of
pointers by writing

data-type *arr[subscript 1] [subscript 2]…. [subscript n-1];

34

Structures, Pointers
and File Handling

The subscript1, subscript2 indicate the maximum number of elements associated with
each subscript.

Example 10.12

Write a program in which a two-dimensional array is represented as an array of
integer pointers to a set of single-dimensional integer arrays.

/* Program calculates the difference of the corresponding elements of two table of
integers */

include <stdio.h>
include <stdlib.h>
define MAXROWS 3
void main()
{
 int *ptr1[MAXROWS], *ptr2 [MAXROWS], *ptr3 [MAXROWS];
 int rows, cols, i, j;
 void inputmat (int *[], int, int);

void dispmat (int *[], int, int);
void calcdiff (int *[], int *[], int *[], int, int);

 printf ("Enter no. of rows & columns \n");
 scanf ("%d%d", &rows, &cols);

 for (i = 0; i < rows; i++)
 {
 ptr1[i] = (int *) malloc (cols * sizeof (int));
 ptr2[i] = (int *) malloc (cols * sizeof (int));
 ptr3[i] = (int *) malloc (cols * sizeof (int));
 }

 printf ("Enter values in first matrix \n");
 inputmat (ptr1, rows, cols);
 printf ("Enter values in second matrix \n");
 inputmat (ptr2, rows, cols);
 calcdiff (ptr1, ptr2, ptr3, rows, cols);
 printf ("Display difference of the two matrices \n");
 dispmat (ptr3, rows, cols);
 }

 void inputmat (int *ptr1[MAXROWS], int m, int n)
 {
 int i, j;
 for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 scanf ("%d", (*(ptr1 + i) + j));
 }
 }
 return;
 }

 void dispmat (int *ptr3[MAXROWS], int m, int n)
 {
 int i, j;

35

Pointers for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 printf ("%d ", *(*(ptr3 + i) + j));
 }
 printf("\n");
 }
 return;
 }

 void calcdiff (int *ptr1[MAXROWS], int *ptr2 [MAXROWS],
 int *ptr3[MAXROWS], int m, int n)
 {
 int i, j;
 for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 ((ptr3 + i) + j) = *(*(ptr1 + i) + j) - *(*(ptr2 + i) + j);
 }
 }
 return;
 }

OUTPUT

Enter no. of rows & columns
3 3
Enter values in first matrix
2 6 3
5 9 3
1 0 2
Enter values in second matrix
3 5 7
2 8 2
1 0 1
Display difference of the two matrices
-1 1 -4
 3 1 1
 0 0 1

In this program, ptr1, ptr2, ptr3 are each defined as an array of pointers to integers.
Each array has a maximum of MAXROWS elements. Since each element of ptr1,
ptr2, ptr3 is a pointer, we must provide each pointer with enough memory for each
row of integers. This can be done using the library function malloc included in
stdlib.h header file as follows:

ptr1[i] = (int *) malloc (cols * sizeof (int));

This function reserves a block of memory whose size (in bytes) is equivalent to cols
* sizeof(int). Since cols = 3, so 3 * 2 (size of int data type) i.e., 6 is allocated to each
ptr1[1], ptr1[2] and ptr1[3]. This malloc function returns a pointer of type void.
This means that we can assign it to any type of pointer. In this case, the pointer is
type-casted to an integer type and assigned to the pointer ptr1[1], ptr1[2] and
ptr1[3]. Now, each of ptr1[1], ptr1[2] and ptr1[3] points to the first byte of the
memory allocated to the corresponding set of one-dimensional integer arrays of the
original two-dimensional array.

36

Structures, Pointers
and File Handling

The process of calculating and allocating memory at run time is known as dynamic
memory allocation. The library routine malloc can be used for this purpose.

Instead of using conventional array notation, pointer notation has been used for
accessing the address and value of corresponding array elements which has been
explained to you in the previous section. The difference of the array elements within
the function calcdiff is written as

((ptr3 + i) + j) = *(*(ptr1 + i) + j) - *(*(ptr2 + i) + j);

10.9 POINTERS AND STRINGS

As we have seen in strings, a string in C is an array of characters ending in the null
character (written as '\0'), which specifies where the string terminates in memory.
Like in one-dimensional arrays, a string can be accessed via a pointer to the first
character in the string. The value of a string is the (constant) address of its first
character. Thus, it is appropriate to say that a string is a constant pointer.
A string can be declared as a character array or a variable of type char *. The
declarations can be done as shown below:

char country[] = "INDIA";
char *country = "INDIA";

Each initialize a variable to the string “INDIA”. The second declaration creates a
pointer variable country that points to the letter I in the string "INDIA" somewhere in
memory.

Once the base address is obtained in the pointer variable country, *country would
yield the value at this address, which gets printed through,

printf ("%s", *country);

Here is a program that dynamically allocates memory to a character pointer using the
library function malloc at run-time. An advantage of doing this way is that a fixed
block of memory need not be reserved in advance, as is done when initializing a
conventional character array.

Example 10.13

Write a program to test whether the given string is a palindrome or not.

/* Program tests a string for a palindrome using pointer notation */

include <stdio.h>
include <conio.h>
include <stdlib.h>

main()
{
 char *palin, c;
 int i, count;

 short int palindrome(char,int); /*Function Prototype */
 palin = (char *) malloc (20 * sizeof(char));
 printf("\nEnter a word: ");
 do

37

Pointers {
 c = getchar();
 palin[i] = c;
 i++;
 }while (c != '\n');

 i = i-1;
 palin[i] = '\0';
 count = i;

 if (palindrome(palin,count) == 1)
 printf ("\nEntered word is not a palindrome.");
 else
 printf ("\nEntered word is a palindrome");
 }

short int palindrome(char *palin, int len)
{
 short int i = 0, j = 0;
 for(i=0 , j=len-1; i < len/2;i++,j--)
 {
 if (palin[i] == palin[j])
 continue;
 else
 return(1);
 }
 return(0);
}

OUTPUT

Enter a word: malayalam

Entered word is a palindrome.

Enter a word: abcdba

Entered word is not a palindrome.

Array of pointers to strings

Arrays may contain pointers. We can form an array of strings, referred to as a string
array. Each entry in the array is a string, but in C a string is essentially a pointer to its
first character, so each entry in an array of strings is actually a pointer to the first
character of a string. Consider the following declaration of a string array:

char *country[] = {
 “INDIA”, “CHINA”, “BANGLADESH”, “PAKISTAN”, “U.S”
 };

The *country[] of the declaration indicates an array of five elements. The char* of
the declaration indicates that each element of array country is of type “pointer to
char”. Thus, country [0] will point to INDIA, country[1] will point to CHINA, and
so on.

Thus, even though the array country is fixed in size, it provides access to character
strings of any length. However, a specified amount of memory will have to be
allocated for each string later in the program, for example,

38

Structures, Pointers
and File Handling

country[i] = (char *) malloc(15 * sizeof (char));

The country character strings could have been placed into a two-dimensional array
but such a data structure must have a fixed number of columns per row, and that
number must be as large as the largest string. Therefore, considerable memory is
wasted when a large number of strings are stored with most strings shorter than the
longest string.

As individual strings can be accessed by referring to the corresponding array element,
individual string elements be accessed through the use of the indirection operator.
For example, * (* country + 3) + 2) refers to the third character in the fourth string
of the array country. Let us see an example below.

Example 10.14

Write a program to enter a list of strings and rearrange them in alphabetical order,
using a one-dimensional array of pointers, where each pointer indicates the beginning
of a string:

/* Program to sort a list of strings in alphabetical order using an array of pointers */

include <stdio.h>
include <conio.h>
include <stdlib.h>
include <string.h>

void readinput (char *[], int);
void writeoutput (char *[], int);
void reorder (char *[], int);

main()
{
 char *country[5];
 int i;
 for (i = 0; i < 5; i++)
 {
 country[i] = (char *) malloc (15 * sizeof (char));
 }
 printf ("Enter five countries on a separate line\n");
 readinput (country, 5);
 reorder (country, 5);
 printf ("\nReordered list\n");
 writeoutput (country, 5);
 getch();
}

void readinput (char *country[], int n)
{
 int i;
 for (i = 0; i < n; i++)
 { scanf ("%s", country[i]); }
 return;
}

void writeoutput (char *country[], int n)
{
 int i;

39

Pointers for (i = 0; i < n; i++)
 { printf ("%s", country[i]);
 printf ("\n"); }
 return;
}

void reorder (char *country[], int n)
{
 int i, j;
 char *temp;
 for (i = 0; i < n-1; i++)
 {
 for (j = i+1; j < n; j++)
 {
 if (strcmp (country[i], country[j]) > 0)
 {
 temp = country[i];
 country[i] = country[j];
 country[j] = temp;
 }
 }
 }
 return;
 }

OUTPUT

Enter five countries on a seperate line
INDIA
BANGLADESH
PAKISTAN
CHINA
SRILANKA

Reordered list
BANGLADESH
CHINA
INDIA
PAKISTAN
SRILANKA

The limitation of the string array concept is that when we are using an array of
pointers to strings we can initialize the strings at the place where we are declaring the
array, but we cannot receive the strings from keyboard using scanf().

