

MCS-011
PROBLEM SOLVING AND

PROGRAMMING

Block

2
CONTROL STATEMENTS, ARRAYS AND
FUNCTIONS

UNIT 5

Decision and Loop Control Statements 5

UNIT 6
Arrays 26

UNIT 7
Strings 40

UNIT 8
Functions 55

 Indira Gandhi
 National Open University
 School of Computer and
 Information Sciences

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur
Prof. M. Balakrishnan, IIT , Delhi
Prof Harish Karnick, IIT, Kanpur
Prof. C. Pandurangan, IIT, Madras
Dr. Om Vikas, Sr. Director, MIT
Prof P. S. Grover, Sr. Consultant,
SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences
Shri Shashi Bhushan
Shri Akshay Kumar
Prof Manohar Lal
Shri V.V. Subrahmanyam
Shri P.Venkata Suresh

Block Preparation Team

Prof P. S. Grover (Content Editor)
(Sr Consultant
SOCIS, IGNOU)

Ms. Charu Devgon
Dept. of Computer Science
A N Dev College
University of Delhi

Mr. Madana Mohan Babu
Deputy Manager
NSIC-TSC
New Delhi

Ms. Namita Gupta
Dept. of Computer Science
Maharaja Agrasen Institute
of Technology
Delhi

Ms. Neetu Seth
NDIIT
New Delhi

Shri V.V. Subrahmanyam
SOCIS
IGNOU

Shri S.S. Rana
New Delhi Language
 Editors
Prof Sunaina Kumar
SOH, IGNOU

Course Coordinator : V.V. Subrahmanyam

Block Production Team

Shri H.K Som, SOCIS

Acknowledgements

To all the faculty of SOCIS, IGNOU for their comments on the course material;
to Shri Vikas Kumar for help in finalizing the CRC.

April, 2004

Indira Gandhi National Open University, 2004

ISBN-81-266-1202-9

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means,
without permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the
University’s office at Maidan Garhi, New Delhi-110 068.

Printed and published on behalf on the Indira Gandhi National Open University, New Delhi by The Director,
SOCIS.

BLOCK INTRODUCTION

In Block-1, we had discussed the basic constructs in C programming language. Block-2
introduces you the Decision and Loop control structures, Arrays, Strings and Functions in C.

Control structures themselves are statements. When executed, a control structure controls the
execution of other statements: e.g., deciding whether or not to execute some statement; deciding
which one of a pair of statements to execute; re-executing a statement, etc. Generally, control
structure in C tells what statement to execute next. So, just as expressions operate on (sub)
expressions, control structure statements operate on (sub) statements. Many control structures
make their decisions by evaluating boolean expressions. We will see boolean expressions used
extensively in two control structures (if and break) explained in Unit 5. Control structures
includes, various formats of if statements, switch statement and the Loop control statements
includes for, while and do-while statements.

There are times when we need to store a complete list of numbers or other data items. You could
do this by creating as many individual variables as would be needed for the job, but this is a hard
and tedious process. This is the basic idea of an array and nearly all programming languages
provide this sort of facility - only the details alter. In the case of C, you have to declare an array
before you use it - in the same way you have to declare any sort of variable. The details of arrays
and the character arrays are covered in the Unit-6 and Unit-7.

Any C program must have a main() function to contain the code executed by default when the
program is run. You can put as many user defined functions as you like in the program to achieve
the modularity in the programming. In C, all functions in a program are “visible” to all other
functions in that. Detail discussion regarding the types of functions and their invoking is provided
in Unit-8.

The block contains a wide variety of programming examples to support the concepts given in the
material. Whenever possible, examples contain complete programs or functions rather than
incomplete program fragments. To get the maximum benefit from this, it is necessary that you
should understand and execute all the example programs given in this block, as well, complete
the assignment problems given in the lab manual also.

This block consists of 4 units and is organized as follows:

Unit - 5 provides an overview of the decision and control loop statements of C language.

Unit - 6 introduces you the concept of the Arrays.

Unit - 7 outlines the Strings handling in the C programs.

Unit - 8 provides the overview of the Functions in C.

Happy Programming!

5

Decision and L oop
Control

Statements
UNIT 5 DECISION AND LOOP CONTROL

STATEMENTS

Structure

5.0 Introduction
5.1 Objectives
5.2 Decision Control Statements

5.2.1 The if Statement
5.2.2 The switch Statement

5.3 Loop Control Statements
5.3.1 The while Loop

 5.3.2 The do-while Statement
 5.3.3 The for Loop
 5.3.4 The Nested Loop
5.4 The Goto Statement
5.5 The Break Statement
5.6 The Continue Statement
5.7 Summary
5.8 Solutions / Answers
5.9 Further Readings

5.0 INTRODUCTION

A program consists of a number of statements to be executed by the computer. Not
many of the programs execute all their statements in sequential order from beginning
to end as they appear within the program. A C program may require that a logical test
be carried out at some particular point within the program. One of the several possible
actions will be carried out, depending on the outcome of the logical test. This is called
Branching. In the Selection process, a set of statements will be selected for execution,
among the several sets available. Suppose, if there is a need of a group of statements
to be executed repeatedly until some logical condition is satisfied, then looping is
required in the program. These can be carried out using various control statements.

These Control statements determine the “flow of control” in a program and enable us
to specify the order in which the various instructions in a program are to be executed
by the computer. Normally, high level procedural programming languages require
three basic control statements:

• Sequence instruction
• Selection/decision instruction
• Repetition or Loop instruction

Sequence instruction means executing one instruction after another, in the order in
which they occur in the source file. This is usually built into the language as a default
action, as it is with C. If an instruction is not a control statement, then the next
instruction to be executed will simply be the next one in sequence.

Selection means executing different sections of code depending on a specific
condition or the value of a variable. This allows a program to take different courses of
action depending on different conditions. C provides three selection structures.

• if
• if…else
• switch

6

Control Statements,
Arrays and
Functions

Repetition/Looping means executing the same section of code more than once. A
section of code may either be executed a fixed number of times, or while some
condition is true. C provides three looping statements:

• while
• do…while
• for

This unit introduces you the decision and loop control statements that are available in
C programming language along with some of the example programs.

5.1 OBJECTIVES

After going through this unit you will be able to:

• work with different control statements;
• know the appropriate use of the various control statements in programming;
• transfer the control from within the loops;
• use the goto, break and continue statements in the programs; and
• write programs using branching, looping statements.

5.2 DECISION CONTROL STATEMENTS

In a C program, a decision causes a one-time jump to a different part of the program,
depending on the value of an expression. Decisions in C can be made in several ways.
The most important is with the if...else statement, which chooses between two
alternatives. This statement can be used without the else, as a simple if statement.
Another decision control statement, switch, creates branches for multiple alternative
sections of code, depending on the value of a single variable.

5.2.1 The if Statement

It is used to execute an instruction or sequence/block of instructions only if a
condition is fulfilled. In if statements, expression is evaluated first and then,
depending on whether the value of the expression (relation or condition) is “true” or
“false”, it transfers the control to a particular statement or a group of statements.

Different forms of implementation if-statement are:

• Simple if statement
• If-else statement
• Nested if-else statement
• Else if statement

Simple if statement

It is used to execute an instruction or block of instructions only if a condition is
fulfilled.

The syntax is as follows:

if (condition)
 statement;

where condition is the expression that is to be evaluated. If this condition is true,
statement is executed. If it is false, statement is ignored (not executed) and the
program continues on the next instruction after the conditional statement.

7

Decision and Loop
Control

Statements

This is shown in the Figure 5.1 given below:

 Figure 5.1: Simple if statement

If we want more than one statement to be executed, then we can specify a block of
statements within the curly bracets { }. The syntax is as follows:

if (condition)
 {
 block of statements;
 }

Example 5.1

Write a program to calculate the net salary of an employee, if a tax of 15% is levied
on his gross-salary if it exceeds Rs. 10,000/- per month.

/*Program to calculate the net salary of an employee */

#include <stdio.h>
main()
{
float gross_salary, net_salary;

printf(“Enter gross salary of an employee\n”);
scanf(“%f ”,&gross_salary);

if (gross_salary <10000)
 net_salary= gross_salary;
if (gross_salary >= 10000)
 net_salary = gross_salary- 0.15*gross_salary;

printf(“\nNet salary is Rs.%.2f\n”, net_salary);
}

OUTPUT

Enter gross salary of an employee
9000
Net salary is Rs.9000.00

Enter gross salary of any employee
10000
Net salary is Rs. 8500.00

8

Control Statements,
Arrays and
Functions

If … else statement

If…else statement is used when a different sequence of instructions is to be executed
depending on the logical value (True / False) of the condition evaluated.

Its form used in conjunction with if and the syntax is as follows:

if (condition)
Statement _1;

 else
Statement_ 2;

statement_3;

Or

if (condition)
 {
 Statements_1_Block;
 }
else
 {
 Statements_2_Block;
 }
Statements _3_Block;

If the condition is true, then the sequence of statements (Statements_1_Block)
executes; otherwise the Statements_2_Block following the else part of if-else
statement will get executed. In both the cases, the control is then transferred to
Statements_3 to follow sequential execution of the program.
This is shown in figure 5.2 given below:

 Figure 5.2: If…else statement

Let us consider a program to illustrate if…else statement,

Example 5.2

Write a program to print whether the given number is even or odd.

9

Decision and Loop
Control

Statements

/* Program to print whether the given number is even or odd*/
#include <stdio.h>
main ()
{
int x;
printf(“Enter a number:\n”);
scanf("%d",&x);
if (x % 2 == 0)
 printf(“\nGiven number is even\n”);
else
 printf(“\nGiven number is odd\n”);
}

OUTPUT

Enter a number:
6
Given number is even

Enter a number
7
Given number is odd

Nested if…else statement

In nested if… else statement, an entire if…else construct is written within either the
body of the if statement or the body of an else statement. The syntax is as follows:

if (condition_1)
 {
 if (condition_2)
 {
 Statements_1_Block;
 }

 else
 {
 Statements_2_Block;
 }
 }

else
 {
 Statements_3_Block;
 }
Statement_4_Block;

Here, condition_1 is evaluated. If it is false then Statements_3_Block is executed and
is followed by the execution of Statements_4_Block, otherwise if condition_1 is true,
then condition_2 is evaluated. Statements_1_Block is executed when condition_2 is
true otherwise Statements_2_Block is executed and then the control is transferred to
Statements_4_Block.

This is shown in the figure 5.3 given in the next page:

10

Control Statements,
Arrays and
Functions

Figure 5.3: Nested if…else statement

Let us consider a program to illustrate Nested if…else statement,

Example 5.3

Write a program to calculate an Air ticket fare after discount, given the following
conditions:
• If passenger is below 14 years then there is 50% discount on fare
• If passenger is above 50 years then there is 20% discount on fare
• If passenger is above 14 and below 50 then there is 10% discount on fare.

/* Program to calculate an Air ticket fare after discount */

#include <stdio.h>
main()
{
int age;
float fare;
printf(“\n Enter the age of passenger:\n”);
scanf(“%d”,&age);
printf(“\n Enter the Air ticket fare\n”);
scanf(“%f”,&fare);
if (age < 14)

fare = fare - 0.5 * fare;
else

if (age <= 50)
 {
 fare = fare - 0.1 * fare;
 }
 else
 {
 fare = fare - 0.2 * fare;
 }

printf(“\n Air ticket fare to be charged after discount is %.2f”,fare);
}

11

Decision and Loop
Control

Statements

OUTPUT
Enter the age of passenger
12
Enter the Air ticket fare
2000.00
Air ticket fare to be charged after discount is 1000.00

Else if statement

To show a multi-way decision based on several conditions, we use the else if
statement. This works by cascading of several comparisons. As soon as one of the
conditions is true, the statement or block of statements following them is executed and
no further comparisons are performed. The syntax is as follows:

if (condition_1)
 {
 Statements_1_Block;
 }
 else if (condition_2)
 {
 Statements_2_Block;
 }

 else if (condition_n)
 {
 Statements_n_Block;
 }
else
 Statements_x;

Here, the conditions are evaluated in order from top to bottom. As soon as any
condition evaluates to true, then the statement associated with the given condition is
executed and control is transferred to Statements_x skipping the rest of the
conditions following it. But if all conditions evaluate false, then the statement
following final else is executed followed by the execution of Statements_x. This is
shown in the figure 5.4 given below:

Figure 5.4: Else if statement

12

Control Statements,
Arrays and
Functions

Let us consider a program to illustrate Else if statement,

Example 5.4

Write a program to award grades to students depending upon the criteria mentioned
below:
• Marks less than or equal to 50 are given “D” grade
• Marks above 50 but below 60 are given “C” grade
• Marks between 60 to 75 are given “B” grade
• Marks greater than 75 are given “A” grade.

