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BLOCK INTRODUCTION 

We have already discussed the von Neumann architecture and the basic components 
of the computer system along with an interconnection structure in the previous blocks 
of this course. In this block we will be discussing the CPU organization. However, as 
the main function of CPU is “to execute an instruction”, the discussion about CPU 
must revolve around the term instruction.  Hence we have started the discussion with 
the instruction set in the first unit. We have presented details about the characteristics, 
addressing schemes and formats of the instructions. In Unit 2, we have tried to break 
down the instruction execution cycle into several sub-cycles, which in turn consist of 
micro-operations. In addition to this we will discuss register organization in this unit. 
The third unit will focus on the functionality of the two main components of CPU, the 
ALU. The fourth unit discuss about the control unit, with the detailed discussion of 
the programmed control unit. Unit 5 covers RISC architecture. 

FURTHER READINGS FOR THE BLOCK 

1. William Stallings, Computer Organization and Architecture, Sixth Edition, PHI. 
2. M. Morris Mano, Computer System Architecture, Third Edition, PHI. 
3. D. Patterson and J. Hennessy, Computer Organization and Design: The 

Hardware/ Software Interface. San Mateo, CA:Morgan Kaufmann. 
4.   A. Tanenbaum, Structured Computer Organization, PHI.  
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UNIT 1    INSTRUCTION SET 
ARCHITECTURE 

Structure        Page No. 

1.0 Introduction        5 
1.1 Objectives        5 
1.2 Instruction Set Characteristics      6 
1.3 Instruction Set Design Considerations     9 
 1.3.1   Operand Data Types 
 1.3.2   Types of Instructions 
 1.3.3   Number of Addresses in an Instruction 
1.4 Addressing Schemes       18 
 1.4.1   Immediate Addressing 
        1.4.2   Direct Addressing 
        1.4.3   Indirect Addressing 
     1.4.4   Register Addressing 
     1.4.5   Register Indirect Addressing 
     1.4.6    Indexed Addressing Scheme  
     1.4.7    Base Register Addressing 
 1.4.8 Relative Addressing Scheme 
 1.4.9  Stack Addressing 
1.5 Instruction Set and Format Design  Issues     26 
 1.5.1     Instruction Length 
 1.5.2     Allocation of Bits Among Opcode and Operand 
        1.5.3    Variable Length of Instructions  
1.6   Example of Instruction Format      28 
1.7  Summary         29 
1.8  Solutions/ Answers        30 
 

1.0 INTRODUCTION 

The Instruction Set Architecture (ISA) is the part of the processor that is visible to the 
programmer or compiler designer. They are the parts of a processor design that need 
to be understood in order to write assembly language, such as the machine language 
instructions and registers. Parts of the architecture that are left to the implementation 
are not part of ISA. The ISA serves as the boundary between software and hardware.  

The term instruction will be used in this unit more often. What is an instruction?  
What are its components? What are different types of instructions? What are the 
various addressing schemes and their importance? This unit is an attempt to answer 
these questions. In addition, the unit also discusses the design issues relating to 
instruction format. We have presented here the instruction set of MIPS 
(Microprocessor without Interlocked Pipeline Stages) processor (very briefly) as an 
example.  
 
Other related microprocessors instruction set can be studied from further readings. We 
will also discuss about the complete instruction set of 8086 micro-processor in unit 1, 
Block 4 of this course. 
 

1.1   OBJECTIVES 

After going through this unit you should be able to: 

• describe the characteristics of instruction set; 
• discuss various elements of an instruction; 
• differentiate various types of operands; 
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The Central 
Processing Unit • distinguish various types of instructions and various operations performed by the 

instructions; 
• identify different types of ISAs on the basis of addresses in instruction sets; 
• identify various addressing schemes; and  
• discuss the instruction format design issues. 
 