Check Your Progress 3

1. What is meant by array of pointers?

…………………………………………………………………………………………

…………………………………………………………………………………………

2. How the indirection operator can be used to access a multidimensional array
element.

…………………………………………………………………………………………

…………………………………………………………………………………………

40

Structures, Pointers
and File Handling

3. A C program contains the following declaration.
 float temp[3][2] = {{13.4, 45.5}, {16.6, 47.8}, {20.2, 40.8}};

(i) What is the meaning of temp?
(ii) What is the meaning of (temp + 2)?
(iii) What is the meaning of *(temp + 1)?
(iv) What is the meaning of (*(temp + 2) + 1)?
(v) What is the meaning of *(*(temp) + 1) + 1)?
(vi) What is the meaning of *(*(temp + 2))?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

10.10 SUMMARY

In this unit we have studied about pointers, pointer arithmetic, passing pointers to
functions, relation to arrays and the concept of dynamic memory allocation. A
pointer is simply a variable that contains an address which is a location of another
variable in memory. The unary operator &, when preceded by any variable returns its
address. C’s other unary pointer operator is *, when preceded by a pointer variable
returns a value stored at that address.

Pointers are often passed to a function as arguments by reference. This allows data
items within the calling function to be accessed, altered by the called function, and
then returned to the calling function in the altered form. There is an intimate
relationship between pointers and arrays as an array name is really a pointer to the
first element in the array. Access to the elements of array using pointers is enabled
by adding the respective subscript to the pointer value (i.e. address of zeroth element)
and the expression preceded with an indirection operator.

As pointer declaration does not allocate memory to store the objects it points at,
therefore, memory is allocated at run time known as dynamic memory allocation. The
library routine malloc can be used for this purpose.

10.11 SOLUTIONS / ANSWERS

Check Your Progress 1

1. Refer to section 10.4. The data type included in the pointer declaration, refers to

the type of data stored at the address which we will be storing in our pointer.

2. (i) Compile-time Error : Lvalue Required. Means that the left side of an

assignment operator must be an addressable expression that include a variable
or an indirection through a pointer.

 (ii) Multiplication of a pointer variable with a constant is invalid.

3. (i) Refer section 10.4
 (ii) Refer section 10.4
 (iii) This means pointers can be of type void but can’t be de-referenced without
 explicit casting. This is because the compiler can’t determine the size of the
 object the pointer points to.

41

Pointers

Check Your Progress 2

1 (i) True.
 (ii) True.
 (iii) False.
 (iv) True.
 (v) True.
 (vi) True.

Check Your Progress 3

1. Refer section 10.4.

2. Refer section 10.4 to comprehend the convention followed.

3. (i) Refers to the base address of the array temp.

 (ii) Address of the first element of the last row of array temp i.e. address of

element 20.2.

 (iii) Will give you 0. To get the value of the last element of the first array i.e. the

correct syntax would be *(*(temp+0)+1).

 (iv) Address of the last element of last row of array temp i.e. of 40.8.

 (v) Displays the value 47.8 i.e., second element of last row of array temp.

 (vi) Displays the value 20.2 i.e., first element of last row of array temp.

10.12 FURTHER READINGS

1. Programming with C, Second Edition, Gottfried Byron S, Tata McGraw Hill,

India.
2. The C Programming Language, Second Edition, Brian Kernighan and Dennis

Richie, PHI, 2002.
3. Programming in ANSI C, Second Edition, Balaguruswamy E, Tata McGraw Hill,

India, 2002.
4. How to Solve it by Computer, R.G.Dromey, PHI, 2002.
5. C Programming in 12 easy lessons, Greg Perry, SAMS, 2002.
6. Teach Yourself C in 21 days, Fifth Edition, Peter G, Fifth edition,SAMS, 2002.

Structures, Pointers
and File Handling UNIT 11 THE C PREPROCESSOR

Structure

11.0 Introduction
11.1 Objectives
11.2 # define to Implement Constants
11.3 # define to Create Functional Macros
11.4 Reading from Other Files using # include
11.5 Conditional Selection of Code using #ifdef

11.5.1 Using #ifdef for different computer types
11.5.2 Using #ifdef to temporarily remove program statements

11.6 Other Preprocessor Commands
11.7 Predefined Names Defined by Preprocessor
11.8 Macros Vs Functions
11.9 Summary
11.10 Solutions / Answers
11.11 Further Readings

11.0 INTRODUCTION
Theoretically, the “preprocessor” is a translation phase that is applied to the source
code before the compiler gets its hands on it. The C Preprocessor is not part of the
compiler, but is a separate step in the compilation process. C Preprocessor is just a
text substitution tool, which filters your source code before it is compiled. The
preprocessor more or less provides its own language, which can be a very powerful
tool for the programmer. All preprocessor directives or commands begin with the
symbol #.

The preprocessor makes programs easier to develop, read and modify. The
preprocessor makes C code portable between different machine architectures &
customizes the language.

The preprocessor performs textual substitutions on your source code in three ways:

File inclusion: Inserting the contents of another file into your source file, as if you
had typed it all in there.
Macro substitution: Replacing instances of one piece of text with another.
Conditional compilation: Arranging that, depending on various circumstances,
certain parts of your source code are seen or not seen by the compiler at all.

The next three sections will introduce these three preprocessing functions. The syntax
of the preprocessor is different from the syntax of the rest of C program in several
respects. The C preprocessor is not restricted to use with C programs, and
programmers who use other languages may also find it useful. However, it is tuned to
recognize features of the C language like comments and strings.

11.1 OBJECTIVES

After going through this unit, you will be able to:

• define, declare preprocessor directives;
• discuss various preprocessing directives, for example file inclusion, macro

substitution, and conditional compilation; and

42

• discuss various syntaxes of preprocessor directives and their applications.

The C Preprocessor

11.2 # define TO IMPLEMENT CONSTANTS

The preprocessor allows us to customize the language. For example to replace { and }
of C language to begin and end as block-statement delimiters (as like the case in
PASCAL) we can achieve this by writing:

define begin {
define end }

During compilation all occurrences of begin and end get replaced by corresponding
{ and }. So the subsequent C compilation stage does not know any difference!

#define is used to define constants.

The syntax is as follows:

define <literal> <replacement-value>

literal is identifier which is replaced with replacement-value in the program.

For Example,

#define MAXSIZE 256
#define PI 3.142857

The C preprocessor simply searches through the C code before it is compiled and
replaces every instance of MAXSIZE with 256.

define FALSE 0
define TRUE !FALSE

The literal TRUE is substituted by !FALSE and FALSE is substituted by the value 0 at
every occurrence, before compilation of the program. Since the values of the literal
are constant throughout the program, they are called as constant.

The syntax of above # define can be rewritten as:

define <constant-name> <replacement-value>

Let us consider some examples,

define M 5
define SUBJECTS 6
define PI 3.142857
define COUNTRY INDIA

Note that no semicolon (;) need to be placed as the delimiter at the end of a # define
line. This is just one of the ways that the syntax of the preprocessor is different from
the rest of C statements (commands). If you unintentionally place the semicolon at the
end as below:

#define MAXLINE 100; /* WRONG */

and if you declare as shown below in the declaration section,

char line[MAXLINE];

43

Structures, Pointers
and File Handling

the preprocessor will expand it to:

char line[100;]; /* WRONG */

which gives you the syntax error. This shows that the preprocessor doesn’t know
much of anything about the syntax of C.

11.3 # define TO CREATE FUNCTIONAL MACROS

Macros are inline code, which are substituted at compile time. The definition of a
macro is that which accepts an argument when referenced. Let us consider an example
as shown below:

Example 11.1

Write a program to find the square of a given number using macro.

/* Program to find the square of a number using marco*/
#include <stdio.h>
define SQUARE(x) (x*x)
main()
 {
 int v,y;
 printf("Enter any number to find its square: ");
 scanf("%d", &v);
 y = SQUARE(v);
 printf("\nThe square of %d is %d", v, y);
}

OUTPUT

Enter any number to find its square: 10
The square of 10 is 100

In this case, v is equated with x in the macro definition of square, so the variable y is
assigned the square of v. The brackets in the macro definition of square are necessary
for correct evaluation. The expansion of the macro becomes:

y =(v * v);

Macros can make long, ungainly pieces of code into short words. Macros can also
accept parameters and return values. Macros that do so are called macro functions. To
create a macro, simply define a macro with a parameter that has whatever name you
like, such as my_val. For example, one macro defined in the standard libraries is
“abs”, which returns the absolute value of its parameter. Let us define our own version
of ABS as shown below. Note that we are defining it in upper case not only to avoid
conflicting with the existing “abs”.