/* Program to award grades */
#include <stdio.h>
main()
{
int result;
printf("Enter the total marks of a student:\n");
scanf("%d",&result);
if (result <= 50)
 printf("Grade D\n");
 else if (result <= 60)
 printf("Grade C\n");
 else if (result <= 75)
 printf("Grade B\n");
 else
 printf("Grade A\n");
}

OUTPUT
Enter the total marks of a student:
80
Grade A

Check Your Progress 1

1. Find the output for the following program:

#include <stdio.h>
main()
{

 int a=1, b=1;
 if(a==0)
 if(b==0)
 printf(“HI”);
 else
 printf(“Bye”);

}

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. Find the output for the following program:

#include <stdio.h>
main()
{

13

Decision and Loop
Control

Statements

 int a,b=0;
 if (a=b=1)
 printf(“hello”);
 else
 printf(“world”);

}
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

5.2.2 The Switch Statement

Its objective is to check several possible constant values for an expression, something
similar to what we had studied in the earlier sections, with the linking of several if and
else if statements. When the actions to be taken depending on the value of control
variable, are large in number, then the use of control structure Nested if…else makes
the program complex. There switch statement can be used. Its form is the following:

switch (expression){
case expression 1:
 block of instructions 1
 break;
case expression 2:
 block of instructions 2
 break;
.
.
default:
 default block of instructions
}

It works in the following way: switch evaluates expression and checks if it is
equivalent to expression1. If it is, it executes block of instructions 1 until it finds the
break keyword, moment at finds the control will go to the end of the switch. If
expression was not equal to expression 1 it will check whether expression is
equivalent to expression 2. If it is, it will execute block of instructions 2 until it finds
the break keyword.

Finally, if the value of expression has not matched any of the previously specified
constants (you may specify as many case statements as values you want to check), the
program will execute the instructions included in the default: section, if it exists, as it
is an optional statement.

Let us consider a program to illustrate Switch statement,

Example 5.5

Write a program that performs the following, depending upon the choice selected by
the user.
i). calculate the square of number if choice is 1

ii). calculate the cube of number if choice is 2 and 4
iii). calculate the cube of the given number if choice is 3
iv). otherwise print the number as it is

main()
{
int choice,n;

14

Control Statements,
Arrays and
Functions

printf(“\n Enter any number:\n “);
scanf(“%d”,&n);
printf(“Choice is as follows:\n\n”);
printf(“1. To find square of the number\n”);
printf(“2. To find square-root of the number\n”);
printf(“3. To find cube of a number\n”);
printf(“4. To find the square-root of the number\n\n”);
printf(“Enter your choice:\n”);
scanf(“%d”,&choice);
switch (choice)
{
 case 1 : printf(“The square of the number is %d\n”,n*n);
 break;
 case 2 :
 case 4 : printf(“The square-root of the given number is %f”,sqrt(n));
 break;
 case 3: printf(“ The cube of the given number is %d”,n*n*n);
 default : printf(“The number you had given is %d”,n);
 break;
}
}
OUTPUT

Enter any number:
 4

Choice is as follows:
1. To find square of the number
2. To find square-root of the number\n");
3. To find cube of a number
4. To find the square-root of the number

Enter your choice:
2
The square-root of the given number is 2

In this section we had discussed and understood various decision control statements.
Next section explains you the various loop control statements in C.

5.3 LOOP CONTROL STATEMENTS

Loop control statements are used when a section of code may either be executed a
fixed number of times, or while some condition is true. C gives you a choice of three
types of loop statements, while, do- while and for.

• The while loop keeps repeating an action until an associated condition returns

false. This is useful where the programmer does not know in advance how
many times the loop will be traversed.

• The do while loop is similar, but the condition is checked after the loop body is
executed. This ensures that the loop body is run at least once.

• The for loop is frequently used, usually where the loop will be traversed a fixed
number of times.

5.3.1 The While Loop

When in a program a single statement or a certain group of statements are to be
executed repeatedly depending upon certain test condition, then while statement is
used.

15

Decision and Loop
Control

Statements

The syntax is as follows:

while (test condition)
{
 body_of_the_loop;
}

Here, test condition is an expression that controls how long the loop keeps running.
Body of the loop is a statement or group of statements enclosed in braces and are
repeatedly executed till the value of test condition evaluates to true. As soon as the
condition evaluates to false, the control jumps to the first statement following the
while statement. If condition initially itself is false, the body of the loop will never be
executed. While loop is sometimes called as entry-control loop, as it controls the
execution of the body of the loop depending upon the value of the test condition. This
is shown in the figure 5.5 given below:

 Figure 5.5: The while loop statement

Let us consider a program to illustrate while loop,

Example 5.6

Write a program to calculate the factorial of a given input natural number.

/* Program to calculate factorial of given number */

#include <stdio.h>
#include <math.h>
#include <stdio.h>
main()
{
int x;
long int fact = 1;
printf(“Enter any number to find factorial:\n”); /*read the number*/
scanf(“%d”,&x);
while (x > 0)
 {
 fact = fact * x; /* factorial calculation*/
 x=x-1;
 }
printf(“Factorial is %ld”,fact);

16

Control Statements,
Arrays and
Functions

}

OUTPUT

Enter any number to find factorial:
4
Factorial is 24

Here, condition in while loop is evaluated and body of loop is repeated until condition
evaluates to false i.e., when x becomes zero. Then the control is jumped to first
statement following while loop and print the value of factorial.

5.3.2 The do...while Loop

There is another loop control structure which is very similar to the while statement –
called as the do.. while statement. The only difference is that the expression which
determines whether to carry on looping is evaluated at the end of each loop. The
syntax is as follows:

do
{
 statement(s);
} while(test condition);

In do-while loop, the body of loop is executed at least once before the condition is
evaluated. Then the loop repeats body as long as condition is true. However, in while
loop, the statement doesn’t execute the body of the loop even once, if condition is
false. That is why do-while loop is also called exit-control loop. This is shown in the
figure 5.6 given below.

 Figure 5.6: The do…while statement

Let us consider a program to illustrate do..while loop,

Example 5.7

Write a program to print first ten even natural numbers.

/* Program to print first ten even natural numbers */
#include <stdio.h>
main()
{

17

Decision and Loop
Control

Statements

int i=0;
int j=2;
do {
 printf(“%d”,j);
 j =j+2;
 i=i+1; } while (i<10); }

OUTPUT
2 4 6 8 10 12 14 16 18 20

5.3.3 The for Loop

for statement makes it more convenient to count iterations of a loop and works well
where the number of iterations of the loop is known before the loop is entered. The
syntax is as follows:

for (initialization; test condition; increment or decrement)
{
 Statement(s);
}

The main purpose is to repeat statement while condition remains true, like the while
loop. But in addition, for provides places to specify an initialization instruction and an
increment or decrement of the control variable instruction. So this loop is specially
designed to perform a repetitive action with a counter.

The for loop as shown in figure 5.7, works in the following manner:

1. initialization is executed. Generally it is an initial value setting for a counter
variable. This is executed only once.

2. condition is checked, if it is true the loop continues, otherwise the loop finishes and
statement is skipped.

3. Statement(s) is/are executed. As usual, it can be either a single instruction or a
block of instructions enclosed within curly brackets { }.

4. Finally, whatever is specified in the increment or decrement of the control variable
field is executed and the loop gets back to step 2.

 Figure 5.7: The for statement

18

Control Statements,
Arrays and
Functions

Let us consider a program to illustrate for loop,

Example 5.8

Write a program to print first n natural numbers.

/* Program to print first n natural numbers */

#include <stdio.h>
main()
{
int i,n;
printf(“Enter value of n \n”);
scanf(“%d”,&n);
printf(“\nThe first %d natural numbers are :\n”, n);
for (i=1;i<=n;++i)
 {
 printf(“%d”,i);
 }
}
OUTPUT

Enter value of n
6
The first 6 natural numbers are:
1 2 3 4 5 6

The three statements inside the braces of a for loop usually meant for one activity
each, however any of them can be left blank also. More than one control variables can
be initialized but should be separated by comma.

Various forms of loop statements can be:

(a) for(;condition;increment/decrement)
 body;
 A blank first statement will mean no initialization.

(b) for (initialization;condition;)
 body;
 A blank last statement will mean no running increment/decrement.

(c) for (initialization;;increment/decrement)
 body;

A blank second conditional statement means no test condition to control the exit
from the loop. So, in the absence of second statement, it is required to test the
condition inside the loop otherwise it results in an infinite loop where the control
never exits from the loop.

(d) for (;;increment/decrement)
 body;

Initialization is required to be done before the loop and test condition is checked
inside the loop.

(e) for (initialization;;)
 body;

19

Decision and Loop
Control

Statements

Test condition and control variable increment/decrement is to be done inside the
body of the loop.

(f) for (;condition;)
 body;

Initialization is required to be done before the loop and control variable
increment/decrement is to be done inside the body of the loop.

(g) for (;;;)
 body;

Initialization is required to be done before the loop, test condition and control
variable increment/decrement is to be done inside the body of the loop.

5.3.4 The Nested Loops

C allows loops to be nested, that is, one loop may be inside another. The program
given below illustrates the nesting of loops.

Let us consider a program to illustrate nested loops,

Example 5.9

Write a program to generate the following pattern given below:

 1
1 2
1 2 3
1 2 3 4

/* Program to print the pattern */

#include <stdio.h>
main()
{
int i,j;
for (i=1;i<=4;++i)
 {
 printf("%d\n",i);
 for(j=1;j<=i;++j)
 printf("%d\t",j);
 }
}
Here, an inner for loop is written inside the outer for loop. For every value of i, j
takes the value from 1 to i and then value of i is incremented and next iteration of
outer loop starts ranging j value from 1 to i.

Check Your Progress 2

1. Predict the output :

 #include <stdio.h>
 main()
 {

 int i;
 for (i=0;i<=10;i++,printf(“%d ”,i));

 }
…………………………………………………………………………………

…………………………………………………………………………………

20

Control Statements,
Arrays and
Functions

2. What is the output?

 #include <stdio.h>
 main()
 {
 int i;
 for(i=0;i<3;i++)
 printf("%d ",i);
 }
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. What is the output for the following program?

 #include <stdio.h>
 main()
 {
 int i=1;
 do
 {
 printf(“%d”,i);
 }while(i=i-1);
}

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

4. Give the output of the following:

#include <stdio.h>
main()
{
 int i=3;
 while(i)
 {
 int x=100;
 printf(“\n%d..%d”,i,x);
 x=x+1;
 i=i+1;
 }

 }
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

5.4 THE goto STATEMENT

The goto statement is used to alter the normal sequence of program instructions by
transferring the control to some other portion of the program. The syntax is as follows:

goto label;

21

Decision and Loop
Control

Statements

Here, label is an identifier that is used to label the statement to which control will be
transferred. The targeted statement must be preceded by the unique label followed by
colon.

label : statement;

Although goto statement is used to alter the normal sequence of program execution
but its usage in the program should be avoided. The most common applications are:

i). To branch around statements under certain conditions in place of use of if-
else statement,

ii). To jump to the end of the loop under certain conditions bypassing the rest of
statements inside the loop in place of continue statement,

iii). To jump out of the loop avoiding the use of break statement.

goto can never be used to jump into the loop from outside and it should be preferably
used for forward jump.

Situations may arise, however, in which the goto statement can be useful. To the
possible extent, the use of the goto statement should generally be avoided.

Let us consider a program to illustrate goto and label statements.

Example 5.10

Write a program to print first 10 even numbers

/* Program to print 10 even numbers */

#include <stdio.h>
main()
{
 int i=2;
 while(1)

 {
 printf(“%d ”,i);
 i=i+2;
 if (i>=20)
 goto outside;
 }

 outside : printf(“over”);
}

OUTPUT
 2 4 6 8 10 12 14 16 18 20 over

5.5 THE break STATEMENT

Sometimes, it is required to jump out of a loop irrespective of the conditional test
value. Break statement is used inside any loop to allow the control jump to the
immediate statement following the loop. The syntax is as follows:

break;

When nested loops are used, then break jumps the control from the loop where it has
been used. Break statement can be used inside any loop i.e., while, do-while, for and
also in switch statement.

Let us consider a program to illustrate break statement.

22

Control Statements,
Arrays and
Functions

Example 5.11

Write a program to calculate the first smallest divisor of a number.

/*Program to calculate smallest divisor of a number */

#include <stdio.h>
main()
{
int div,num,i;
printf(“Enter any number:\n”);
scanf(“%d”,&num);
for (i=2;i<=num;++i)
 {
 if ((num % i) == 0)
 {
 printf(“Smallest divisor for number %d is %d”,num,i);
 break;
 }
 }
}
OUTPUT
Enter any number:
9
Smallest divisor for number 9 is 3

In the above program, we divide the input number with the integer starting from 2
onwards, and print the smallest divisor as soon as remainder comes out to be zero.
Since we are only interested in first smallest divisor and not all divisors of a given
number, so jump out of the for loop using break statement without further going for
the next iteration of for loop.