1.2 INSTRUCTION SET CHARACTERISTICS 

The key role of the Central Processing Unit (CPU) is to perform the calculations, to 
issue the commands, to coordinate all other hardware components, and executing 
programs including operating system, application programs etc. on your computer. 
But CPU is primarily the core hardware component; you must speak to it in the core 
binary machine language. The words of a machine language are known as 
instructions, and its syntax is known as an instruction set.  
 

 
The Instruction Set Viewpoints 

Instruction set is the boundary where the computer designer and the computer 
programmer see the same computer from different viewpoints. From the designer’s 
point of view, the computer instruction set provides a functional description of a 
processor, that is: 

(i) A detailed list of the instructions that a processor is capable of processing.  
(ii) A description of the types/ locations/ access methods for operands.  
 
The common goal of computer designers is to build the hardware for implementing 
the machine’s instructions for CPU. From the programmer’s point of view, the user 
must understand machine or assembly language for low-level programming. 
Moreover, the user must be aware of the register set, instruction types and the function 
that each instruction performs. 
 
This unit covers both the viewpoints. However, our prime focus is the programmer’s 
viewpoint with the design of instruction set. Now, let us define the instructions, parts 
of instruction and so on.  
 
What is an Instruction Set? 

Instruction set is the collection of machine language instructions that a particular 
processor understands and executes. In other words, a set of assembly language 
mnemonics represents the machine code of a particular computer. Therefore, if we 
define all the instructions of a computer, we can say we have defined the instruction 
set. It should be noted here that the instructions available in a computer are machine 
dependent, that is, a different processors have different instruction sets. However, a 
newer processor that may belong to some family may have a compatible but extended 
instruction set of an old processor of that family. Instructions can take different 
formats. The instruction format involves: 

• the instruction length; 
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Architecture • the type; 
• length and position of operation codes in an instruction; and  
• the number and length of operand addresses etc.  
 
An interesting question for instruction format may be to have uniform length or 
variable length instructions.  
 
What are the elements of an instruction? 

As the purpose of instruction is to communicate to CPU what to do, it requires a 
minimum set of communication as:  

• What operation to perform? 
• On what operands? 
 
Thus, each instruction consists of several fields. The most common fields found in 
instruction formats are: 

Opcode: (What operation to perform?)  
 
• An operation code field termed as opcode that specifies the operation to be 

performed. 
 
Operands: (Where are the operands?) 

• An address field of operand on which data processing is to be performed.  
• An operand can reside in the memory or a processor register or can be 

incorporated within the operand field of instruction as an immediate constant. 
Therefore a mode field is needed that specifies the way the operand or its address 
is to be determined. 

 
A sample instruction format is given in figure 1. 
 
         0                               5  6                                       7   8                                                     31 

 
Opcode 
  

 
Addressing Mode 

 
Operand or address of operand 

                                                       Instruction Length 
 

Figure 1: A Hypothetical Instruction Format of 32 bits 
 
Please note the following points in Figure 1: 

• The opcode size is 6 bits. So, in general it will have 26 = 32 operations. 
(However, when you will study more architectures from further readings, you 
will find even through these bits using special combinations. Instruction set 
designers have developed much more operations). 

• There is only one operand address machine. What is the significance of this? You 
will find an answer of this question in section 1.3.3 of this unit. 

• There are two bits for addressing modes. Therefore, there are 22 = 4 different 
addressing modes possible for this machine.  

• The last field (8 – 31 bits = 24 bits) here is the operand or the address of operand 
field. 

 
In case of immediate operand the maximum size of the unsigned operand would be 
224. 
 
In case it is an address of operand in memory, then the maximum physical memory 
size supported by this machine is 224 = 16 MB. 
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Processing Unit For this machine there may be two more possible addressing modes in addition to the 

immediate and direct. However, let us not discuss addressing modes right now. They 
will be discussed in general, details in section 1.4 of this unit.  
 