#define ABS(my_val) ((my_val) < 0) ? -(my_val) : (my_val)

#define can also be given arguments which are used in its replacement. The
definitions are then called macros. Macros work rather like functions, but with the
following minor differences:

• Since macros are implemented as a textual substitution, by this the performance of
program improves compared to functions.

44

• Recursive macros are generally not a good idea.

The C Preprocessor • Macros don’t care about the type of their arguments. Hence macros are a good

choice where we want to operate on reals, integers or a mixture of the two.
Programmers sometimes call such type flexibility polymorphism.

• Macros are generally fairly small.

Let us look more illustrative examples to understand the macros concept.

Example 11.2

Write a program to declare constants and macro functions using #define.

/* Program to illustrate the macros */
#include <stdio.h>
#include <string.h>
#define STR1 "A macro definition!\n"
#define STR2 "must be all on one line!\n"
#define EXPR1 1+2+3
#define EXPR2 EXPR1+5
#define ABS(x) (((x) < 0) ? – (x):(x))
#define MAX(p,q) ((p < q) ? (q):(p))
#define BIGGEST(p,q,r) (MAX(p, q) < r)?(r):(MAX(p, q))
main()
{
 printf(STR1);
 printf(STR2);
 printf("Largest number among %d, %d and %d is %d\n",EXPR1, EXPR2, ABS (–3),
 BIGGEST(1,2,3));
}

OUTPUT

A macro definition
must be all on one line!
Largest number among 6, 11 and 3 is 3

The macro STR1 is replaced with “A macro definition \n” in the first printf()
function. The macro STR2 is replaced with “must be all on one line! \n” in the
second printf function. The macro EXPR1 is replaced with 1+2+3 in third printf
statement. The macro EXPR2 is replaced with EXPR1 +5 in fourth printf statement.
The macro ABS(–3) is replaced with (– 3<0) ? – (– 3) : 3. And evaluation 3 is
replaced. The largest among the three numbers is diplayed.

Example 11.3

Write a program to find out square and cube of any given number using macros.

/* Program to find the square and cube of any given number using macro directive */
include<stdio.h>
define sqr(x) (x * x)
define cub(x) (sqr(x) * x)
main()
{
 int num;
 printf(“Enter a number: ”);
 scanf(“%d”, &num);
 printf(“ \n Square of the number is %d”, sqr(num));
 printf(“ \n Cube of the number is %d\n”, cub(num));

45

}

Structures, Pointers
and File Handling

OUTPUT

Enter a number: 5
Square of the number is 25
Cube of the number is 125

Note: Multi-line macros can be defined by placing a backward slash (\) at end of
each line except the last line. This feature permits a single macro (i.e. a single
identifier) to represent a compound statement.

Example 11.4

Write a macro to display the string COBOL in the following fashion

C
CO
COB
COBO
COBOL
COBOL
COBO
COB
CO
C

/* Program to display the string as given in the problem*/
include<stdio.h>
define LOOP for(x=0; x<5; x++) \
 { y=x+1; \
 printf(“%-5.*s\n”, y, string); } \
 for(x=4; x>=0; x--) \
 { y=x+1; \
 printf(“%-5.*s \n”, y, string); }

main()
{
 int x, y;
 static char string[] = “COBOL”;
 printf(“\n”);

LOOP;
}

When the above program is executed the reference to macro (loop) is replaced by the
set of statements contained within the macro definition.

OUTPUT

C
CO
COB
COBO
COBOL
COBOL
COBO
COB
CO

46

C

The C Preprocessor

Recollect that CALL BY VALUE Vs CALL BY REFERENCE given in the previous
uint. By CALL BY VALUE, the swapping was not taking place, because the visibility
of the variables was restricted to with in the function in the case of local variables.
You can resolve this by using a macro. Here is swap in action when using a macro:

#define swap(x, y) {int tmp = x; x = y; y = tmp; }

Now we have swapping code that works. Why does this work? It is because the CPP
just simply replaces text. Wherever swap is called, the CPP will replace the macro call
with the macro meaning, (defined text).

Caution in using macros

You should be very careful in using Macros. In particular the textual substitution
means that arithmetic expressions are liable to be corrupted by the order of evaluation
rules (precedence rules). Here is an example of a macro, which won’t work.

#define DOUBLE(n) n + n

Now if we have a statement,

z = DOUBLE(p) * q;

This will be expanded to

z = p + p * q;

And since * has a higher priority than +, the compiler will treat it as.

z = p + (p * q);

The problem can be solved using a more robust definition of DOUBLE

#define DOUBLE(n) (n + n)

Here, the braces around the definition force the expression to be evaluated before any
surrounding operators are applied. This should make the macro more reliable.

Check Your Progress 1

1. Write a macro to evaluate the formula f(x) = x*x + 2*x + 4.

……………………………………………………………………………..……………

…………………………………………………………………………………………..

2. Define a preprocessor macro swap(t, x, y) that will swap two arguments x and y of
a given type t.

…………………………………………………………………………………………

…………………………………………………………………………………………

3. Define a macro called AREA, which will calculate the area of a circle in terms of
radius.

…………………………………………………………………………………………

…………………………………………………………………………………………

47

Structures, Pointers
and File Handling

4. Define a macro called CIRCUMFERENCE, which will calculate the circumference
 of a circle in terms of radius.
…………………………………………………………………………………………

…………………………………………………………………………………………

5. Define a macro to display multiplication table.

…………………………………………………………………………………………

…………………………………………………………………………………………

6. Define a macro to find sum of n numbers.

…………………………………………………………………………………………

…………………………………………………………………………………………

………………………………………………………………………………………….

11.4 READING FROM OTHER FILES USING # include
The preprocessor directive #include is an instruction to read in the entire contents of
another file at that point. This is generally used to read in header files for library
functions. Header files contain details of functions and types used within the library.
They must be included before the program can make use of the library functions. The
syntax is as follows:

#include <filename.h>

or

#include “filename.h”

The above instruction causes the contents of the file “filename.h” to be read, parsed,
and compiled at that point. The difference between the suing of # and “ ” is that,
where the preprocessor searches for the filename.h. For the files enclosed in < > (less
than and greater than symbols) the search will be done in standard directories (include
directory) where the libraries are stored. And in case of files enclosed in “ ” (double
quotes) search will be done in “current directory” or the directory containing the
source file. Therefore, “ ” is normally used for header files you’ve written, and # is
normally used for headers which are provided for you (which someone else has
written).

Library header file names are enclosed in angle brackets, < >. These tell the
preprocessor to look for the header file in the standard location for library definitions.
This is /usr/include for most UNIX systems. And c:/tc/include for turbo compilers
on DOS / WINDOWS based systems.

Use of #include for the programmer in multi-file programs, where certain information
is required at the beginning of each program file. This can be put into a file by name
“globals.h” and included in each program file by the following line:

#include "globals.h"

If we want to make use of inbuilt functions related to input and output operations, no
need to write the prototype and definition of the functions. We can simply include the
file by writing:

48

#include <stdio.h>

The C Preprocessor

and call the functions by the function calls. The standard header file stdio.h is a
collection of function prototype (declarations) and definition related to input and
output operations.

The extension “.h”', simply stands for “header” and reflects the fact that #include
directives usually sit at the top (head) of your source files. “.h” extension is not
compulsory – you can name your own header files anything you wish to, but .h is
traditional, and is recommended.

Placing common declarations and definitions into header files means that if they
always change, they only have to be changed in one place, which is a much more
feasible system.

What should you put in header files?
• External declarations of global variables and functions.
• Structure definitions.
• Typedef declarations.

However, there are a few things not to put in header files:
• Defining instances of global variables. If you put these in a header file, and

include the header file in more than one source file, the variable will end up
multiply defined.

• Function bodies (which are also defining instances), may not be put in header files.
Since these headers may end you up with multiple copies of the function and
hence “multiply defined” errors. People sometimes put commonly-used functions
in header files and then use #include to bring them (once) into each program
where they use that function, or use #include to bring together the several source
files making up a program, but both of these are not good practice. It’s much
better to learn how to use your compiler or linker to combine together separately-
compiled object files.

11.5 CONDITIONAL SELECTION OF CODE USING # ifdef

The preprocessor has a conditional statement similar to C’s if-else. It can be used to
selectively include statements in a program. The commands for conditional selection
are; #ifdef, #else and #endif.

#ifdef
The syntax is as follows:

#ifdef IDENTIFIER_NAME
{
 statements;
 }
This will accept a name as an argument, and returns true if the name has a current
definition. The name may be defined using a # define, the -d option of the compiler, or
certain names which are automatically defined by the UNIX environment. If the
identifier is defined then the statements below #ifdef will be executed

#else
The syntax is as follows:

#else
{

49

statements;

Structures, Pointers
and File Handling

}

#else is optional and ends the block started with #ifdef. It is used to create a 2 way
optional selection. If the identifier is not defined then the statements below #else will
be executed.

#endif

Ends the block started by #ifdef or #else.
Where the #ifdef is true, statements between it and a following #else or #endif are
included in the program. Where it is false, and there is a following #else, statements
between the #else and the following #endif are included. Let us look into the
illustrative example given below to get an idea.