Break is different from exit. Former jumps the control out of the loop while exit stops
the execution of the entire program.

5.6 THE continue STATEMENT

Unlike break statement, which is used to jump the control out of the loop, it is
sometimes required to skip some part of the loop and to continue the execution with
next loop iteration. Continue statement used inside the loop helps to bypass the
section of a loop and passes the control to the beginning of the loop to continue the
execution with the next loop iteration. The syntax is as follows:

continue;

Let us see the program given below to know the working of the continue statement.

Example 5.12

Write a program to print first 20 natural numbers skipping the numbers divisible by 5.

/* Program to print first 20 natural numbers skipping the numbers divisible by 5 */

#include <stdio.h>
main()
{
 int i;
 for (i=1;i<=20;++i)
 {

23

Decision and Loop
Control

Statements

 if ((i % 5) == 0)
 continue;
 printf(“%d ”,i);
 }
}

OUTPUT

1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19

Here, the printf statement is bypassed each time when value stored in i is divisible by
5.

Check Your Progress 3

1. How many times will hello be printed by the following program?
 #include <stdio.h>
 main()
 {
 int i = 5;
 while(i)
 {
 i=i-1;
 if (i==3)
 continue;
 printf(“\nhello”);
 }
 }
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. Give the output of the following program segment:
#include <stdio.h>
main()
{
int num,sum;
for (num=2,sum=0;;)
 {
 sum = sum + num;
 if (num > 10)
 break;
 num=num+1;
 }
 printf("%d",sum);

 }
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. What is the output for the following program?

#include <stdio.h>
main()
{
 int i, n = 3;

24

Control Statements,
Arrays and
Functions

 for (i=3;n<=20;++n)
 {
 if (n%i == 0)
 break;
 if (i == n)
 printf(“%d\n”,i);
 }
}

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

5.7 SUMMARY

A program is usually not limited to a linear sequence of instructions. During its
process it may require to repeat execution of a part of code more than once depending
upon the requirements or take decisions. For that purpose, C provides control and
looping statements. In this unit, we had seen the different looping statements provided
by C language namely while, do…while and for.

Using break statement, we can leave a loop even if the condition for its end is not
fulfilled. It can be used to end an infinite loop, or to force it to end before its natural
end. The continue statement causes the program to skip the rest of the loop in the
present iteration as if the end of the statement block would have reached, causing it to
jump to the following iteration.

Using the goto statement, we can make an absolute jump to another point in the
program. You should use this feature carefully since its execution ignores any type of
nesting limitation. The destination point is identified by a label, which is then used as
argument for the goto instruction. A label is made of a valid identifier followed by a
colon (:).

5.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1 Nothing

2 hello

Check Your Progress 2

1 1 2 3 4 5 6 7 8 9 10 11

2 0 1 2

3 1 0 2

4 3..100
 2..100
 1..100

…..
…..
…...
till infinity

25

Decision and Loop
Control

Statements

Check Your Progress 3

1 4 times

2 65

 3 3

5.9 FURTHER READINGS

1. The C programming language, Brain W. Kernighan, Dennis M. Ritchie, PHI.
2. Programming with C, Second Edition, Byron Gottfried, Tata McGraw Hill,

2003.
3. C,The Complete Reference, Fourth Edition, Herbert Schildt, Tata McGraw Hill,
4. 2002.
5. Computer Science: A Structured Programming Approach Using C, Second

Edition, Behrouz A. Forouzan, Richard F. Gilberg, Brooks/Cole Thomas
Learning, 2001.

6. The C Primer, Leslie Hancock, Morris Krieger, Mc Graw Hill, 1983.

Control Statements,
Arrays and
Functions

UNIT 6 ARRAYS

Structure

6.0 Introduction
6.1 Objectives
6.2 Array Declaration
 6.2.1 Syntax of Array Declaration
 6.2.2 Size Specification
6.3 Array Initialization
 6.3.1 Initialization of Array Elements in the Declaration
 6.3.2 Character Array Initialization
6.4 Subscript
6.5 Processing the Arrays
6.6 Multi-Dimensional Arrays
 6.6.1 Multi-Dimensional Array Declaration
 6.6.2 Initialization of Two-Dimensional Arrays
6.7 Summary
6.8 Solutions / Answers
6.9 Further Readings

6.0 INTRODUCTION

C language provides four basic data types - int, char, float and double. We have learnt
about them in Unit 3. These basic data types are very useful; but they can handle only
a limited amount of data. As programs become larger and more complicated, it
becomes increasingly difficult to manage the data. Variable names typically become
longer to ensure their uniqueness. And, the number of variable names makes it
difficult for the programmer to concentrate on the more important task of correct
coding. Arrays provide a mechanism for declaring and accessing several data items
with only one identifier, thereby simplifying the task of data management.

Many programs require the processing of multiple, related data items that have
common characteristics like list of numbers, marks in a course, or enrolment numbers.
This could be done by creating several individual variables. But this is a hard and
tedious process. For example, suppose you want to read in five numbers and print
them out in reverse order. You could do it the hard way as:

main()
{
 int al,a2,a3,a4,a5;
 scanf(“%d %d %d %d %d”,&a1,&a2,&a3,&a4,&a5);
 printf(“%d %d %d %d %d”',a5,a4,a3,a2,a1);
}

Does it look good if the problem is to read in 100 or more related data items and print
them in reverse order? Of course, the solution is the use of the regular variable names
a1, a2 and so on. But to remember each and every variable and perform the operations
on the variables is not only tedious a job and disadvantageous too. One common
organizing technique is to use arrays in such situations. An array is a collection of
similar kind of data elements stored in adjacent memory locations and are referred to
by a single array-name. In the case of C, you have to declare and define array before
it can be used. Declaration and definition tell the compiler the name of the array, the
type of each element, and the size or number of elements.To explain it, let us consider
to store marks of five students. They can be stored using five variables as follows:

int ar1, ar2, ar3, ar4, ar5;

 26

Arrays Now, if we want to do the same thing for 100 students in a class then one will find it

difficult to handle 100 variables. This can be obtained by using an array. An array
declaration uses its size in [] brackets. For above example, we can define an array as:

int ar [100];

where ar is defined as an array of size 100 to store marks of integer data-type. Each
element of this collection is called an array-element and an integer value called the
subscript is used to denote individual elements of the array. An ar array is the
collection of 200 consecutive memory locations referred as below:

 2001 2003 2200

 Figure 6.1: Representation of an array

In the above figure, as each integer value occupies 2 bytes, 200 bytes were allocated
in the memory.

This unit explains the use of arrays, types of arrays, declaration and initialization with
the help of examples.

6.1 OBJECTIVES

After going through this unit you will be able to:

• declare and use arrays of one dimension;
• initialize arrays;
• use subscripts to access individual array elements;
• write programs involving arrays;
• do searching and sorting; and
• handle multi-dimensional arrays.

6.2 ARRAY DECLARATION

Before discussing how to declare an array, first of all let us look at the characteristic
features of an array.

• Array is a data structure storing a group of elements, all of which are of the same

data type.
• All the elements of an array share the same name, and they are distinguished

from one another with the help of an index.
• Random access to every element using a numeric index (subscript).
• A simple data structure, used for decades, which is extremely useful.
• Abstract Data type (ADT) list is frequently associated with the array data

structure.

The declaration of an array is just like any variable declaration with additional size
part, indicating the number of elements of the array. Like other variables, arrays must
be declared at the beginning of a function.

The declaration specifies the base type of the array, its name, and its size or
dimension. In the following section we will see how an array is declared:

27

Control Statements,
Arrays and
Functions

6.2.1 Syntax of Array Declaration

Syntax of array declaration is as follows:

data-type array_name [constant-size];

 Data-type refers to the type of elements you want to store
Constant-size is the number of elements

The following are some of declarations for arrays:

int char [80];
float farr [500];
static int iarr [80];
char charray [40];

There are two restrictions for using arrays in C:

• The amount of storage for a declared array has to be specified at compile time
before execution. This means that an array has a fixed size.

• The data type of an array applies uniformly to all the elements; for this reason, an
array is called a homogeneous data structure.

6.2.2 Size Specification

The size of an array should be declared using symbolic constant rather a fixed integer
quantity (The subscript used for the individual element is of are integer quantity). The
use of a symbolic constant makes it easier to modify a program that uses an array. All
reference to maximize the array size can be altered simply by changing the value of
the symbolic constant. (Please refer to Unit – 3 for details regarding symbolic
constants).

To declare size as 50 use the following symbolic constant, SIZE, defined:

#define SIZE 50

The following example shows how to declare and read values in an array to store
marks of the students of a class.

Example 6.1

Write a program to declare and read values in an array and display them.

/* Program to read values in an array*/

include < stdio.h >
define SIZE 5 /* SIZE is a symbolic constant */

main ()
{
int i = 0; /* Loop variable */
int stud_marks[SIZE]; /* array declaration */

/* enter the values of the elements */
for(i = 0;i<SIZE;i++)
 {
 printf (“Element no. =%d”,i+1);

 28 printf(“ Enter the value of the element:”);

Arrays scanf(“%d”,&stud_marks[i]);

 }
printf(“\nFollowing are the values stored in the corresponding array elements: \n\n”);
for(i = 0; i<SIZE;i++)
 {
 printf(“Value stored in a[%d] is %d\n”i, stud_marks[i]);
 }
}

OUTPUT:

Element no. = 1 Enter the value of the element = 11
Element no. = 2 Enter the value of the element = 12
Element no. = 3 Enter the value of the element = 13
Element no. = 4 Enter the value of the element = 14
Element no. = 5 Enter the value of the element = 15

Following are the values stored in the corresponding array elements:

Value stored in a[0] is 11
Value stored in a[1] is 12
Value stored in a[2] is 13
Value stored in a[3] is 14
Value stored in a[4] is 15

6.3 ARRAY INITIALIZATION

Arrays can be initialized at the time of declaration. The initial values must appear in
the order in which they will be assigned to the individual array elements, enclosed
within the braces and separated by commas. In the following section, we see how this
can be done.

6.3.1 Initialization of Array Elements in the Declaration

The values are assigned to individual array elements enclosed within the braces and
separated by comma. Syntax of array initialization is as follows:

data type array-name [size] = {val 1, val 2,val n};

val 1 is the value for the first array element, val 2 is the value for the second element,
and val n is the value for the n array element. Note that when you are initializing the
values at the time of declaration, then there is no need to specify the size. Let us see
some of the examples given below:

int digits [10] = {1,2,3,4,5,6,7,8,9,10};

int digits[] = {1,2,3,4,5,6,7,8,9,10};

int vector[5] = {12,-2,33,21,13};

float temperature[10] ={ 31.2, 22.3, 41.4, 33.2, 23.3, 32.3, 41.1, 10.8, 11.3, 42.3};

double width[] = { 17.33333456, -1.212121213, 222.191345 };

int height[10] = { 60, 70, 68, 72, 68 };

29

Control Statements,
Arrays and
Functions

6.3.2 Character Array Initialisation

The array of characters is implemented as strings in C. Strings are handled differently
as far as initialization is concerned. A special character called null character ‘ \0 ’,
implicitly suffixes every string. When the external or static string character array is
assigned a string constant, the size specification is usually omitted and is
automatically assigned; it will include the ‘\0’character, added at end. For example,
consider the following two assignment statements:

char thing [3] = “TIN”;
char thing [] = “TIN”;

In the above two statements the assignments are done differently. The first statement
is not a string but simply an array storing three characters ‘T’, ‘I’ and ‘N’ and is same
as writing:

char thing [3] = {‘T’, ‘I’, ‘N’};

whereas, the second one is a four character string TIN\0. The change in the first
assignment, as given below, can make it a string.

char thing [4] = “TIN”;

Check Your Progress 1

1. What happens if I use a subscript on an array that is larger than the number of
elements in the array?
……………………………………………………………………………………

……………………………………………………………………………………

2. Give sizes of following arrays.

a. char carray []= “HELLO”;
b. char carray [5]= “HELLO”;
c. char carray []={ ‘H’, ‘E’, ‘L’, ‘L’, ‘O’ };

 ……………………………………………………………………………………

……………………………………………………………………………………

3. What happens if an array is used without initializing it?
……………………………………………………………………………………

……………………………………………………………………………………

4. Is there an easy way to initialize an entire array at once?
……………………………………………………………………………………

……………………………………………………………………………………

5. Use a for loop to total the contents of an integer array called numbers with five
elements. Store the result in an integer called TOTAL.
……………………………………………………………………………………

……………………………………………………………………………………

6.4 SUBSCRIPT

To refer to the individual element in an array, a subscript is used. Refer to the
statement we used in the Example 6.1,

scanf (“ % d”, &stud_marks[i]);

 30

Arrays Subscript is an integer type constant or variable name whose value ranges from 0 to

SIZE - 1 where SIZE is the total number of elements in the array. Let us now see how
we can refer to individual elements of an array of size 5:

Consider the following declarations:

char country[] = “India”;
int stud[] = {1, 2, 3, 4, 5};

Here both arrays are of size 5. This is because the country is a char array and
initialized by a string constant “India” and every string constant is terminated by a
null character ‘\0’. And stud is an integer array. country array occupies 5 bytes of
memory space whereas stud occupies size of 10 bytes of memory space. The
following table: 6.1 shows how individual array elements of country and stud arrays
can be referred:

 Table 6.1: Reference of individual elements

Element
no.