The opcode field of an instruction is a group of bits that define various processor 
operations such as LOAD, STORE, ADD, and SHIFT to be performed on some data 
stored in registers or memory.  
 
The operand address field can be data, or can refer to data – that is address of data, or 
can be labels, which may be the address of an instruction you want to execute next, 
such labels are commonly used in Subroutine call instructions. An operand address 
can be:  

• The memory address 
• CPU register address 
• I/O device address  
 
The mode field of an instruction specifies a variety of alternatives for referring to 
operands using the given address. Please note that if the operands are placed in 
processor registers then an instruction executes faster than that of operands 
placed in memory, as the registers are very high-speed memory used by the CPU. 
However, to put the value of a memory operand to a register you will require a 
register LOAD instruction. 
 
How is an instruction represented? 

Instruction is represented as a sequence of bits. A layout of an instruction is termed as 
instruction format. Instruction formats are primarily machine dependent. A CPU 
instruction set can use many instruction formats at a time. Even the length of opcode 
varies in the same processor.  However, we will not discuss such details in this block.  
You can refer to further readings for such details.  
 
How many instructions in a Computer? 

A computer can have a large number of instructions and addressing modes. The older 
computers with the growth of Integrated circuit technology have a very large and 
complex set of instructions. These are called “complex instruction set computers” 
(CISC).  Examples of CISC architectures are the Digital Equipment Corporation VAX 
computer and the IBM 370 computer. 
 
However, later it was found in the studies of program style that many complex 
instructions found CISC are not used by the program. This lead to the idea of making 
a simple but faster computer, which could execute simple instructions much faster. 
These computers have simple instructions, registers addressing and move registers. 
These are called Reduced Instruction Set Computers (RISC). We will study more 
about RISC in Unit 5 of this Block. 
 
Check Your Progress 1 

State True or False.         

1.  An instruction set is a collection of all the instructions a CPU can execute.        
 
2.  Instructions can take different formats.                                                             
 
3.  The opcode field of an instruction specifies the address field of operand on w
        data processing is to be performed.      
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Architecture 4.  The operands placed in processor registers are fetched faster than that of 
operands placed in memory.       

 
5.  Operands must refer to data and cannot be data.             
 

1.3   INSTRUCTION   SET   DESIGN 
CONSIDERATIONS  

Some of the basic considerations for instruction set design include selection of:  

• A set of data types (e.g. integers, long integers, doubles, character strings etc.).  
• A set of operations on those data types.  
• A set of instruction formats. Includes issues like number of addresses, 

instruction length etc. 
• A set of techniques for addressing data in memory or in registers.  
• The number of registers which can be referenced by an instruction and how 

they are used. 
 
We will discuss the above concepts in more detail in the subsequent sections.  
 
1.3.1   Operand Data Types 

Operand is that part of an instruction that specifies the address of the source or result, 
or the data itself on which the processor is to operate. Operand types usually give 
operand size implicitly. In general, operand data types can be divided in the following 
categories. Refer to figure 2: 
 

Operand Data Types 
 
 

       Addresses                           Numbers                 Characters  
 

Logical 
Data (0 or 1 
values only) 

     (ASCII 
        EBCDIC etc.) 
          
 
 
 

          Floating Point  
                               

        Fixed Point       
(Signed   or   
Unsigned) 

Binary Coded 
Decimal          (Single or Double   

            Precision) 
 
 

Figure 2: Operand Data Types 
 
• Addresses: Operands residing in memory are specified by their memory address 

and operands residing in registers are specified by a register address. Addresses 
provided in the instruction are operand references. 

 
• Numbers: All machine languages include numeric data types. Numeric data 

usually use one of three representations:  

• Floating-point numbers-single precision (1 sign bit, 8 exponent bits, 23 
mantissa bits) and double precision (1 sign bit, 11 exponent bits, 52 mantissa 
bits). 