Example 11.5

Define a macro to find maximum of 3 or 2 numbers using #ifdef , #else

/* Program to find maximum of 2 numbers using #ifdef*/

#include<stdio.h>
#define TWO
main()
{
int a, b, c;
clrscr();

#ifdef TWO
 {
 printf("\n Enter two numbers: \n");
 scanf("%d %d", &a,&b);
 if(a>b)
 printf("\n Maximum of two numbers is %d", a);
 else
 printf("\n Maximum is of two numbers is %d", b);
 }

#endif
} /* end of main*/

OUTPUT

Enter two numbers:
33
22
Maximum of two numbers is 33

Explanation

The above program demonstrate preprocessor derivative #ifdef. By using #ifdef
TWO has been defined. The program finds out the maximum of two numbers.

11.5.1 Using #ifdef for Different Computer Types

50

Conditional selection is rarely performed using #define values. This is often used
where two different computer types implement a feature in different ways. It allows
the programmer to produce a program, which will run on either type.

The C Preprocessor

A simple application using machine dependent values is illustrated below.

#include <stdio.h>
main()
{
#ifdef HP
{
 printf("This is a HP system \n");
 …………………….
 ……………………. /* code for HP systems*/
 }
 #endif

#ifdef SUN
{
 printf("This is a SUN system \n");
 ……………………. /* code for SUN Systems
}
#endif
}

If we want the program to run on HP systems, we include the directive
#define HP at the top of the program.

If we want the program to run on SUN systems, we include the directive
#define SUN at the top of the program.

Since all you’re using the macro HP or SUN to control the #ifdef, you don’t need to
give it any replacement text at all. Any definition for a macro, even if the replacement
text is empty, causes an #ifdef to succeed.

11.5.2 Using #ifdef to Temporarily Remove Program
 Statements

#ifdef also provides a useful means of temporarily “blanking out” lines of a program.
The lines in the program are preceded by #ifdef NEVER and followed by #endif. Of
course, you should ensure that the name NEVER isn’t defined anywhere.

#include <stdio.h>
main()
{
…………….
#ifdef NEVER
{
 …………………….
 ……………………. /* code is skipped */
 #endif
}

11.6 OTHER PREPROCESSOR COMMANDS

Other preprocessor commands are:

• #ifndef - If this macro is not defined

51

• #if - Test if a compile time condition is true

Structures, Pointers
and File Handling

• #else - The alternative for #if. This is part of an #if preprocessor
 statement and works in the same way with #if that the regular

C else does with the regular if.
• #elif - enables us to establish an “if…else…if ..” sequence for

testing multiple conditions.

Example 11.6

#if processor == intel
#define FILE “intel.h”
#elif processor == amd
#define FILE “amd.h”
#if processor == motrola
#define FILE “motrola.h”
#endif
#include FILE

• # - Stringizing operator, to be used in the definition of macro. This operator

allows a formal parameter within macro definition to be converted to a string.

Example 11.7

#define multiply (p*q) printf(#pq “ = %f”, pq)
main()
{
 ………..
 multiply(m*n);
}

The preprocessor converts the line multiply(m*n) into printf(“m*n” “ = %f”, m*n);
And then into printf(“m*n = %f”, m*n);

- Token merge, creates a single token from two adjacent ones within a macro
definition.

Example 11.8

#define merge(s1,s2) s1## s2
main()
{
 …………..
 printf(“%f”, merge(total, sales);
}

The preprocessor transforms the statement merge(total, sales) into printf(“%f”,
totalsales);

#error - text of error message -- generates an appropriate compiler error message.

Example 11.9

#ifdef OS_MSDOS
#include <msdos.h>

 #elifdef OS_UNIX
 #include ``default.h''

52

 #else

The C Preprocessor #error Wrong OS!!

#endif

line
#line number "string" – informs the preprocessor that the number is the next number
of line of input. "string" is optional and names the next line of input. This is most
often used with programs that translate other languages to C. For example, error
messages produced by the C compiler can reference the file name and line numbers of
the original source files instead of the intermediate C (translated) source files.

#pragma

It is used to turn on or off certain features. Pragmas vary from compiler to compiler.
Pragmas available with Microsoft C compilers deals with formatting source listing
and placing comments in the object file generated by the compiler. Pragmas
available with Turbo C compilers allows to write assembly language statements in C
program.

A control line of the form

#pragma token-sequence

This causes the processor to perform an implementation-dependent action. An
unrecognized pragma is ignored.

Other preprocessor directives are # - Stringizing operator allows a formal parameter
within macro definition to be converted to a string. ## - Token merge, creates a single
token from two adjacent ones within a macro definition. #error - generates an
appropriate compiler error message.

Example 11.10

Write a macro to demonstrate #define, #if, #else preprocessor commands.

/* The following code displays 35 to the screen. */

#include <stdio.h>
#define CHOICE 100
int my_int = 0;
#if (CHOICE == 100)
 void set_my_int()
 { my_int = 35; }
#else
 void set_my_int()
 {
 my_int = 27;
 }
#endif
main ()
{
 set_my_int();
 printf("%d\n", my_int);
}

OUTPUT

53

35

Structures, Pointers
and File Handling

The my_int is initialized to zero and CHOICE is defined as 100. #if derivative checks
whether CHOICE is equal to 100. Since CHOICE is defined as 100, void set_my_int
is called and int is set 35. And the same is displayed on to the screen.

Example 11.11

Write a macro to demonstrate #define, #if, #else preprocessor commands.

/* The following code displays 27 on the screen */

#include <stdio.h>
#define CHOICE 100
int my_int = 0;
#undef CHOICE
#ifdef CHOICE
 void set_my_int()
 {
 my_int = 35;
 }
#else
 void set_my_int()
 {
 my_int = 27;
 }
#endif

main ()
{
 set_my_int();
 printf("%d\n", my_int);
}

OUTPUT

27

The my_int is initialized to 0 and CHOICE is defined as 100. #undef is used to
undefine CHOICE. #else is invoked , void set_my_int is called and int is set 27. And
the same is displayed on to the screen.

11.7 PREDEFINED NAMES DEFINED BY
 PREPROCESSOR

These are identifiers defined by the preprocessor, and cannot be undefined or
redefined. They are:

LINE an integer constant containing the current source line number.

FILE a string containing the name of the file being complied.

DATE a string literal containing the date of compilation, in the form “mm-dd-

 yyyy”.

TIME a string literal containing the time of compilation, in the form “hh:mm:ss”.

STDC the constant 1. This identifier is defined to be 1 only in the implementations

conforming to the ANSI standard.

54

The C Preprocessor

11.8 MACROS Vs FUNCTIONS

Till now we have discussed about macros. Any computations that can be done on
macros can also be done on functions. But there is a difference in implementations
and in some cases it will be appropriate to use macros than function and vice versa.
We will see the difference between a macro and a function now.

Macros Functions
Macro calls are replaced with macro
expansions (meaning).

In function call, the control is passed to a
function definition along with arguments,
and definition is processed and value may
be returned to call

Macros run programs faster but
increase the program size.

Functions make program size smaller and
compact.

If macro is called 100 numbers of
times, the size of the program will
increase.

If function is called 100 numbers of times,
the program size will not increase.

It is better to use Macros, when the
definition is very small in size.

It is better to use functions, when the
definition is bigger in size.

Check Your Progress 2

1. Write an instruction to the preprocessor to include the math library math.h.

…………………………………………………………………………………………

…………………………………………………………………………………………

2. Write a macro to add user defined header file by name madan.h to your program.

…………………………………………………………………………………………

…………………………………………………………………………………………

3. What will be the output of the following program?
#include<stdio.h>
main()
{
 float m=7;
 #ifdef DEF
 i*=i;
 #else
 printf("\n%f", m);
 #endif }

…………………………………………………………………………………………

…………………………………………………………………………………………

4. Write a macro to find out whether the given character is upper case or not.

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………..

55

Structures, Pointers
and File Handling 11.9 SUMMARY

The preprocessor makes programs easier to develop and modify. The preprocessor
makes C code more portable between different machine architectures and customize
the language. The C Preprocessor is not part of the compiler, but is a separate step in
the compilation process. All preprocessor lines begin with #. C Preprocessor is just a
text substitution tool on your source code in three ways: File inclusion, Macro
substitution, and Conditional compilation.

File inclusion - inserts the contents of another file into your source file.
Macro Substitution - replaces instances of one piece of text with another.
Conditional Compilation - arranges source code depending on various circumstances.