Subscript country array

Reference Value

 stud array

Reference Value

1 0 country [0] ‘I’ stud [0] 1
2 1 country [1] ‘n’ stud [1] 2
3 2 country [2] ‘d’ stud [2] 3
4 3 country [3] ‘i’ stud [3] 4
5 4 country [4] ‘a’ stud [4] 5

Example 6.2

Write a program to illustrate how the marks of 10 students are read in an array and
then used to find the maximum marks obtained by a student in the class.

/* Program to find the maximum marks among the marks of 10 students*/

include < stdio.h >
define SIZE 10 /* SIZE is a symbolic constant */

main ()
{

int i = 0;
int max = 0;
int stud_marks[SIZE]; /* array declaration */

/* enter the values of the elements */
for(i = 0;i<SIZE;i++)
 {
 printf (“Student no. =%d”,i+1);
 printf(“ Enter the marks out of 50:”);
 scanf(“%d”,&stud_marks[i]);
 }

/* find maximum */
for (i=0;i<SIZE;i ++)
 {
 if (stud_marks[i]>max)
 max = stud_marks[i];

31

 }

Control Statements,
Arrays and
Functions

printf(“\n\nThe maximum of the marks obtained among all the 10 students is: %d
 ”,max);
}

OUTPUT

Student no. = 1 Enter the marks out of 50: 10
Student no. = 2 Enter the marks out of 50: 17
Student no. = 3 Enter the marks out of 50: 23
Student no. = 4 Enter the marks out of 50: 40
Student no. = 5 Enter the marks out of 50: 49
Student no. = 6 Enter the marks out of 50: 34
Student no. = 7 Enter the marks out of 50: 37
Student no. = 8 Enter the marks out of 50: 16
Student no. = 9 Enter the marks out of 50: 08
Student no. = 10 Enter the marks out of 50: 37

The maximum of the marks obtained among all the 10 students is: 49

6.5 PROCESSING THE ARRAYS

For certain applications the assignment of initial values to elements of an array is
required. This means that the array be defined globally (extern) or locally as a static
array.

Let us now see in the following example how the marks in two subjects, stored in two
different arrays, can be added to give another array and display the average marks in
the below example.

Example 6.3:

Write a program to display the average marks of each student, given the marks in 2
subjects for 3 students.

/* Program to display the average marks of 3 students */

include < stdio.h >
define SIZE 3
main()
{
int i = 0;
float stud_marks1[SIZE]; /* subject 1array declaration */
float stud_marks2[SIZE]; /*subject 2 array declaration */
float total_marks[SIZE];
float avg[SIZE];

printf(“\n Enter the marks in subject-1 out of 50 marks: \n”);
for(i = 0;i<SIZE;i++)
 {
 printf(“Student no. =%d”,i+1);
 printf(“ Enter the marks= “);
 scanf(“%f”,&stud_marks1[i]);
 }
printf(“\n Enter the marks in subject-2 out of 50 marks \n”);
 for(i=0;i<SIZE;i++)

 32

 {

Arrays printf(“Student no. =%d”,i+1);

 printf(“ Please enter the marks= “);
 scanf(“%f”,&stud_marks2[i]);
 }

 for(i=0;i<SIZE;i++)
 {
 total_marks[i]=stud_marks1[i]+ stud_marks2[i];
 avg[i]=total_marks[i]/2;
 printf(“Student no.=%d, Average= %f\n”,i+1, avg[i]);
 }
 }

OUTPUT

Enter the marks in subject-1out of 50 marks:
Student no. = 1 Enter the marks= 23
Student no. = 2 Enter the marks= 35
Student no. = 3 Enter the marks= 42

Enter the marks in subject-2 out of 50 marks:
Student no. = 1 Enter the marks= 31
Student no. = 2 Enter the marks= 35
Student no. = 3 Enter the marks= 40

Student no. = 1 Average= 27.000000
Student no. = 2 Average= 35.000000
Student no. = 3 Average= 41.000000

Let us now write another program to search an element using the linear search.

Example 6.4

Write a program to search an element in a given list of elements using Linear Search.

/* Linear Search.*/

include<stdio.h>
define SIZE 05
main()
{
int i = 0;
int j;
int num_list[SIZE]; /* array declaration */

/* enter elements in the following loop */

printf(“Enter any 5 numbers: \n”);
for(i = 0;i<SIZE;i ++)
 {
 printf(“Element no.=%d Value of the element=”,i+1);
 scanf(“%d”,&num_list[i]);
 }
printf (“Enter the element to be searched:”);
scanf (“%d”,&j);

/* search using linear search */

33

for(i=0;i<SIZE;i++)

Control Statements,
Arrays and
Functions

 {
 if(j == num_list[i])
 {
 printf(“The number exists in the list at position: %d\n”,i+1);
 break;
 }
 }
}

OUTPUT

Enter any 5 numbers:
Element no.=1 Value of the element=23
Element no.=2 Value of the element=43
Element no.=3 Value of the element=12
Element no.=4 Value of the element=8
Element no.=5 Value of the element=5
Enter the element to be searched: 8
The number exists in the list at position: 4

Example 6.5

Write a program to sort a list of elements using the selection sort method

/* Sorting list of numbers using selection sort method*/

#include <stdio.h>
#define SIZE 5

main()
{

int j,min_pos,tmp;
int i; /* Loop variable */
int a[SIZE]; /* array declaration */

/* enter the elements */

for(i=0;i<SIZE;i++)
 {
 printf(“Element no.=%d”,i+1);
 printf(“Value of the element: “);
 scanf(“%d”,&a[i]);
 }

/* Sorting by descending order*/

for (i=0;i<SIZE;i++)
 {
 min_pos = i;
 for (j=i+1;j<SIZE;j++)
 if (a[j] < a[min_pos])
 min_pos = j;
 tmp = a[i];
 a[i] = a[min_pos];
 a[min_pos] = tmp;
 }

 34

Arrays /* print the result */

printf(“The array after sorting:\n”);
 for(i=0;i<SIZE;i++)
 printf("% d\n",a[i]);
}

OUTPUT

Element no. = 1 Value of the element: 23
Element no. =2 Value of the element: 11
Element no. = 3 Value of the element: 100
Element no. = 4 Value of the element: 42
Element no. = 5 Value of the element: 50

The array after sorting:
11
23
42
50
100

Check Your Progress 2

1. Name the technique used to pass an array to a function.
……………………………………………………………………………………

……………………………………………………………………………………

2. Is it possible to pass the whole array to a function?
……………………………………………………………………………………

……………………………………………………………………………………

3. List any two applications of arrays.
……………………………………………………………………………………

……………………………………………………………………………………

6.6 MULTI-DIMENSIONAL ARRAYS

Suppose that you are writing a chess-playing program. A chessboard is an 8-by-8
grid. What data structure would you use to represent it? You could use an array that
has a chessboard-like structure, i.e. a two-dimensional array, to store the positions of
the chess pieces. Two-dimensional arrays use two indices to pinpoint an individual
element of the array. This is very similar to what is called "algebraic notation",
commonly used in chess circles to record games and chess problems.

In principle, there is no limit to the number of subscripts (or dimensions) an array can
have. Arrays with more than one dimension are called multi- dimensional arrays.
While humans cannot easily visualize objects with more than three dimensions,
representing multi-dimensional arrays presents no problem to computers. In practice,
however, the amount of memory in a computer tends to place limits on the size of an
array . A simple four-dimensional array of double-precision numbers, merely twenty
elements wide in each dimension, takes up 20^4 * 8, or 1,280,000 bytes of memory -
about a megabyte.

35

For exmaple, you have ten rows and ten columns, for a total of 100 elements. It’s
really no big deal. The first number in brackets is the number of rows, the second
number in brackets is the number of columns. So, the upper left corner of any grid

Control Statements,
Arrays and
Functions

would be element [0][0]. The element to its right would be [0][1], and so on. Here is a
little illustration to help.

Three-dimensional arrays (and higher) are stored in the same way as the two-
dimensional ones. They are kept in computer memory as a linear sequence of
variables, and the last index is always the one that varies fastest (then the next-to-last,
and so on).

6.6.1 Multi - Dimensional Array Declaration

You can declare an array of two dimensions as follows:

 datatype array_name[size1][size2];

In the above example, variable_type is the name of some type of variable, such as int.
Also, size1 and size2 are the sizes of the array’s first and second dimensions,
respectively. Here is an example of defining an 8-by-8 array of integers, similar to a
chessboard. Remember, because C arrays are zero-based, the indices on each side of
the chessboard array run 0 through 7, rather than 1 through 8. The effect is the same: a
two-dimensional array of 64 elements.

int chessboard [8][8];

To pinpoint an element in this grid, simply supply the indices in both dimensions.

6.6.2 Initialisation of Two - Dimensional Arrays

If you have an m x n array, it will have m * n elements and will require m*n*element-
size bytes of storage. To allocate storage for an array you must reserve this amount of
memory. The elements of a two-dimensional array are stored row wise. If table is
declared as:

int table [2] [3] = { 1,2,3,4,5,6 };

It means that element
table [0][0] = 1;
table [0][1] = 2;
table [0][2] = 3;
table [1][0] = 4;
table [1][1] = 5;
table [1][2] = 6;

The neutral order in which the initial values are assigned can be altered by including
the groups in { } inside main enclosing brackets, like the following initialization as
above:

int table [2] [3] = { {1,2,3},

 36

 {4,5,6} };

Arrays The value within innermost braces will be assigned to those array elements whose last

subscript changes most rapidly. If there are few remaining values in the row, they will
be assigned zeros. The number of values cannot exceed the defined row size.

 int table [2] [3] = { { 1, 2, 3},{ 4}};

It assigns values as
table [0][0] = 1;
table [0][1] = 2;
table [0][2] = 3;
table [1][0] = 4;
table [1][1] = 0;
table [1][2] = 0

Remember that, C language performs no error checking on array bounds. If you define
an array with 50 elements and you attempt to access element 50 (the 51st element), or
any out of bounds index, the compiler issues no warnings. It is the programmer’s task
to check that all attempts to access or write to arrays are done only at valid array
indexes. Writing or reading past the end of arrays is a common programming bug and
is hard to isolate.

Check Your Progress 3

1. Declare a multi-dimensioned array of floats called balances having three rows
and five columns.
……………………………………………………………………………………

……………………………………………………………………………………

2. Write a for loop to total the contents of the multi-dimensioned float array
balances.
……………………………………………………………………………………

……………………………………………………………………………………

3. Write a for loop which will read five characters (use scanf) and deposit them
into the character based array words, beginning at element 0.
……………………………………………………………………………………

……………………………………………………………………………………

6.7 SUMMARY

Like other languages, C uses arrays as a way of describing a collection of variables
with identical properties. The group has a single name for all its members, with the
individual member being selected by an index. We have learnt in this unit, the basic
purpose of using an array in the program, declaration of array and assigning values to
the arrays. All elements of the arrays are stored in the consecutive memory locations.
Without exception, all arrays in C are indexed from 0 up to one less than the bound
given in the declaration. This is very puzzling for a beginner. Watch out for it in the
examples provided in this unit. One important point about array declarations is that
they don't permit the use of varying subscripts. The numbers given must be constant
expressions which can be evaluated at compile time, not run time. As with other
variables, global and static array elements are initialized to 0 by default, and automatic
array elements are filled with garbage values. In C, an array of type char is used to
represent a character string, the end of which is marked by a byte set to 0 (also known
as a NULL character).

37

Whenever the arrays are passed to function their starting address is used to access rest
of the elements. This is called – Call by reference. Whatever changes are made to the

Control Statements,
Arrays and
Functions

elements of an array in the function, they are also made available in the calling part.
The formal argument contains no size specification except for the rightmost
dimension. Arrays and pointers are closely linked in C. Multi-dimensional arrays are
simply arrays of arrays. To use arrays effectively it is a good idea to know how to use
pointers with them. More about the pointers can be learnt from Unit -10 (Block -3).