• Fixed point numbers (signed or unsigned).  
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Most of the machines provide instructions for performing arithmetic operations 
on fixed point and floating-point numbers. However, there is a limit in magnitude 
of numbers due to underflow and overflow. 

 
• Characters: A common form of data is text or character strings. Characters are 

represented in numeric form, mostly in ASCII (American Standard Code for 
Information Exchange). Another Code used to encode characters is the Extended 
Binary Coded Decimal Interchange Code (EBCDIC).  

 
• Logical data: Each word or byte is treated as a single unit of data. When an n-bit 

data unit is considered as consisting of n 1-bit items of data with each item 
having the value 0 or 1, then they are viewed as logical data. Such bit-oriented 
data can be used to store an array of Boolean or binary data variables where each 
variable can take on only the values 1 (true) and 0 (false). One simple application 
of such a data may be the cases where we manipulate bits of a data item. For 
example, in floating-point addition we need to shift mantissa bits. 

 
1.3.2   Types of Instructions 

Computer instructions are the translation of high level language code to machine level 
language programs. Thus, from this point of view the machine instructions can be 
classified under the following categories. Refer to figure 3: 
 
                                                Types of Instructions 
 
 
 
 
 
 
 
 

Figure 3: Types of Instructions 
 
Data Transfer Instructions 

These instructions transfer data from one location in the computer to another location 
without changing the data content. The most common transfers are between: 

• processor registers and memory, 
• processor registers and I/O, and  
• processor registers themselves.  
 
These instructions need: 

• the location of source and destination operands and 
• the mode of addressing for each operand. Given below is a table, which lists 

eight data transfer instructions with their mnemonic symbols. These symbols are 
used for understanding purposes only, the actual instructions are binary. Different 
computers may use different mnemonic for the same instruction. 
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Operation 
Name 

Mnemonic Description 

Load LD Loads the contents from memory to register. 
Store ST Store information from register to memory location. 
Move MOV Data Transfer from one register to another or  

between CPU registers and memory. 

Data 
Transfer 
Instructions 

Data 
Processing 
Instructions 

Program 
Control 
Instruction 

Miscellaneous 
Privileged  



 
Instruction Set 

Architecture Exchange XCH Swaps information between two registers or a 
register and a memory word. 

Clear CLEAR Causes the specified operand to be replaced by 0’s. 
Set SET Causes the specified operand to be replaced by 1’s. 
Push PUSH Transfers data from a processor register to top of 

memory stack. 
Pop POP Transfers data from top of stack to processor 

register. 
 
Data Processing Instructions 

These instructions perform arithmetic and logical operations on data. Data 
Manipulation Instructions can be divided into three basic types:  

Arithmetic: The four basic operations are ADD, SUB, MUL and DIV. An arithmetic 
instruction may operate on fixed-point data, binary or decimal data etc. The other 
possible operations include a variety of single-operand instructions, for example 
ABSOLUTE, NEGATE, INCREMENT, DECREMENT. 
 
The execution of arithmetic instructions requires bringing in the operands in the 
operational registers so that the data can be processed by ALU. Such functionality is 
implemented generally within instruction execution steps. 
 
Logical: AND, OR, NOT, XOR operate on binary data stored in registers. For 
example, if two registers contain the data: 

                                    R1 = 1011 0111 
                                    R2 = 1111 0000 

   
Then,   

R1 AND R2 = 1011 0000. Thus, the AND operation can be used as a mask that selects 
certain bits in a word and zeros out the remaining bits. With one register is set to all 
1’s, the XOR operation inverts those bits in R1 register where R2 contains 1. 

    R1  XOR R2 = 0100  0111 
 
Shift: Shift operation is used for transfer of bits either to the left or to the right. It can 
be used to realize simple arithmetic operation or data communication/recognition etc. 
Shift operation is of three types:  

1. Logical shifts LOGICAL SHIFT LEFT and LOGICAL SHIFT RIGHT insert 
zeros to the end bit position and the other bits of a word are shifted left or right 
respectively. The end bit position is the leftmost bit for shift right and the 
rightmost bit position for the shift left. The bit shifted out is lost. 