11.10 SOLUTIONS / ANSWERS

Check Your Progress 1

1. # include<stdio.h>

define f(x) x*x + 2 * x + 4
main()
{
int num;
printf("enter value x: ");
scanf("%d",&num);
printf("\nvalue of f(num) is %d", f(num));
}

2. # include<stdio.h>
 # define swap(t, x, y) { t tmp = x; x = y; y = tmp; }
 main()
 {
 int a, b;
 float p, q;
 printf("enter integer values for a, b: ");
 scanf("%d %d", &a, &b);
 printf("\n Enter float values for p, q: ");
 scanf("%f %f", &p, &q);
 swap(int, a, b);
 printf(" \n After swap the values of a and b are %d %d", a, b);
 swap(float, p, q);
 printf("\n After swap the values of p and q are %f %f", p, q);
 }

3. # include<stdio.h>

define AREA(radius) 3.1415 * radius * radius
 main()
 {
 int radius;

printf(“Enter value of radius: ”);
scanf(“%d ”, &radius);
printf(“\nArea is %d”, AREA(radius));

 }

4. # include<stdio.h>
 # define CIRCUMFERENCE(radius) 2 * 3.1415 * radius

56

 main()

57

The C Preprocessor {
 int radius;

printf(“Enter value for radius ”);
scanf(“%d ”, &radius);
printf(“Circumference is %d”, CIRCUMFERENCE(radius));

 }

5. # include<stdio.h>
 # define MUL_TABLE(num) for(n=1;n<=10;n++) \
 printf("\n%d*%d=%d",num,n,num*n)
 main()
 {
 int number; int n;
 printf("enter number");
 scanf("%d",&number);
 MUL_TABLE(number);
 }

6. # include<stdio.h>
 # define SUM(n) ((n * (n+1)) / 2)
 main()
 {
 int number;
 printf("enter number");
 scanf("%d", &number);
 printf("\n sum of n numbers %d", sum(number)); }

Check Your Progress 2

1. # include <math.h>

2. #include "madan.h"

3. 7

4. # include<stdio.h>
 # define isupper(c) (c>=65 && c<=90)
 main()
 {
 char c;
 printf("Enter character:");
 scanf("%c",&c);
 if(isupper(c))
 printf("\nUpper case");
 else
 printf("\nNo it is not an upper case character");
 }

11.11 FURTHER READINGS
1. The C programming language, Brian W. Kernighan & Dennis Ritchie, Pearson

Education, 2002.
2. Programming with ANSI and Turbo C, Ashok N. Kamthane, Pearson Education,

2002.
3. Computer Programming in C, Raja Raman. V, PHI, 2002.

Structures, Pointers
and File Handling UNIT 12 FILES

Structure

12.0 Introduction
12.1 Objectives
12.2 File Handling in C Using File Pointers
 12.2.1 Open a file using the function fopen()
 12.2.2 Close a file using the function fclose()

12.3 Input and Output using file pointers
 12.3.1 Character Input and Output in Files

12.3.2 String Input / Output Functions
12.3.3 Formatted Input / Output Functions
12.3.4 Block Input / Output Functions

12.4 Sequential Vs Random Access Files
12.5 Positioning the File Pointer
12.6 The Unbufferred I/O - The UNIX like File Routines
12.7 Summary
12.8 Solutions / Answers
12.9 Further Readings

12.0 INTRODUCTION

The examples we have seen so far in the previous units deal with standard input and
output. When data is stored using variables, the data is lost when the program exits
unless something is done to save it. This unit discusses methods of working with files,
and a data structure to store data. C views file simply as a sequential stream of bytes.
Each file ends either with an end-of-file marker or at a specified byte number recorded
in a system maintained, administrative data structure. C supports two types of files
called binary files and text files.

The difference between these two files is in terms of storage. In text files, everything
is stored in terms of text i.e. even if we store an integer 54; it will be stored as a 3-byte
string - “54\0”. In a text file certain character translations may occur. For example a
newline(\n) character may be converted to a carriage return, linefeed pair. This is what
Turbo C does. Therefore, there may not be one to one relationship between the
characters that are read or written and those in the external device. A binary file
contains data that was written in the same format used to store internally in main
memory.

For example, the integer value 1245 will be stored in 2 bytes depending on the
machine while it will require 5 bytes in a text file. The fact that a numeric value is in a
standard length makes binary files easier to handle. No special string to numeric
conversions is necessary.

The disk I/O in C is accomplished through the use of library functions. The ANSI
standard, which is followed by TURBO C, defines one complete set of I/O functions.
But since originally C was written for the UNIX operating system, UNIX standard
defines a second system of routines that handles I/O operations. The first method,
defined by both standards, is called a buffered file system. The second is the
unbuffered file system.

In this unit, we will first discuss buffered file functions and then the unbuffered file
functions in the following sections.

58

Files

12.1 OBJECTIVES

After going through this unit you will be able to:

• define the concept of file pointer and file storage in C;
• create text and binary files in C;
• read and write from text and binary files;
• deal with large set of Data such as File of Records; and
• perform operations on files such as count number of words in a file, search a word

in a file, compare two files etc.

12.2 FILE HANDLING IN C USING FILE POINTERS

As already mentioned in the above section, a sequential stream of bytes ending with
an end-of-file marker is what is called a file. When the file is opened the stream is
associated with the file. By default, three files and their streams are automatically
opened when program execution begins - the standard input, standard output, and
the standard error. Streams provide communication channels between files and
programs.

For example, the standard input stream enables a program to read data from the
keyboard, and the standard output stream enables to write data on the screen.
Opening a file returns a pointer to a FILE structure (defined in <stdio.h>) that
contains information, such as size, current file pointer position, type of file etc., to
perform operations on the file. This structure also contains an integer called a file
descriptor which is an index into the table maintained by the operating system namely,
the open file table. Each element of this table contains a block called file control block
(FCB) used by the operating system to administer a particular file.

The standard input, standard output and the standard error are manipulated using file
pointers stdin, stdout and stderr. The set of functions which we are now going to
discuss come under the category of buffered file system. This file system is referred to
as buffered because, the routines maintain all the disk buffers required for reading /
writing automatically.

To access any file, we need to declare a pointer to FILE structure and then associate it
with the particular file. This pointer is referred as a file pointer and it is declared as
follows:

FILE *fp;

12.2.1 Open A File Using The Function fopen()

Once a file pointer variables has been declared, the next step is to open a file. The
fopen() function opens a stream for use and links a file with that stream. This function
returns a file pointer, described in the previous section. The syntax is as follows:

FILE *fopen(char *filename,*mode);

where mode is a string, containing the desired open status. The filename must be a
string of characters that provide a valid file name for the operating system and may
include a path specification. The legal mode strings are shown below in the table 12.1:

59

Structures, Pointers
and File Handling

 Table 12.1: Legal values to the fopen() mode parameter

 MODE MEANING

“r” / “rt” opens a text file for read only access
“w” / “wt” creates a text file for write only access
“a” / “at” text file for appending to a file
“r+t” open a text file for read and write access
“w+t” creates a text file for read and write access,
“a+t” opens or creates a text file and read access
“rb” opens a binary file for read only access
“wb” create a binary file for write only access
“ab” binary file for appending to a file
“r+b” opens a binary or read and write access
“w+b” creates a binary or read and write access,
“a+b” open or binary file and read access

The following code fragment explains how to open a file for reading.

Code Fragment 1

#include <stdio.h>

main ()
 {

 FILE *fp;
 if ((fp=fopen(“file1.dat”, “r”))==NULL)
 {
 printf(“FILE DOES NOT EXIST\n”);
 exit(0);
 }
 }

The value returned by the fopen() function is a file pointer. If any error occurs while
opening the file, the value of this pointer is NULL, a constant declared in <stdio.h>.
Always check for this possibility as shown in the above example.

12.2.2 Close A File Using The Function Fclose()

When the processing of the file is finished, the file should be closed using the fclose()
function, whose syntax is:

int fclose(FILE *fptr);

This function flushes any unwritten data for stream, discards any unread buffered
input, frees any automatically allocated buffer, and then closes the stream. The return
value is 0 if the file is closed successfully or a constant EOF, an end-of file marker, if
an error occurred. This constant is also defined in <stdio.h>. If the function fclose() is
not called explicitly, the operating system normally will close the file when the
program execution terminates.

The following code fragment explains how to close a file.

60

Files

Code Fragment 2

include <stdio.h>
main ()
{
 FILE *fp;
 if ((fp=fopen(“file1.dat”, “r”))==NULL)
 {
 printf(“FILE DOES NOT EXIST\n”);
 exit(0);
 }
……………..
……………..
……………..
…………….
/* close the file */
fclose(fp);
}

Once the file is closed, it cannot be used further. If required it can be opened in same
or another mode.

Check Your Progress 1

1. How does fopen() function links a file to a stream?

…………………………………………………………………………………………

…………………………………………………………………………………………

……………………………………………………………………………………..….

2. Differentiate between text files and binary files.

…………………………………………………………………………………………

…………………………………………………………………………………………

………………………………………………………………………………………..

3. What is EOF and what is its value?

…………………………………………………………………………………………

…………………………………………………………………………………………

……………………………………………………………………………………..….

12.3 INPUT AND OUTPUT USING FILE POINTERS

After opening the file, the next thing needed is the way to read or write the file. There
are several functions and macros defined in <stdio.h> header file for reading and
writing the file. These functions can be categorized according to the form and type of
data read or written on to a file. These functions are classified as:

• Character input/output functions
• String input/output functions
• Formatted input/output functions

61

• Block input/output functions.