6.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1. If you use a subscript that is out of bounds of the array declaration, the program
will probably compile and even run. However, the results of such a mistake can
be unpredictable. This can be a difficult error to find once it starts causing
problems. So, make sure you’re careful when initializing and accessing the
array elements.

2.

a) 6
b) 5
c) 5

3. This mistake doesn’t produce a compiler error. If you don’t initialize an array,

there can be any value in the array elements. You might get unpredictable
results. You should always initialize the variables and the arrays so that you
know their content.

4. Each element of an array must be initialized. The safest way for a beginner is to

initialize an array, either with a declaration, as shown in this chapter, or with a
for statement. There are other ways to initialize an array, but they are beyond
the scope of this Unit.

5. Use a for loop to total the contents of an integer array which has five elements.

Store the result in an integer called total.

for (loop = 0, total = 0; loop < 5; loop++)
total = total + numbers[loop];

Check Your Progress 2

1. Call by reference.

2. It is possible to pass the whole array to a function. In this case, only the address
of the array will be passed. When this happens, the function can change the
value of the elements in the array.

3. Two common statistical applications that use arrays are:

• Frequency distributions: A frequency array show the number of elements
with an identical value found in a series of numbers. For example, suppose
we have taken a sample of 50 values ranging from 0 to 10. We want to
know how many of the values are 0, how many are 1, how many are 2 and
so forth up to 10. Using the arrays we can solve the problem easily .
Histogram is a pictorial representation of the frequency array. Instead of
printing the values of the elements to show the frequency of each number,
we print a histogram in the form of a bar chart.

• Random Number Permutations: It is a set of random numbers in which
no numbers are repeated. For example, given a random number permutation
of 5 numbers, the values of 0 to 5 would all be included with no duplicates.

 38

39

Arrays Check Your Progress 3

1. float balances[3][5];

2. for(row = 0, total = 0; row < 3; row++)
 for(column = 0; column < 5; column++)

total = total + balances[row][column];

3. for(loop = 0; loop < 5; loop++)
scanf ("%c", &words[loop]);

6.9 FURTHER READINGS

1. The C Programming Language, Brain W. Kernighan, Dennis M. Ritchie, PHI.
2. C, The Complete Reference, Fourth Edition, Herbert Schildt, TMGH, 2002.

3. Computer Science – A Structured Programming Approach Using C, Behrouz A.
Forouzan, Richard F. Gilberg, Thomas Learning, Second edition, 2001.

4. Programming with ANSI and TURBO C, Ashok N. Kamthane, Pearson
Education, 2002.

Control Statements,
Arrays and
Functions

UNIT 7 STRINGS

Structure

7.0 Introduction
7.1 Objectives
7.2 Declaration and Initialization of Strings
7.3 Display of Strings Using Different Formatting Techniques
7.4 Array of Strings
7.5 Built-in String Functions and Applications

7.5.1 Strlen Function
7.5.2 Strcpy Function
7.5.3 Strcmp Function
7.5.4 Strcat Function
7.5.5 Strlwr Function
7.5.6 Strrev Function
7.5.7 Strspn Function

7.6 Other String Functions
7.7 Summary
7.8 Solutions / Answers
7.9 Further Readings

7.0 INTRODUCTION

In the previous unit, we have discussed numeric arrays, a powerful data storage
method that lets you group a number of same-type data items under the same group
name. Individual items, or elements, in an array are identified using a subscript after
the array name. Computer programming tasks that involve repetitive data processing
lend themselves to array storage. Like non-array variables, arrays must be declared
before they can be used. Optionally, array elements can be initialized when the array
is declared. In the earlier unit, we had just known the concept of character arrays
which are also called strings.

String can be represented as a single-dimensional character type array. C language
does not provide the intrinsic string types. Some problems require that the characters
within a string be processed individually. However, there are many problems which
require that strings be processed as complete entities. Such problems can be
manipulated considerably through the use of special string oriented library functions.
Most of the C compilers include string library functions that allow string comparison,
string copy, concatenation of strings etc. The string functions operate on null-
terminated arrays of characters and require the header <string.h>.The use of the some
of the string library functions are given as examples in this unit.

7.1 OBJECTIVES

After going through this unit, you will be able to:

• define, declare and initialize a string;
• discuss various formatting techniques to display the strings; and
• discuss various built-in string functions and their use in manipulation of strings.

7.2 DECLARATION AND INITIALIZATION OF STRINGS

40

Strings in C are group of characters, digits, and symbols enclosed in quotation marks
or simply we can say the string is declared as a “character array”. The end of the
string is marked with a special character, the ‘\0’ (Null character), which has the
decimal value 0. There is a difference between a character stored in memory and a

Strings single character string stored in a memory. The character requires only one byte

whereas the single character string requires two bytes (one byte for the character and
other byte for the delimiter).

Declaration of strings

A string in C is simply a sequence of characters. To declare a string, specify the data
type as char and place the number of characters in the array in square brackets after
the string name. The syntax is shown as below:

char string-name[size];

For example,

char name[20];
char address[25];
char city[15];

Initialization of strings

The string can be initialized as follows:

char name[8] = {‘P’, ‘R’, ‘O’, ‘G’, ‘R’, ‘A’, ‘M’, ‘\0’};

Each character of string occupies 1 byte of memory (on 16 bit computing). The size of
character is machine dependent, and varies from 16 bit computers to 64 bit computers.
The characters of strings are stored in the contiguous (adjacent) memory locations.

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte
P R O G R A M \0
1001 1002 1003 1004 1005 1006 1007 1008

The C compiler inserts the NULL (\0) character automatically at the end of the string.
So initialization of the NULL character is not essential.

You can set the initial value of a character array when you declare it by specifying a
string literal. If the array is too small for the literal, the literal will be truncated. If the
literal (including its null terminator) is smaller than the array, then the final characters
in the array will be undefined. If you don’t specify the size of the array, but do specify
a literal, then C will set the array to the size of the literal, including the null
terminator.

char str[4] = {‘u’, ‘n’, ‘i’, ‘x’};
char str[5] = {‘u’, ‘n’, ‘i’, ‘x’, ‘\0’};
char str[3];
char str[] = “UNIX”;
char str[4] = “unix”;
char str[9] = “unix”;

All of the above declarations are legal. But which ones don’t work? The first one is a
valid declaration, but will cause major problems because it is not null-terminated. The
second example shows a correct null-terminated string. The special escape character
\0 denotes string termination. The fifth example suffers the size problem, the character
array ‘str’ is of size 4 bytes, but it requires an additional space to store ‘\0’. The
fourth example however does not. This is because the compiler will determine the
length of the string and automatically initialize the last character to a null-terminator.
The strings not terminated by a ‘\0’ are merely a collection of characters and are
called as character arrays.

 41

Control Statements,
Arrays and
Functions

String Constants

String constants have double quote marks around them, and can be assigned to char
pointers. Alternatively, you can assign a string constant to a char array - either with no
size specified, or you can specify a size, but don’t forget to leave a space for the null
character! Suppose you create the following two code fragments and run them:

/* Fragment 1 */
{
 char *s;
 s=hello”;
 printf(“%s\n”,s);
}

/* Fragment 2 */

{
 char s[100];
 strcpy(s, “ hello”);
 printf(“%s\n”,s);
}

These two fragments produce the same output, but their internal behaviour is quite
different. In fragment 2, you cannot say s = "hello";. To understand the differences,
you have to understand how the string constant table works in C. When your program
is compiled, the compiler forms the object code file, which contains your machine
code and a table of all the string constants declared in the program. In fragment 1, the
statement s = "hello"; causes s to point to the address of the string hello in the string
constant table. Since this string is in the string constant table, and therefore technically
a part of the executable code, you cannot modify it. You can only point to it and use it
in a read-only manner. In fragment 2, the string hello also exists in the constant table,
so you can copy it into the array of characters named s. Since s is not an address, the
statement s="hello"; will not work in fragment 2. It will not even compile.

Example 7.1

Write a program to read a name from the keyboard and display message Hello onto
the monitor

Program 7.1

/*Program that reads the name and display the hello along with your name*/
#include <stdio.h>
main()
{
char name[10];
printf(“\nEnter Your Name : “);
scanf(“%s”, name);
printf(“Hello %s\n”, name);
}

OUTPUT

Enter Your Name : Alex
Hello Alex

42

In the above example declaration char name [10] allocates 10 bytes of memory space
(on 16 bit computing) to array name []. We are passing the base address to scanf
function and scanf() function fills the characters typed at the keyboard into array until
enter is pressed. The scanf() places ‘\0’ into array at the end of the input. The printf()

Strings function prints the characters from the array on to monitor, leaving the end of the

string ‘\0’. The %s used in the scanf() and printf() functions is a format specification
for strings.

7.3 DISPLAY OF STRINGS USING DIFFERENT
 FORMATTING TECHNIQUES

The printf function with %s format is used to display the strings on the screen. For
example, the below statement displays entire string:

printf(“%s”, name);

We can also specify the accuracy with which character array (string) is displayed. For
example, if you want to display first 5 characters from a field width of 15 characters,
you have to write as:

printf(“%15.5s”, name);

If you include minus sign in the format (e.g. % –10.5s), the string will be printed left
justified.

printf(“% -10.5s”, name);

Example 7.2

Write a program to display the string “UNIX” in the following format.

U
UN
UNI
UNIX
UNIX
UNI
UN
U

/* Program to display the string in the above shown format*/

include <stdio.h>
main()
{
int x, y;
static char string[] = “UNIX”;
printf(“\n”);
for(x=0; x<4; x++)
{
 y = x + 1;
 /* reserves 4 character of space on to the monitor and minus sign is for left
justified*/
 printf(“%-4.*s \n”, y, string);

 /* and for every loop the * is replaced by value of y */
/* y value starts with 1 and for every time it is incremented by 1 until it reaches to 4*/
}

for(x=3; x>=0; x- -)
 {
 y = x + 1;

 43 printf(“%-4.*s \n”, y, string);

Control Statements,
Arrays and
Functions

/* y value starts with 4 and for every time it is decrements by 1 until it reaches to 1*/
 }
}

OUTPUT

U
UN
UNI
UNIX
UNIX
UNI
UN
U

7.4 ARRAY OF STRINGS

Array of strings are multiple strings, stored in the form of table. Declaring array of
strings is same as strings, except it will have additional dimension to store the number
of strings. Syntax is as follows:
char array-name[size][size];
For example,

char names[5][10];

where names is the name of the character array and the constant in first square
brackets will gives number of string we are going to store, and the value in second
square bracket will gives the maximum length of the string.

Example 7.3

char names [3][10] = {“martin”, “phil”, “collins”};

It can be represented by a two-dimensional array of size[3][10] as shown below:

0 1 2 3 4 5 6 7 8 9
m a r t i n \0
p h i l \0
c o l l i n s \0

Example 7.4

Write a program to initializes 3 names in an array of strings and display them on to
monitor

/* Program that initializes 3 names in an array of strings and display them on to
monitor.*/

#include <stdio.h>
main()
{
 int n;
 char names[3][10] = {“Alex”, “Phillip”, “Collins” };
 for(n=0; n<3; n++)

44
printf(“%s \n”,names[n]); }

Strings

OUTPUT

Alex
Phillip
Collins

Check Your Progress 1

1. Which of the following is a static string?

A. Static String;
B. “Static String”;
C. ‘Static String’;
D. char string[100];

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. Which character ends all strings?

A. ‘.’
B. ‘ ‘
C. ‘0’
D. ‘n’

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. What is the Output of the following programs?

 (a) main()

{
 char name[10] = “IGNOU”;
 printf(“\n %c”, name[0]);
 printf(“\n %s”, name);
}

(b) main()
 {
 char s[] = “hello”;
 int j = 0;
 while (s[j] != ‘\0’)
 printf(“ %c”,s[j++]);
 }

(c) main()
 {
 char str[] = “hello”;
 printf(“%10.2s”, str);
 printf(“%-10.2s”, str);
 }

 45

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

Control Statements,
Arrays and
Functions

4 Write a program to read 'n' number of lines from the keyboard using a two-

dimensional character array (ie., strings).
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

7.5 BUILT IN STRING FUNCTIONS AND
 APPLICATIONS

The header file <string.h> contains some string manipulation functions. The following
is a list of the common string managing functions in C.

7.5.1 Strlen Function

The strlen function returns the length of a string. It takes the string name as argument.
The syntax is as follows:

n = strlen (str);

where str is name of the string and n is the length of the string, returned by strlen
function.

Example 7. 5

Write a program to read a string from the keyboard and to display the length of the
string on to the monitor by using strlen() function.