Structures, Pointers
and File Handling 12.3.1 Character Input and Output in Files

ANSI C provides a set of functions for reading and writing character by character or
one byte at a time. These functions are defined in the standard library. They are listed
and described below:

• getc()
• putc()

getc() is used to read a character from a file and putc() is used to write a character to
a file. Their syntax is as follows:

int putc(int ch, FILE *stream);
int getc(FILE *stream);

The file pointer indicates the file to read from or write to. The character ch is formally
called an integer in putc() function but only the low order byte is used. On success
putc() returns a character(in integer form) written or EOF on failure. Similarly getc()
returns an integer but only the low order byte is used. It returns EOF when end-of-file
is reached. getc() and putc() are defined in <stdio.h> as macros not functions.

fgetc() and fputc()

Apart from the above two macros, C also defines equivalent functions to read / write
characters from / to a file. These are:

int fgetc(FILE *stream);
int fputc(int c, FILE *stream);

To check the end of file, C includes the function feof() whose prototype is:

int feof(FILE *fp);

It returns 1 if end of file has been reached or 0 if not. The following code fragment
explains the use of these functions.

Example 12.1

Write a program to copy one file to another.

/*Program to copy one file to another */

 #include <stdio.h>
main()
{
 FILE *fp1;
 FILE *fp2;
 int ch;
 if((fp1=fopen(“f1.dat”,”r”)) == NULL)

 {
 printf(“Error opening input file\n”);
 exit(0);
 }
 if((fp2=fopen(“f2.dat”,”w”)) == NULL)
 {
 printf(“Error opening output file\n”);

62

 exit(0);

Files }

 while (!feof(fp1))
 {
 ch=getc(fp1);
 putc(ch,fp2);
 }
 fclose(fp1);
 fclose(fp2);
}

OUTPUT

If the file ”f1.dat” is not present, then the output would be:
 Error opening input file
If the disk is full, then the output would be:
 Error opening output file

If there is no error, then “f2.dat” would contain whatever is present in “f1.dat” after
the execution of the program, if “f2.dat” was not empty earlier, then its contents
would be overwritten.

12.3.2 String Input/Output Functions

If we want to read a whole line in the file then each time we will need to call character
input function, instead C provides some string input/output functions with the help of
which we can read/write a set of characters at one time. These are defined in the
standard library and are discussed below:

• fgets()
• fputs()

These functions are used to read and write strings. Their syntax is:

int fputs(char *str, FILE *stream);
char *fgets(char *str, int num, FILE *stream);

The integer parameter in fgets() is used to indicate that at most num-1 characters are
to be read, terminating at end-of-file or end-of-line. The end-of-line character will be
placed in the string str before the string terminator, if it is read. If end-of-file is
encountered as the first character, EOF is returned, otherwise str is returned. The
fputs() function returns a non-negative number or EOF if unsuccessful.

Example 12.2

Write a program read a file and count the number of lines in the file, assuming that a
line can contain at most 80 characters.

/*Program to read a file and count the number of lines in the file */
#include<stdio.h>
#include<conio.h>
#include<process.h>
void main()
{
 FILE *fp;
 int cnt=0;

63

 char str[80];

Structures, Pointers
and File Handling

/* open a file in read mode */

 if ((fp=fopen("lines.dat","r"))== NULL)
 { printf("File does not exist\n");
 exit(0);
 }
/* read the file till end of file is encountered */
 while(!(feof(fp)))
 { fgets(str,80,fp); /*reads at most 80 characters in str */
 cnt++; /* increment the counter after reading a line */
 }
}/* print the number of lines */
printf(“The number of lines in the file is :%d\n”,cnt);
fclose(fp);
}

OUTPUT

Let us assume that the contents of the file “lines.dat” are as follows:

This is C programming.
I love C programming.

To be a good programmer one should have a good logic. This is a must.
C is a procedural programming language.

After the execution the output would be:

The number of lines in the file is: 4

12.3.3 Formatted Input/Output Functions

If the file contains data in the form of digits, real numbers, characters and strings, then
character input/output functions are not enough as the values would be read in the
form of characters. Also if we want to write data in some specific format to a file, then
it is not possible with the above described functions. Hence C provides a set of
formatted input/output functions. These are defined in standard library and are
discussed below:

fscanf() and fprintf()

These functions are used for formatted input and output. These are identical to scanf()
and printf() except that the first argument is a file pointer that specifies the file to be
read or written, the second argument is the format string. The syntax for these
functions is:
int fscanf(FILE *fp, char *format,. . .);
int fprintf(FILE *fp, char *format,. . .);

Both these functions return an integer indicating the number of bytes actually read or
written.

Example 12.3

Write a program to read formatted data (account number, name and balance) from a
file and print the information of clients with zero balance, in formatted manner on the
screen.

64

Files

/* Program to read formatted data from a file */

#include<stdio.h>
main()
{
 int account;
 char name[30];
 double bal;
 FILE *fp;

 if((fp=fopen("bank.dat","r"))== NULL)
 printf("FILE not present \n");
 else
 do{
 fscanf(fp,"%d%s%lf",&account,name,&bal);
 if(!feof(fp))
 {
 if(bal==0)
 printf("%d %s %lf\n",account,name,bal);
 }
 }while(!feof(fp));
 }

OUTPUT

This program opens a file “bank.dat” in the read mode if it exists, reads the records
and prints the information (account number, name and balance) of the zero balance
records.

Let the file be as follows:

101 nuj 1200
102 Raman 1500
103 Swathi 0
104 Ajay 1600
105 Udit 0

The output would be as follows:

103 Swathi 0
105 Udit 0

12.3.4 Block Input/Output Functions

Block Input / Output functions read/write a block (specific number of bytes from/to a
file. A block can be a record, a set of records or an array. These functions are also
defined in standard library and are described below.

• fread()
• fwrite()

These two functions allow reading and writing of blocks of data. Their syntax is:

 int fread(void *buf, int num_bytes, int count, FILE *fp);

 int fwrite(void *buf, int num_bytes, int count, FILE *fp);

65

Structures, Pointers
and File Handling

In case of fread(), buf is the pointer to a memory area that receives the data from the
file and in fwrite(), it is the pointer to the information to be written to the file.
num_bytes specifies the number of bytes to be read or written. These functions are
quite helpful in case of binary files. Generally these functions are used to read or write
array of records from or to a file. The use of the above functions is shown in the
following program.

Example 12.4

Write a program using fread() and fwrite() to create a file of records and then read
and print the same file.

/* Program to illustrate the fread() and fwrite() functions*/
#include<stdio.h>
#include<conio.h>
#include<process.h>
#include<string.h>

void main()
{
 struct stud
 {
 char name[30];
 int age;
 int roll_no;
 }s[30],st;
 int i;
 FILE *fp;

/*opening the file in write mode*/
 if((fp=fopen("sud.dat","w"))== NULL)
 { printf("Error while creating a file\n");
 exit(0); }

/* reading an array of students */
 for(i=0;i<30;i++)
 scanf("%s %d %d",s[i].name,s[i].age,s[i].roll_no);

 /* writing to a file*/
 fwrite(s,sizeof(struct stud),30,fp);
 fclose(fp);

/* opening a file in read mode */
 fp=fopen("stud.dat","r");

/* reading from a file and writing on the screen */
 while(!feof(fp))
 {
 fread(&st,sizeof(struct stud),1,fp);
 fprintf("%s %d %d",st.name,st.age,st.roll_no);
 }
 fclose(fp); }

OUTPUT

66

This program reads 30 records (name, age and roll_number) from the user, writes one
record at a time to a file. The file is closed and then reopened in read mode; the
records are again read from the file and written on to the screen.

Files Check Your Progress 2

1. Give the output of the following code fragment:

#include<stdio.h>
#include<process.h>
#include<conio.h>
main()
{
FILE * fp1, * fp2;
 double a,b,c;

fp1=fopen(“file1”, “w”);
fp2=fopen(“file2”, “w”);

fprintf(fp1,”1 5.34 –4E02”);
fprintf(fp2,”-2\n1.245\n3.234e02\n”);
 fclose(fp1);
 fclose(fp2);

fp1=fopen(“file1”, “r”);
fp2=fopen(“file2”,“r”);

 fscanf(fp1,“%lf %lf %lf”,&a,&b,&c);
 printf(“%10lf %10lf %10lf”,a,b,c);
 fscanf(fp2,”%lf %lf %lf”,&a,&b,&c);
 printf(“%10.1e %10lf %10lf”,a,b,c);

 fclose(fp1);
 fclose(fp2);
 }
…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2. What is the advantage of using fread/fwrite functions?
…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

3. ________ and _______ functions are used for formatted input and output
 from a file.