/* Program to illustrate the strlen function to determine the length of a string */

#include <stdio.h>
#include <string.h>
main()
{
char name[80];
int length;
printf(“Enter your name: ”);
gets(name);
length = strlen(name);
printf(“Your name has %d characters\n”, length);
}

OUTPUT

Enter your name: TYRAN
Your name has 5 characters

7.5.2 Strcpy Function

In C, you cannot simply assign one character array to another. You have to copy
element by element. The string library <string.h> contains a function called strcpy for
this purpose. The strcpy function is used to copy one string to another. The syntax is
as follows:

46
strcpy(str1, str2);
where str1, str2 are two strings. The content of string str2 is copied on to string str1.

Strings

Example 7.6

Write a program to read a string from the keyboard and copy the string onto the
second string and display the strings on to the monitor by using strcpy() function.

/* Program to illustrate strcpy function*/

#include <stdio.h>
#include <string.h>
main()
{
char first[80], second[80];
printf(“Enter a string: ”);
gets(first);
strcpy(second, first);
printf(“\n First string is : %s, and second string is: %s\n”, first, second);
}

OUTPUT

Enter a string: ADAMS
First string is: ADAMS, and second string is: ADAMS

7.5.3 Strcmp Function

The strcmp function in the string library function which compares two strings,
character by character and stops comparison when there is a difference in the ASCII
value or the end of any one string and returns ASCII difference of the characters that
is integer. If the return value zero means the two strings are equal, a negative value
means that first is less than second, and a positive value means first is greater than
second. The syntax is as follows:

 n = strcmp(str1, str2);
where str1 and str2 are two strings to be compared and n is returned value of differed
characters.

Example 7.7

Write a program to compare two strings using string compare function.

/* The following program uses the strcmp function to compare two strings. */

#include <stdio.h>
#include <string.h>
main()
{
 char first[80], second[80];
 int value;
printf(“Enter a string: ”);
 gets(first);
 printf(“Enter another string: ”);
 gets(second);
 value = strcmp(first,second);
 if(value == 0)
 puts(“The two strings are equal”);
 else if(value < 0)
 puts(“The first string is smaller ”);

 47 else if(value > 0)

Control Statements,
Arrays and
Functions

 puts(“the first string is bigger”);
}

OUTPUT

Enter a string: MOND
Enter another string: MOHANT
The first string is smaller

7.5.4 Strcat Function

The strcat function is used to join one string to another. It takes two strings as
arguments; the characters of the second string will be appended to the first string. The
syntax is as follows:

strcat(str1, str2);
where str1 and str2 are two string arguments, string str2 is appended to string str1.

Example 7.8

Write a program to read two strings and append the second string to the first string.

/* Program for string concatenation*/

#include <stdio.h>
#include <string.h>
main()
{
char first[80], second[80];
printf(“Enter a string:”);
gets(first);
printf(“Enter another string: ”);
gets(second);
strcat(first, second);
printf(“\nThe two strings joined together: %s\n”, first);
}

OUTPUT

Enter a string: BOREX
Enter another string: BANKS
The two strings joined together: BOREX BANKS

7.5.5 Strlwr Function

The strlwr function converts upper case characters of string to lower case characters.
The syntax is as follows:

strlwr(str1);
where str1 is string to be converted into lower case characters.

Example 7.9

Write a program to convert the string into lower case characters using in-built
function.

/* Program that converts input string to lower case characters */

#include <stdio.h>

48 #include <string.h>

Strings main()

{
char first[80];
printf("Enter a string: ");
gets(first);
printf("Lower case of the string is %s”, strlwr(first));
}

OUTPUT

Enter a string: BROOKES
Lower case of the string is brookes

7.5.6 Strrev Function

The strrev funtion reverses the given string. The syntax is as follows:

strrev(str);
where string str will be reversed.

Example 7.9

Write a program to reverse a given string.

/* Program to reverse a given string */

#include <stdio.h>
#include <string.h>
main()
{
char first[80];
printf(“Enter a string:”);
gets(first);
printf(“\n Reverse of the given string is : %s ”, strrev(first));
}

OUTPUT

Enter a string: ADANY
Reverse of the given string is: YNADA

7.5.7 Strspn Function

The strspn function returns the position of the string, where first string mismatches
with second string. The syntax is as follows:

n = strspn (first, second);
where first and second are two strings to be compared, n is the number of character
from which first string does not match with second string.

Example 7.10

Write a program, which returns the position of the string from where first string does
not match with second string.

/*Program which returns the position of the string from where first string does not
match with second string*/

#include <stdio.h>
#include <string.h>

 49
main()

Control Statements,
Arrays and
Functions

{
char first[80], second[80];
printf("Enter first string: “);
gets(first);
printf(“\n Enter second string: “);
gets(second);
printf(“\n After %d characters there is no match”,strspn(first, second));
}

OUTPUT

Enter first string: ALEXANDER
Enter second string: ALEXSMITH
After 4 characters there is no match

7.6 OTHER STRING FUNCTIONS

strncpy function

The strncpy function same as strcpy. It copies characters of one string to another
string up to the specified length. The syntax is as follows:

strncpy(str1, str2, 10);
where str1 and str2 are two strings. The 10 characters of string str2 are copied onto
string str1.

stricmp function

The stricmp function is same as strcmp, except it compares two strings ignoring the
case (lower and upper case). The syntax is as follows:

n = stricmp(str1, str2);

strncmp function

The strncmp function is same as strcmp, except it compares two strings up to a
specified length. The syntax is as follows:

 n = strncmp(str1, str2, 10);
where 10 characters of str1 and str2 are compared and n is returned value of differed
characters.

strchr function

The strchr funtion takes two arguments (the string and the character whose address is
to be specified) and returns the address of first occurrence of the character in the given
string. The syntax is as follows:

cp = strchr (str, c);
where str is string and c is character and cp is character pointer.

strset function

The strset funtion replaces the string with the given character. It takes two arguments
the string and the character. The syntax is as follows:

strset (first, ch);
where string first will be replaced by character ch.

strchr function

50

Strings The strchr function takes two arguments (the string and the character whose address

is to be specified) and returns the address of first occurrence of the character in the
given string. The syntax is as follows:

 cp = strchr (str, c);
where str is string and c is character and cp is character pointer.

strncat function

The strncat function is the same as strcat, except that it appends upto specified
length. The syntax is as follows:

strncat(str1, str2,10);
where 10 character of the str2 string is added into str1 string.

strupr function

The strupr function converts lower case characters of the string to upper case
characters. The syntax is as follows:

strupr(str1);
where str1 is string to be converted into upper case characters.

strstr function

The strstr function takes two arguments address of the string and second string as
inputs. And returns the address from where the second string starts in the first string.
The syntax is as follows:

cp = strstr (first, second);
where first and second are two strings, cp is character pointer.

Check Your Progress 2

1. Which of the following functions compares two strings?
A. compare();
B. stringcompare();
C. cmp();
D. strcmp();

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. Which of the following appends one string to the end of another?
A. append();
B. stringadd();
C. strcat();
D. stradd();

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. Write a program to concatenate two strings without using the strcat() function.
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

 51
4. Write a program to find string length without using the strlen() function.

Control Statements,
Arrays and
Functions

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

5. Write a program to convert lower case letters to upper case letters in a given
 string without using strupp().
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

7.7 SUMMARY

Strings are sequence of characters. Strings are to be null-terminated if you want to use
them properly. Remember to take into account null-terminators when using dynamic
memory allocation. The string.h library has many useful functions. Losing the ‘ \0’
character can lead to some very considerable bugs. Make sure you copy \0 when you
copy strings. If you create a new string, make sure you put \0 in it. And if you copy
one string to another, make sure the receiving string is big enough to hold the source
string, including \0. Finally, if you point a character pointer to some characters, make
sure they end with \0.

String Functions Its Use

strlen

strlwr

strcat

strcpy

strcmp

strdup

strchr

strstr

strset

strrev

Returns number of characters in string.

Converts all the characters in the string into lower case characters

Adds one string at the end of another string

Copies a string into another

Compares two strings and returns zero if both are equal.

Duplicates a string

Finds the first occurrence of given character in a string

Finds the first occurrence of given string in another string

Sets all the characters of string to given character or symbol

Reverse a string

7.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1. B

2. C

3. (a) I

 IGNOU

 (b) hello

 (c) hehe

52

Strings Check Your Progress 2

1. D

2. C

3. /* Program to concatenate two strings without using the strcat() function*/

 # include<string.h>
include <stdio.h>
 main()
 {
 char str1[10];
 char str2[10];
 char output_str[20];
 int i=0, j=0, k=0;
 printf(" Input the first string: ");
 gets(str1);
 printf("\nInput the second string: ");
 gets(str2);
 while(str1[i] != ‘\0’)
 output_str[k++] = str1[i++];
 while(str2[j] != '\0')
 output_str[k++] = str2[j++];
 output_str[k] = ‘\0’;
 puts(output_str);
 }

4. /* Program to find the string length without using the strlen() funtion */

 # include<stdio.h>
 # include<string.h>
 main()
 {
 char string[60];
 int len=0, i=0;
 printf(“ Input the string : ”);
 gets(string);
 while(string[i++] != ‘\0’)
 len ++;
 printf(“Length of Input String = %d”, len);
 getchar();
 }

5. /* Program to convert the lower case letters to upper case in a given string

without using strupp() function*/

#include<stdio.h>
main()
{

 int i= 0; char source[10], destination[10];
 gets(source);
 while(source[i] != ‘\0’)
 {

 53
 if((source[i]>=97) && (source[i]<=122))

54

Control Statements,
Arrays and
Functions

 destination[i]=source[i]-32;
 else
 destination[i]=source[i];
 i++;

}
destination[i]= ‘ \0 ’;
puts(destination);

 }

7.9 FURTHER READINGS

1. The C programming language, Brain W. Kernighan, Dennis M. Ritchie, PHI.
2. Programming with ANSI and Turbo C, Ashok N. Kamthane, Pearson
 Education, 2002.
3. Computer Programming in C, Raja Raman. V, 2002, PHI.
4. C,The Complete Reference, Fourth Edition, Herbert Schildt, Tata McGraw Hill,
 2002.
5. Computer Science A structured Programming Approach Using C, Behrouz A.
 Forouzan, Richard F. Gilberg, Brooks/Cole Thomas Learning, Second Edition,
 2001.

Functions

UNIT 8 FUNCTIONS

Structure

8.0 Introduction
8.1 Objectives
8.2 Definition of a Function
8.3 Declaration of a Function
8.4 Function Prototypes
8.5 The Return Statement
8.6 Types of Variables and Storage Classes
 8.6.1 Automatic Variables
 8.6.2 External Variables
 8.6.3 Static Variables
 8.6.4 Register Variables

8.7 Types of Function Invoking
8.8 Call by Value
8.9 Recursion
8.10 Summary
8.11 Solutions / Answers
8.12 Further Readings

8.0 INTRODUCTION

To make programming simple and easy to debug, we break a larger program into
smaller subprograms which perform ‘well defined tasks’. These subprograms are
called functions. So far we have defined a single function main ().

 After reading this unit you will be able to define many other functions and the main()
function can call up these functions from several different places within the program,
to carry out the required processing.

Functions are very important tools for Modular Programming, where we break large
programs into small subprograms or modules (functions in case of C). The use of
functions reduces complexity and makes programming simple and easy to understand.

In this unit, we will discuss how functions are defined and how are they accessed from
the main program? We will also discuss various types of functions and how to invoke
them. And finally you will learn an interesting and important programming technique
known as Recursion, in which a function calls within itself.

8.1 OBJECTIVES

After going through this unit, you will learn:

• the need of functions in the programming;
• how to define and declare functions in ‘C’ Language;
• different types of functions and their purpose;
• how the functions are called from other functions;
• how data is transferred through parameter passing, to functions and the Return

statement;
• recursive functions; and
• the concept of ‘Call by Value’ and its drawbacks.

55

Control Statements,
Arrays and
Functions

8.2 DEFINTION OF A FUNCTION

A function is a self- contained block of executable code that can be called from any
other function .In many programs, a set of statements are to be executed repeatedly at
various places in the program and may with different sets of data, the idea of functions
comes in mind. You keep those repeating statements in a function and call them as
and when required. When a function is called, the control transfers to the called
function, which will be executed, and then transfers the control back to the calling
function (to the statement following the function call). Let us see an example as
shown below:

Example 8.1

/* Program to illustrate a function*/

#include <stdio.h>
main ()
{
void sample();
printf(“\n You are in main”);
}

void sample()
 {
 printf(“\n You are in sample”);
 }

OUTPUT

You are in sample
You are in main

Here we are calling a function sample () through main() i.e. control of execution
transfers from main() to sample() , which means main() is suspended for some time
and sample() is executed. After its execution the control returns back to main(), at
the statement following function call and the execution of main() is resumed.