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

12.4 SEQUENTIAL Vs RANDOM ACCESS FILES

67

We have seen in section 12.0 that C supports two type of files – text and binary files,
also two types of file systems – buffered and unbuffered file system. We can also
differentiate in terms of the type of file access as Sequential access files and random
access files. Sequential access files allow reading the data from the file in sequential
manner which means that data can only be read in sequence. All the above examples

Structures, Pointers
and File Handling

that we have considered till now in this unit are performing sequential access.
Random access files allow reading data from any location in the file. To achieve this
purpose, C defines a set of functions to manipulate the position of the file pointer. We
will discuss these functions in the following sections.

12.5 POSITIONING THE FILE POINTER

To support random access files, C requires a function with the help of which the file
pointer can be positioned at any random location in the file. Such a function defined in
the standard library is discussed below:

The function fseek() is used to set the file position. Its prototype is:

int fseek(FILE *fp, long offset, int pos);

The first argument is the pointer to a file. The second argument is the number of bytes
to move the file pointer, counting from zero. This argument can be positive, negative
or zero depending on the desired movement. The third parameter is a flag indicating
from where in the file to compute the offset. It can have three values:

SEEK_SET(or value 0) the beginning of the file,
SEEK_CUR(or value 1) the current position and
SEEK_END(or value 2) the end of the file

These three constants are defined in <stdio.h>. If successful fseek() returns zero.
Another function rewind() is used to reset the file position to the beginning of the file.
Its prototype is:

void rewind(FILE *fp);

A call to rewind is equivalent to the call

 fseek(fp,0,SEEK_SET);

Another function ftell() is used to tell the position of the file pointer. Its prototype is:

long ftell(FILE *fp);

It returns –1 on error and the position of the file pointer if successful.

Example 12.5

Write a program to search a record in an already created file and update it. Use the
same file as created in the previous example.

/*Program to search a record in an already created file*/

#include<stdio.h>
#include<conio.h>
#include<stdio.h>
#include<process.h>
#include<string.h>
void main()
{
 int r,found;
 struct stud

68

 {

Files char name[30];

 int age;
 int roll_no;
 }st;
 FILE *fp;
 /* open the file in read/write mode */

 if((fp=fopen("f1.dat","r+b"))==NULL)
 { printf("Error while opening the file \n");
 exit(0);
 }

/* Get the roll_no of the student */
 printf("Enter the roll_no of the record to be updated\n");
 found=0;
 scanf("%d",&r);

 /* check in the file for the existence of the roll_no */
 while((!feof(fp)) && !(found))
 { fread(&st,sizeof(stud),1,fp);
 if(st.roll_no == r)

 /* if roll_no is found then move one record backward to update it */
 { fseek(fp,- sizeof(stud),SEEK_CUR);
 printf("Enter the new name\n");
 scanf("%s",st.name);
 fwrite(fp,sizeof(stud),1,fp);
 found=1;
 }
 }
 if (!found)
 printf("Record not present\n");
 fclose(fp);
 }

OUTPUT

Let the input file be as follows:
Geeta 18 101
Leena 17 102
Mahesh 23 103
Lokesh 21 104
Amit 19 105

Let the roll_no of the record to be updated be 106. Now since this roll_no is not
present the output would be:

Record not present

If the roll_no to be searched is 103, then if the new name is Sham, the output would
be the file with the contents:

Geeta 18 101
Leena 17 102
Sham 23 103
Lokesh 21 104
Amit 19 105

69

Structures, Pointers
and File Handling 12.6 THE UNBUFFERED I/O – THE UNIX LIKE FILE

 ROUTINES

The buffered I/O system uses buffered input and output, that is, the operating system
handles the details of data retrieval and storage, the system stores data temporarily
(buffers it) in order to optimize file system access. The buffered I/O functions are
handled directly as system calls without buffering by the operating system. That is
why they are also known as low level functions. This is referred to as unbuffered I/O
system because the programmer must provide and maintain all disk buffers, the
routines do not do it automatically.

The low level functions are defined in the header file <io.h>.

These functions do not use file pointer of type FILE to access a particular file, but
they use directly the file descriptors, as explained earlier, of type integer. They are
also called handles.

Opening and closing of files

The function used to open a file is open(). Its prototype is:

 int open(char *filename, int mode, int access);

Here mode indicates one of the following macros defined in <fcntl.h>.

Mode:

O_RDONLY Read only
O_WRONLY Write only
O_RDWR Read / Write

The access parameter is used in UNIX environment for providing the access to
particular users and is just included here for compatibility and can be set to zero.
open() function returns –1 on failure. It is used as:

Code fragment 2

int fd;

if ((fd=open(filename,mode,0)) == -1)
 { printf(“cannot open file\n”);
 exit(1); }

If the file does not exist, open() the function will not create it. For this, the function
creat() is used which will create new files and re-write old ones. The prototype is:

int creat(char *filename, int access);

It returns a file descriptor; if successful else it returns –1. It is not an error to create an
already existing file, the function will just truncate its length to zero. The access
parameter is used to provide permissions to the users in the UNIX environment.
The function close() is used to close a file. The prototype is:

int close(int fd);

It returns zero if successful and –1 if not.

70

Files Reading, Writing and Positioning in File

The functions read() and write() are used to read from and write to a file. Their
prototypes are:

int read(int fd, void *buf, int size);
int write(int fd, void *buf, int size);

The first parameter is the file descriptor returned by open(), the second parameter
holds the data which must be typecast to the format needed by the program, the third
parameter indicates the number of bytes to transferred. The return value tells how
many bytes are actually transferred. If this value is –1, then an error must have
occurred.

Example 12.6

Write a program to copy one file to another to illustrate the use of the above functions.
The program should expect two command line arguments indicating the name of the
file to be copied and the name of the file to be created.

/* Program to copy one file to another file to illustrate the functions*/
include<stdio.h>
include<io.h>
#include<process.h>

typedef char arr[80];
typedef char name[30];

main()
{
arr buf;
name fname, sname;
int fd1,fd2,size;

 /* check for the command line arguments */
if (argc!=3)
 { printf("Invalid number of arguments\n");
 exit(0);
 }
 if ((fd1=open(argv[1],O_RDONLY))<0)
 { printf("Error in opening file %s \n",argv[1]);
 exit(0);
 }
if ((fd2=creat(argv[2],0))<0)
 { printf("Error in creating file %s \n",argv[2]);
 exit(0);}

 open(argv[2],O_WRONLY);
 size=read(fd1,buf,80); /* read till end of file */

while (size>0)
 { write(fd2,buf,80);
 size=read(fd1,buf,80);
 }
 close(fd1);
 close(fd2);
}

71

Structures, Pointers
and File Handling

OUTPUT

If the number of arguments given on the command line is not correct then output
would be:

Invalid number of arguments

One file is opened in the read mode, and another file is opened in the write mode. The
output would be as follows is the file to be read is not present (let the file be f1.dat):

Error in opening file f1.dat

The output would be as follows if the disk is full and the file cannot be created (let the
output file be f2.dat):

Error in creating file f2.dat

If there is no error contents of f1.dat will be copied to f2.dat.

lseek()

The function lseek() is provided to move to the specific position in a file. Its prototype
is:

 long lseek(int fd, long offset, int pos);

This function is exactly the same as fseek() except that the file descriptor is used
instead of the file pointer.

Using the above defined functions, it is possible to write any kind of program dealing
with files.

Check Your Progress 3

1. Random access is possible in C files using function ____________.

2. Write a proper C statement with proper arguments that would be called to move the
 file pointer back by 2 bytes.

…………………………………………………………………………………………

…………………………………………………………………………………………

3. Indicate the header files needed to use unbuffered I/O.

…………………………………………………………………………………………

…………………………………………………………………………………………

……………………………………………………………………………………..….

12.7 SUMMARY

72

In this unit, we have learnt about files and how C handles them. We have discussed
the buffered as well as unbuffered file systems. The available functions in the standard
library have been discussed. This unit provided you an ample set of programs to start
with. We have also tried to differentiate between sequential access as well as random
access file. The file pointers assigned to standard input, standard output and standard
error are stdin, stdout, and stderr respectively. The unit clearly explains the different

Files type of modes oof opening the file. As seen there are several functions available to

read/write from the file. The usage of a particular function depends on the application.
After reading this unit one must be able to handle large data bases in the form of files.

12.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1. fopen() function links a file to a stream by returning a pointer to a FILE structure

defined in <stdio.h>. This structure contains an index called file descriptor to a
File Control Block, which is maintained by the operating system for
administrative purposes.

2. Text files and binary files differ in terms of storage. In text files everything is

stored in terms of text while binary files stores exact memory image of the data i.e.
in text files 154 would take 3 bytes of storage while in binary files it will take 2
bytes as required by an integer.

3. EOF is an end-of-file marker. It is a macro defined in <stdio.h>. Its value is –1.

Check Your progress 2

1. The output would be:

1.000000 5.340000 –400.000000 -2.0e+00 1.245000 323.400000

2. The advantage of using these functions is that they are used for block read/write,
which means we can read or write a large set of data at one time thus increasing
the speed.

3. fscanf() and fprintf() functions are used for formatted input and output from a file.