The syntax of a function is:

return data type function_name (list of arguments)
{
 datatype declaration of the arguments;
 executable statements;
 return (expression);
}

where,
• return data type is the same as the data type of the variable that is returned by the

function using return statement.
• a function_name is formed in the same way as variable names / identifiers are

formed.
• the list of arguments or parameters are valid variable names as shown below,

separated by commas: (data type1 var1,data type2 var2,…….. data type n var n)
 for example (int x, float y, char z).

56 • arguments give the values which are passed from the calling function.

Functions • the body of function contains executable statements.

• the return statement returns a single value to the calling function.

Example 8.2

Let us write a simple function that calculates the square of an integer.

/*Program to calculate the square of a given integer*/

/* square() function */
{
 int square (int no) /*passing of argument */
 int result ; /* local variable to function square */
 result = no*no;
 return (result); /* returns an integer value */
 }

 /*It will be called from main()as follows */
main()
{
int n ,sq; /* local variable to function main */
printf (“Enter a number to calculate square value”);
scanf(“%d”,&n);
sq=square(n); /* function call with parameter passing */
printf (”\nSquare of the number is : %d”, sq);
} /* program ends */

OUTPUT

Enter a number to calculate square value : 5
Square of the number is : 25

8.3 DECLARATION OF A FUNCTION

As we have mentioned in the previous section, every function has its declaration and
function definition. When we talk of declaration only, it means only the function
name, its argument list and return type are specified and the function body or
definition is not attached to it. The syntax of a function declaration is:

return data type function_name(list of arguments);

For example,

int square(int no);
float temperature(float c, float f);

We will discuss the use of function declaration in the next section.

8.4 FUNCTION PROTOTYPES

57

In Example 8.1 for calculating square of a given number, we have declared function
square() before main() function; this means before coming to main(), the compiler
knows about square(), as the compilation process starts with the first statement of

Control Statements,
Arrays and
Functions

any program. Now suppose, we reverse the sequence of functions in this program i.e.,
writing the main() function and later on writing the square() function, what
happens ? The “C” compiler will give an error. Here the introduction of concept of
“function prototypes” solves the above problem.

Function Prototypes require that every function which is to be accessed should be
declared in the calling function. The function declaration, that will be discussed
earlier, will be included for every function in its calling function . Example 8.2 may
be modified using the function prototype as follows:

Example 8.3

/*Program to calculate the square of a given integer using the function prototype*/
#include <stdio.h>
main ()
{
int n , sq ;
int square (int) ; /* function prototype */
printf (“Enter a number to calculate square value”);
scanf(“%d”,&n);
sq = square(n); /* function call with parameter passing */
printf (“\nSsquare of the number is : %d”, sq);
}

/* square function */
int square (int no) /*passing of argument */
 {
 int result ; /* local variable to function square */
 result = no*no;
 return (result); /* returns an integer value */
}

OUTPUT

Enter a number to calculate square value : 5
Square of the number is: 25

Points to remember:

• Function prototype requires that the function declaration must include the return
type of function as well as the type and number of arguments or parameters
passed.

• The variable names of arguments need not be declared in prototype.
• The major reason to use this concept is that they enable the compiler to check if

there is any mismatch between function declaration and function call.

Check Your Progress 1

(1) Write a function to multiply two integers and display the product.
…………………………………………………………………………………

…………………………………………………………………………………

(2) Modify the above program, by introducing function prototype in the main
function.
…………………………………………………………………………………

…………………………………………………………………………………

58

Functions

8.5 THE return STATEMENT

If a function has to return a value to the calling function, it is done through the return
statement. It may be possible that a function does not return any value; only the
control is transferred to the calling function. The syntax for the return statement is:

return (expression);

We have seen in the square() function, the return statement, which returns an integer
value.

Points to remember:

• You can pass any number of arguments to a function but can return only one
value at a time.

For example, the following are the valid return statements

(a) return (5);
(b) return (x*y);

 For example, the following are the invalid return statements

(c) return (2, 3);
(d) return (x, y);

• If a function does not return anything, void specifier is used in the function

declaration.

 For example:

 void square (int no)
 {
 int sq;
 sq = no*no;
 printf (“square is %d”, sq);
 }

• All the function’s return type is by default is “int”, i.e. a function returns an

integer value, if no type specifier is used in the function declaration.

Some examples are:

 (i) square (int no); /* will return an integer value */

 (ii) int square (int no); /* will return an integer value */

 (iii) void square (int no); /* will not return anything */

• What happens if a function has to return some value other than integer? The

answer is very simple: use the particular type specifier in the function
declaration.

 For example consider the code fragments of function definitions below:

1) Code Fragment - 1

 char func_char(……..)

59

 {
 char c;

Control Statements,
Arrays and
Functions

 …………….
 …………….
 ……………

 }

 2) Code Fragment - 2
 float func_float (……..)
 {
 float f;
 …………..
 …………..
 …………..
 return(f);
 }

Thus from the above examples, we see that you can return all the data types
from a function, the only condition being that the value returned using return
statement and the type specifier used in function declaration should match.

• A function can have many return statements. This thing happens when some
condition based returns are required.

 For example,

 /*Function to find greater of two numbers*/
 int greater (int x, int y)
 {
 if (x>y)
 return (x);
 else
 return (y);
 }

• And finally, with the execution of return statement, the control is transferred to

the calling function with the value associated with it.

 In the above example if we take x = 5 and y = 3, then the control will be
transferred to the calling function when the first return statement will be
encountered, as the condition (x > y) will be satisfied. All the remaining
executable statements in the function will not be executed after this returning.

Check Your Progress 2

1. Which of the following are valid return statements?

a) return (a);
b) return (z,13);
c) return (22.44);
d) return;
e) return (x*x, y*y);

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

60

Functions

8.6 TYPES OF VARIABLES AND STORAGE CLASSES

In a program consisting of a number of functions a number of different types of
variables can be found.

Global vs. Static variables: Global variables are recognized through out the program

whereas local valuables are recognized only within the
function where they are defined.

Static vs. Dynamic variables: Retention of value by a local variable means, that in

static, retention of the variable value is lost once the
function is completely executed whereas in certain
conditions the value of the variable has to be retained
from the earlier execution and the execution retained.

The variables can be characterized by their data type and by their storage class. One
way to classify a variable is according to its data type and the other can be through its
storage class. Data type refers to the type of value represented by a variable whereas
storage class refers to the permanence of a variable and its scope within the program
i.e. portion of the program over which variable is recognized.

Storage Classes

There are four different storage classes specified in C:

1. Auto (matic) 2. Extern (al)
3. Static 4. Register

The storage class associated with a variable can sometimes be established by the
location of the variable declaration within the program or by prefixing keywords to
variables declarations.

For example: auto int a, b;
 static int a, b;
 extern float f;

8.6.1 Automatic Variables

The variables local to a function are automatic i.e., declared within the function. The
scope of lies within the function itself. The automatic defined in different functions,
even if they have same name, are treated as different. It is the default storage class for
variables declared in a function.

Points to remember:

• The auto is optional therefore there is no need to write it.
• All the formal arguments also have the auto storage class.
• The initialization of the auto-variables can be done:

• in declarations
• using assignment expression in a function

• If not initialized the unpredictable value is defined.
• The value is not retained after exit from the program.

Let us study these variables by a sample program given below:

61

Control Statements,
Arrays and
Functions

Example 8.4

/* To print the value of automatic variables */

include <stdio.h>
main (int argc, char * argv[])
{
int a, b;
double d;
printf(“%d”, argc);
a = 10;
b = 5;
d = (b * b) – (a/2);
printf(“%d, %d, %f”, a, b, d);
}

All the variables a, b, d, argc and argv [] have automatic storage class.

8.6.2 External (Global) Variables

These are not confined to a single function. Their scope ranges from the point of
declaration to the entire remaining program. Therefore, their scope may be the entire
program or two or more functions depending upon where they are declared.

Points to remember:

• These are global and can be accessed by any function within its scope.
Therefore value may be assigned in one and can be written in another.

• There is difference in external variable definition and declaration.
• External Definition is the same as any variable declaration:

• Usually lies outside or before the function accessing it.

• It allocates storage space required.
• Initial values can be assigned.
• The external specifier is not required in external variable definition.
• A declaration is required if the external variable definition comes after the

function definition.
• A declaration begins with an external specifier.
• Only when external variable is defined is the storage space allocated.
• External variables can be assigned initial values as a part of variable definitions,

but the values must be constants rather than expressions.
• If initial value is not included then it is automatically assigned a value of zero.

Let us study these variables by a sample program given below:

Example 8.5

/* Program to illustrate the use of global variables*/

include <stdio.h>
int gv; /*global variable*/
main ()
{
void function1(); /*function declaration*/
gv = 10;
printf (“%d is the value of gv before function call\n”, gv);
function1();
printf (“%d is the value of gv after function call\n”, gv);

62

}

Functions

void function1 ()
{
gv = 15: }

OUTPUT

10 is the value of gv before function call
15 is the value of gv after function call

8.6.3 Static Variables

In case of single file programs static variables are defined within functions and
individually have the same scope as automatic variables. But static variables retain
their values throughout the execution of program within their previous values.

Points to remember:

• The specifier precedes the declaration. Static and the value cannot be accessed
outside of their defining function.

• The static variables may have same name as that of external variables but the
local variables take precedence in the function. Therefore external variables
maintain their independence with locally defined auto and static variables.

• Initial value is expressed as the constant and not expression.
• Zeros are assigned to all variables whose declarations do not include explicit

initial values. Hence they always have assigned values.
• Initialization is done only is the first execution.

Let us study this sample program to print value of a static variable:

Example 8.6

/* Program to illustrate the use of static variable*/

#include <stdio.h>

main()
{
int call_static();
int i,j;
i=j=0;
j = call_static();
printf(“%d\n”,j);
j = call_static ();
printf(“%d\n”,j);
j = call_static();
printf(“%d\n”,j);
}

int call_static()
{
static int i=1;
int j;
j = i;
i++;
return(j);
}

63

Control Statements,
Arrays and
Functions

OUTPUT
1
2
3

This is because i is a static variable and retains its previous value in next execution of
function call_static(). To remind you j is having auto storage class. Both functions
main and call_static have the same local variable i and j but their values never get
mixed.

8.6.4 Register Variables

Besides three storage class specifications namely, Automatic, External and Static,
there is a register storage class. Registers are special storage areas within a
computer’s CPU. All the arithmetic and logical operations are carried out with these
registers.

For the same program, the execution time can be reduced if certain values can be
stored in registers rather than memory. These programs are smaller in size (as few
instructions are required) and few data transfers are required. The reduction is there in
machine code and not in source code. They are declared by the proceeding declaration
by register reserved word as follows:

register int m;

Points to remember:

• These variables are stored in registers of computers. If the registers are not
available they are put in memory.

• Usually 2 or 3 register variables are there in the program.
• Scope is same as automatic variable, local to a function in which they are

declared.
• Address operator ‘&’ cannot be applied to a register variable.
• If the register is not available the variable is though to be like the automatic

variable.
• Usually associated integer variable but with other types it is allowed having

same size (short or unsigned).
• Can be formal arguments in functions.
• Pointers to register variables are not allowed.
• These variables can be used for loop indices also to increase efficiency.

8.7 TYPES OF FUNCTION INVOKING

We categorize a function’s invoking (calling) depending on arguments or parameters
and their returning a value. In simple words we can divide a function’s invoking into
four types depending on whether parameters are passed to a function or not and
whether a function returns some value or not.

The various types of invoking functions are:

• With no arguments and with no return value.
• With no arguments and with return value
• With arguments and with no return value
• With arguments and with return value.

64

Let us discuss each category with some examples:

Functions TYPE 1: With no arguments and have no return value

As the name suggests, any function which has no arguments and does not return any
values to the calling function, falls in this category. These type of functions are
confined to themselves i.e. neither do they receive any data from the calling function
nor do they transfer any data to the calling function. So there is no data
communication between the calling and the called function are only program control
will be transferred.

Example 8.7

/* Program for illustration of the function with no arguments and no return value*/

/* Function with no arguments and no return value*/

#include <stdio.h>
main()
 {
void message();
printf(“Control is in main\n”);
message(); /* Type 1 Function */
printf(“Control is again in main\n”);
 }

void message()
{
 printf(“Control is in message function\n”);
 } /* does not return anything */

OUTPUT

Control is in main
Control is in message function
Control is again in main

TYPE 2: With no arguments and with return value

Suppose if a function does not receive any data from calling function but does send
some value to the calling function, then it falls in this category.

Example 8.8

Write a program to find the sum of the first ten natural numbers.

/* Program to find sum of first ten natural numbers */

#include <stdio.h>

int cal_sum()
 {
int i, s=0;
for (i=0; i<=10; i++)
s=s + i;
return(s); /* function returning sum of first ten natural numbers */
}

main()
 {

65 int sum;

Control Statements,
Arrays and
Functions

sum = cal_sum();
printf(“Sum of first ten natural numbers is % d\n”, sum);
}

OUTPUT

Sum of first ten natural numbers is 55

TYPE 3: With Arguments and have no return value

If a function includes arguments but does not return anything, it falls in this
category. One way communication takes place between the calling and the called
function.

Before proceeding further, first we discuss the type of arguments or parameters here.
There are two types of arguments:

• Actual arguments
• Formal arguments

Let us take an example to make this concept clear:

Example 8.9

Write a program to calculate sum of any three given numbers.

#include <stdio.h>

main()
{
int a1, a2, a3;
void sum(int, int, int);
printf(“Enter three numbers: “);
scanf (“%d%d%d”,&a1,&a2,&a3);
sum (a1,a2,a3); /* Type 3 function */
}

/* function to calculate sum of three numbers */
void sum (int f1, int f2, int f3)
{
int s;
 s = f1+ f2+ f3;
printf (“\nThe sum of the three numbers is %d\n”,s);
}

OUTPUT

Enter three numbers: 23 34 45
The sum of the three numbers is 102

Here f1, f2, f3 are formal arguments and a1, a2, a3 are actual arguments.
Thus we see in the function declaration, the arguments are formal arguments, but
when values are passed to the function during function call, they are actual arguments.

Note: The actual and formal arguments should match in type, order and number

66

Functions TYPE 4: With arguments function and with return value

In this category two-way communication takes place between the calling and called
function i.e. a function returns a value and also arguments are passed to it. We modify
above Example according to this category.

Example 8.10

Write a program to calculate sum of three numbers.

/*Program to calculate the sum of three numbers*/

#include <stdio.h>
main ()
 {
int a1, a2, a3, result;
int sum(int, int, int);
printf(“Please enter any 3 numbers:\n”);
scanf (“%d %d %d”, & a1, &a2, &a3);
result = sum (a1,a2,a3); /* function call */
printf (“Sum of the given numbers is : %d\n”, result);
}

/* Function to calculate the sum of three numbers */
int sum (int f1, int f2, int f3)
 {
 return(f1+ f2 + f3); /* function returns a value */
 }

OUTPUT
Please enter any 3 numbers:
3 4 5
Sum of the given numbers is: 12

8.8 CALL BY VALUE

So far we have seen many functions and also passed arguments to them, but if we
observe carefully, we will see that we have always created new variables for
arguments in the function and then passed the values of actual arguments to them.
Such function calls are called “call by value”.

Let us illustrate the above concept in more detail by taking a simple function of
multiplying two numbers:

Example 8.11

Write a program to multiply the two given numbers

#include <stdio.h>
main()
{
int x, y, z;
int mul(int, int);
printf (“Enter two numbers: \n”);
scanf (“%d %d”,&x,&y);
z= mul(x, y); /* function call by value */
printf (“\n The product of the two numbers is : %d”, z);
}

67

Control Statements,
Arrays and
Functions

/* Function to multiply two numbers */
int mul(int a, int b)
{
int c;
c =a*b;
return(c); }

OUTPUT

Enter two numbers:
23 2
The product of two numbers is: 46

Now let us see what happens to the actual and formal arguments in memory.
 main() function mul() function

 x a

 y b

 z c

 3

 2

 3

 2

The variables are local to the
mul () function which are
created in memory with the
function call and are
destroyed with the return to
the called function

 6 6

Variables local to main() function Variables local to mul() function

What are meant by local variables? The answer is local variables are those which can
be used only by that function.

Advantages of Call by value:

The only advantage is that this mechanism is simple and it reduces confusion
and complexity.

Disadvantages of Call by value:

As you have seen in the above example, there is separate memory allocation for
each of the variable, so unnecessary utilization of memory takes place.

The second disadvantage, which is very important from programming point of
view, is that any changes made in the arguments are not reflected to the calling
function, as these arguments are local to the called function and are destroyed
with function return.

Let us discuss the second disadvantage more clearly using one example:

Example 8.12

Write a program to swap two values.

68

Functions /*Program to swap two values*/

#include <stdio.h>
main ()
{
int x = 2, y = 3;
void swap(int, int);

printf (“\n Values before swapping are %d %d”, x, y);
swap (x, y);
printf (“\n Values after swapping are %d %d”, x, y);
}

/* Function to swap(interchange) two values */
void swap(int a, int b)
{
int t;
t = a;
a = b;
b = t;
}

OUTPUT

Values before swap are 2 3
Values after swap are 2 3

But the output should have been 3 2. So what happened?

 x a a

 t
 y b b t

 2

 3

 2

 2 2

 3 3

Values passing from main () to swap() function Variables in swap () function

Here we observe that the changes which takes place in argument variables are not
reflected in the main() function; as these variables namely a, b and t will be destroyed
with function return.

• All these disadvantages will be removed by using “call by reference”, which will

be discussed with the introduction of pointers in UNIT 11.

Check Your Progress 3

1. Write a function to print Fibonacci series upto ‘n’ terms 1,1,2,3,…..n

……………………………………………………………………………………

……………………………………………………………………………………

2. Write a function power (a, b) to calculate ab
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

69

Control Statements,
Arrays and
Functions

8.9 RECURSION

Within a function body, if the function calls itself, the mechanism is known as
‘Recursion’ and the function is known as ‘Recursive function’. Now let us study this
mechanism in detail and understand how it works.

• As we see in this mechanism, a chaining of function calls occurs, so it is
necessary for a recursive function to stop somewhere or it will result into
infinite callings. So the most important thing to remember in this mechanism is
that every “recursive function” should have a terminating condition.

• Let us take a very simple example of calculating factorial of a number, which
we all know is computed using this formula 5! = 5*4*3*2*1

• First we will write non – recursive or iterative function for this.

Example 8.13

Write a program to find factorial of a number

#include <stdio.h>
main ()
{
int n, factorial;
int fact(int);
printf (“Enter any number:\n”);
scanf ("%d", &n);
factorial = fact (n); /* function call */
 printf (“Factorial is %d\n”, factorial);
}

/* Non recursive function of factorial */

int fact (int n)
{
int res = 1, i;
for (i = n; i >= 1; i--)
res = res * i;
return (res);
}

OUTPUT

Enter any number: 5
Factorial is 120

How it works?

Suppose we call this function with n = 5

Iterations:

1. i= 5 res = 1*5 = 5
2. i= 4 res = 5*4 = 20
3. i= 3 res = 20*4 = 60
4. i= 2 res = 60*2 = 120
5. i= 1 res = 120*1 = 120

70

Functions Now let us write this function recursively. Before writing any function recursively,

we first have to examine the problem, that it can be implemented through recursion.

For instance, we know n! = n* (n − 1)! (Mathematical formula)

Or fact (n) = n*fact (n-1)
Or fact (5) = 5*fact (4)

That means this function calls itself but with value of argument decreased by ‘1’.

Example 8.14

Modify the program 8 using recursion.

/*Program to find factorial using recursion*/
#include<stdio.h>
main()
{
int n, factorial;
int fact(int);
printf("Enter any number: \n");
scanf("%d",&n);
factorial = fact(n); /*Function call */
printf ("Factorial is %d\n", factorial); }

/* Recursive function of factorial */
int fact(int n)
{
int res;
 if(n == 1) /* Terminating condition */
 return(1);
 else
 res = n*fact(n-1); /* Recursive call */
 return(res); }

OUTPUT
Enter any number: 5
Factorial is 120

How it works?

Suppose we will call this function with n = 5

 fact (5) 120

5*fact(4) 5*24
 Returning Process

4*fact(3) 4*6(=24)

3*fact(2) 3*2*1(= 6)

2*fact(1) 2* 1(=2)

71

 2*1 (It terminates here)

Control Statements,
Arrays and
Functions

Thus a recursive function first proceeds towards the innermost condition, which is the
termination condition, and then returns with the value to the outermost call and
produces result with the values from the previous return.

Note: This mechanism applies only to those problems, which repeats itself. These
types of problems can be implemented either through loops or recursive functions,
which one is better understood to you.

Check Your Progress 4

1. Write recursive functions for calculating power of a number ‘a’ raised by

another number ‘b’ i.e. ab

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………............

8.10 SUMMARY

In this unit, we learnt about “Functions”: definition, declaration, prototypes, types,
function calls datatypes and storage classes, types function invoking and lastly
Recursion. All these subtopics must have given you a clear idea of how to create and
call functions from other functions, how to send values through arguments, and how
to return values to the called function. We have seen that the functions, which do not
return any value, must be declared as “void”, return type. A function can return only
one value at a time, although it can have many return statements. A function can
return any of the data type specified in ‘C’.

 Any variable declared in functions are local to it and are created with function call
and destroyed with function return. The actual and formal arguments should match in
type, order and number. A recursive function should have a terminating condition i.e.
function should return a value instead of a repetitive function call.

8.11 SOLUTIONS / ANSWERS

Check Your Progress 1

1. /* Function to multiply two integers */
 int mul(int a, int b)
 {

 int c;
 c = a*b;

 return(c);
 }

2. #include <stdio.h>

 main ()
 {

 int x, y, z;
 int mul (int, int); /* function prototype */
 printf (“Enter two numbers”);
 scanf (“%d %d”, &x, &y);
 z = mul (x, y); /* function call */

72

 printf (“result is %d”, z); }

Functions

Check Your Progress 2

1. (a) Valid
 (b) In valid
 (c) Valid
 (d) Valid

 (e) Invalid

Check Your Progress 3

 1. /* Function to print Fibonacci Series */

void fib(int n)
 {
 int curr_term, int count = 0;
 int first = 1;
 int second = 1;
 print (“%d %d”, curr_term);
 count = 2;
 while(count < = n)
 { curr_term = first + second;
 printf (“%d”, curr_term);
 first = second;
 second = curr_term;
 count++;
 }
 }

2. /* Non Recursive Power function i.e. pow(a, b) */

 int pow(int a, int b)
 {

 int i, p = 1;
 for (i = 1; i < = b; i++)
 p = p*a;
 return (p);
 }

Check Your Progress 4

1. /* Recursive Power Function */

 int pow (int a, int b)
 { if (b = = 0)
 return (1);
 else
 return (a* pow (a, b-1)); /* Recursive call */
 }

 /* Main Function */
 main ()
 {
 int a, b, p;
 printf (“ Enter two numbers”);
 scanf (“%d %d”, &a, &b);
 p = pow (a, b); /* Function call */
 printf (“ The result is %d”, p);

73 }

74

Control Statements,
Arrays and
Functions

8.12 FURTHER READINGS
1. The C programming language, Brain W. Kernighan, Dennis M. Ritchie, PHI
2. C,The Complete Reference, Fourth Edition, Herbert Schildt, Tata McGraw
 Hill, 2002.
3. Computer Programming in C, Raja Raman. V, 2002, PHI.
5. C,The Complete Reference, Fourth Edition, Herbert Schildt, TMGH,2002.

	MCS-011-Control Statements, Arrays and Functions
	Index
	Credit Page
	Block Introduction
	Unit-5 Decision and Loop Control Statements
	5.0 Introduction
	5.1 Objectives
	5.2 Decision Control Statements
	5.3 Loop Control Statements
	5.4 The goto Statement
	5.5 The break Statement
	5.6 The continue Statement
	5.7 Summary
	5.8 Solutions / Answers
	5.9 Further Readings

	Unit-6 Arrays
	6.0 Introduction
	6.1 Objectives
	6.2 Array Declaration
	6.3 Array Initialization
	6.4 Subscript
	6.5 Processing the Arrays
	6.6 multi-Dimensional Arrays
	6.7 Summary
	6.8 Solutions / Answers
	6.9 Further Readings

	Unit-7 Strings
	7.0 Introduction
	7.1 Objectives
	7.2 Declaration and Initialization of Strings
	7.3 Display of Strings Using Different Formattting Techniques
	7.4 Array of Strings
	7.5 Built in String Functions and Applications
	7.6 Other String Functions
	7.7 Summary
	7.8 Solutions / Answers
	7.9 Further Readings

	Unit-8 Functions
	8.0 Introduction
	8.1 Objectives
	8.2 Definition of a Function
	8.3 Declaration of a Function
	8.4 Function Prototypes
	8.5 The return Statement
	8.6 Types of Variables and Storage Classes
	8.7 Types of Function Invoking
	8.8 Call by Value
	8.9 Recursion
	8.10 Summary
	8.11 Solutions / Answers
	8.12 Further Readings