Check Your progress 3

1. Random access is possible in C files using function fseek().

2. fseek(fp, -2L, SEEK_END);

3. <io.h> and <fcntl.h>

12.9 FURTHER READINGS

1. The C Programming Language, Kernighan & Richie, PHI Publication, 2002.
2. C How to Program, Deitel & Deitel, Pearson Education, 2002.
3. Practical C Programming, Steve Oualline, Oreilly Publication, 2003.

73

Structures, Pointers
and File Handling

APPENDIX-A

THE ASCII SET

The ASCII (American Standard Code for Information Interchange) character set
defines 128 characters (0 to 127 decimal, 0 to FF hexadecimal, and 0 to 177 octal).
This character set is a subset of many other character sets with 256 characters,
including the ANSI character set of MS Windows, the Roman-8 character set of HP
systems, and the IBM PC Extended Character Set of DOS, and the ISO Latin-1
character set used by Web browsers. They are not the same as the EBCDIC character
set used on IBM mainframes. The first 32 values are non-printing control characters,
such as Return and Line feed. You generate these characters on the keyboard by
holding down the Control key while you strike another key. For example, Bell is value
7, Control plus G, often shown in documents as ^G. Notice that 7 is 64 less than the
value of G (71); the Control key subtracts 64 from the value of the keys that it
modifies. The table shown below gives the list of the control and printing characters.

The Control Characters

74

Char Oct Dec Hex Control-Key Control Action
NUL 0 0 0 ^@ Null character

SOH 1 1 1 ^A Start of heading, = console interrupt

STX 2 2 2 ^B Start of text, maintenance mode on HP console

ETX 3 3 3 ^C End of text

EOT 4 4 4 ^D End of transmission, not the same as ETB

ENQ 5 5 5 ^E Enquiry, goes with ACK; old HP flow control

ACK 6 6 6 ^F Acknowledge, clears ENQ logon hand

BEL 7 7 7 ^G Bell, rings the bell...

BS 10 8 8 ^H Backspace, works on HP terminals/computers

HT 11 9 9 ^I Horizontal tab, move to next tab stop

LF 12 10 a ^J Line Feed

VT 13 11 b ^K Vertical tab

FF 14 12 c ^L Form Feed, page eject

CR 15 13 d ^M Carriage Return

SO 16 14 e ^N Shift Out, alternate character set

SI 17 15 f ^O Shift In, resume defaultn character set

DLE 20 16 10 ^P Data link escape

DC1 21 17 11 ^Q XON, with XOFF to pause listings; ":okay to send".

DC2 22 18 12 ^R Device control 2, block-mode flow control

DC3 23 19 13 ^S XOFF, with XON is TERM=18 flow control

DC4 24 20 14 ^T Device control 4

NAK 25 21 15 ^U Negative acknowledge

SYN 26 22 16 ^V Synchronous idle

ETB 27 23 17 ^W End transmission block, not the same as EOT

CAN 30 24 17 ^X Cancel line, MPE echoes !!!

EM 31 25 19 ^Y End of medium, Control-Y interrupt

SUB 32 26 1a ^Z Substitute

ESC 33 27 1b ^[Escape, next character is not echoed

FS 34 28 1c ^\ File separator

GS 35 29 1d ^] Group separator

RS 36 30 1e ^^ Record separator, block-mode terminator

US 37 31 1f ^_ Unit separator

Files Printing Characters

75

Char Octal Dec Hex Description
SP 40 32 20 Space

! 41 33 21 Exclamation mark

" 42 34 22 Quotation mark (" in HTML)

43 35 23 Cross hatch (number sign)

$ 44 36 24 Dollar sign

% 45 37 25 Percent sign

& 46 38 26 Ampersand

` 47 39 27 Closing single quote (apostrophe)

(50 40 28 Opening parentheses

) 51 41 29 Closing parentheses

* 52 42 2a Asterisk (star, multiply)

+ 53 43 2b Plus

, 54 44 2c Comma

- 55 45 2d Hyphen, dash, minus

. 56 46 2e Period

/ 57 47 2f Slant (forward slash, divide)

0 60 48 30 Zero

1 61 49 31 One

2 62 50 32 Two

3 63 51 33 Three

4 64 52 34 Four

5 65 53 35 Five

6 66 54 36 Six

7 67 55 37 Seven

8 70 56 38 Eight

9 71 57 39 Nine

: 72 58 3a Colon

; 73 59 3b Semicolon

< 74 60 3c Less than sign (< in HTML)

= 75 61 3d Equals sign

> 76 62 3e Greater than sign (> in HTML)

? 77 63 3f Question mark

@ 100 64 40 At-sign

A 101 65 41 Uppercase A

B 102 66 42 Uppercase B

C 103 67 43 Uppercase C

D 104 68 44 Uppercase D

E 105 69 45 Uppercase E

F 106 70 46 Uppercase F

G 107 71 47 Uppercase G

H 110 72 48 Uppercase H

I 111 73 49 Uppercase I

J 112 74 4a Uppercase J

K 113 75 4b Uppercase K

L 114 76 4c Uppercase L

M 115 77 4d Uppercase M

N 116 78 4e Uppercase N

76

Structures, Pointers
and File Handling

O 117 79 4f Uppercase O

P 120 80 50 Uppercase P

Q 121 81 51 Uppercase Q

R 122 82 52 Uppercase R

S 123 83 53 Uppercase S

T 124 84 54 Uppercase T

U 125 85 55 Uppercase U

V 126 86 56 Uppercase V

W 127 87 57 Uppercase W

X 130 88 58 Uppercase X

Y 131 89 59 Uppercase Y

Z 132 90 5a Uppercase Z

[133 91 5b Opening square bracket

\ 134 92 5c Reverse slant (Backslash)

] 135 93 5d Closing square bracket

^ 136 94 5e Caret (Circumflex)

_ 137 95 5f Underscore

` 140 96 60 Opening single quote

a 141 97 61 Lowercase a

b 142 98 62 Lowercase b

c 143 99 63 Lowercase c

d 144 100 64 Lowercase d

e 145 101 65 Lowercase e

f 146 102 66 Lowercase f

g 147 103 67 Lowercase g

h 150 104 68 Lowercase h

i 151 105 69 Lowercase i

j 152 106 6a Lowercase j

k 153 107 6b Lowercase k

l 154 108 6c Lowercase l

m 155 109 6d Lowercase m

n 156 110 6e Lowercase n

o 157 111 6f Lowercase o

p 160 112 70 Lowercase p

q 161 113 71 Lowercase q

r 162 114 72 Lowercase r

s 163 115 73 Lowercase s

t 164 116 74 Lowercase t

u 165 117 75 Lowercase u

v 166 118 76 Lowercase v

w 167 119 77 Lowercase w

x 170 120 78 Lowercase x

y 171 121 79 Lowercase y

z 172 122 7a Lowercase z

{ 173 123 7b Opening curly brace

| 174 124 7c Vertical line

} 175 125 7d Cloing curly brace

~ 176 126 7e Tilde (approximate)

DEL 177 127 7f Delete (rubout), cross-hatch box

	MCS-011 Structures, Pointers and File Handling
	Index
	Credit Page
	Block Introduction
	Unit-9 Structures and Unions
	9.0 Introduction
	9.1 Objectives
	9.2 Declaration of Structures
	9.3 Accessing the Members of a Structure
	9.4 Initializing Structures
	9.5 Structures as Function Arguments
	9.6 Structure and Arrays
	9.7 Unions
	9.8 Initializing the Members of an Union
	9.9 Accessing the Members of an Union
	9.10 Summary
	9.11 Solutions / Answers
	9.12 Further Readings

	Unit-10 Pointers
	10.0 Introduction
	10.1 Objectives
	10.2 Pointers and Their Characteristics
	10.3 The Address and Indirection Operators
	10.4 Pointer Type Declaration and Assignment
	10.5 Pointer Arithmetic
	10.6 Passing Pointers to Functions
	10.7 Arrays and Pointers
	10.8 Array of pointers
	10.9 Pointers and Strings
	10.10 Summary
	10.11 Solutions / Answers
	10.12 Further Readings

	Unit-11 The C Preprocessor
	11.0 Introduction
	11.1 Objectives
	11.2 # define To Implement Constants
	11.3 # define To Create Functional Macros
	11.4 Reading From Other Files Using # include
	11.5 Conditional Selection of Code Using # ifdef
	11.6 Other Preprocessor Commands
	11.7 Predefined Names Defined by Preprocessor
	11.8 Macros Vs Functions
	11.9 Summary
	11.10 Solutions / Answers
	11.11 Further Readings

	Unit-12 Files
	12.0 Introduction
	12.1 Objectives
	12.2 File Handling in C Using File Pointers
	12.3 Input and Output Using File Pointers
	12.4 Sequential Vs Random Access Files
	12.5 Positioning the File Pointer
	12.6 The Unbuffered I/O - The Unix Like File Routines
	12.7 Summary
	12.8 Solutions / Answers
	12.9 Further Readings