 
               0      

        

 
Logical Shift Right 

 
 
                          0 

        

 
Logical Shift Left 

Figure 4: Logical Shift 
 
2. Arithmetic shifts ARITHMETIC SHIFT LEFT and ARITHMETIC SHIFT 

RIGHT are the same as LOGICAL SHIFT LEFT and LOGICAL SHIFT RIGHT 
11
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Processing Unit except that the sign bit it remains unchanged. On an arithmetic shift right, the 

sign bit is replicated into the bit position to its right. On an arithmetic shift left, a 
logical shift left is performed on all bits but the sign bit, which is retained.   

 
The arithmetic left shift and a logical left shift when performed on numbers 
represented in two’s complement notation cause multiplication by 2 when there is 
no overflow. Arithmetic shift right corresponds to a division by 2 provided there 
is no underflow.  

 
3. Circular shifts ROTATE LEFT and ROTATE RIGHT. Bits shifted out at one        

end of the word are not lost as in a logical shift but are circulated back into         
the other end.  

 
Character and String Processing Instructions: String manipulation typically is 
done in memory. Possible instructions include COMPARE STRING, COMPARE 
CHARACTER, MOVE STRING and MOVE CHARACTER. While compare 
character usually is a byte-comparison operation, compare string always involves 
memory address. 
 
Stack and register manipulation: If we build stacks, stack instructions prove to be 
useful. LOAD IMMEDIATE is a good example of register manipulation (the value 
being loaded is part of the instruction). Each CPU has multiple registers, when 
instruction set is designed; one has to specify which register the instruction is referring 
to. 
 
No operation (or idle) is needed when there is nothing to run on a computer. 
 
Program Control Instructions 
 
These instructions specify conditions for altering the sequence of program execution 
or in other words the content of PC (program counter) register.  PC points to memory 
location that holds the next instruction to be executed. The change in value of PC as a 
result of execution of control instruction like BRANCH or JUMP causes a break in 
the sequential execution of instructions. The most common control instructions are: 
 
BRANCH and JUMP may be conditional or unconditional. JUMP is an 
unconditional branch used to implement simple loops. JNE jump not equal is a 
conditional branch instruction.  The conditional branch instructions such as BRP X 
and BRN X causes a branch to memory location X if the result of most recent 
operation is positive or negative respectively. If the condition is true, PC is loaded 
with the branch address X and the next instruction is taken from X, otherwise, PC is 
not altered and the next instruction is taken from the location pointed by PC. Figure 5 
shows an unconditional branch instruction, and a conditional branch instruction if the 
content of AC is zero. 
 

MBR  0 ; Assign 0 to MBR register 
X  2001 ; Assume X to be an address location 2001 
READ X  ; Read a value from memory location 2001 into AC 
BRZ 1007  ; Branch to location 1007 if AC is zero (Conditional branch 
                                   on zero) 
ADD MBR  ; Add the content of MBR to AC and store result to AC 
TRAS    MBR  ; Transfer the contents of AC to MBR  
INC     X  ; Increment X to point to next location  
JUMP 1001  ; Loop back for further processing. 

 
(a) A program on hypothetical machine 
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0FFF MBR  0 
1000 X  2001 
1001 READ X 
1002 BRZ 1007 
1003 ADD MBR  
1004 TRAS  MBR  
1005 INC X                
1006 JUMP 1001 
1007             : 
             : 

            :   
            : 

2001 10 
2002 20 
2003 30 
2004 0 
  

                   
Unconditional  Conditional Branch 
Branch 

 
(b) The Memory of the hypothetical machine 

 
Figure 5: BRANCH & JUMP Instructions 

 
The program given in figure 5 is a hypothetical program that performs addition of 
numbers stored from locations 2001 onwards till a zero is encountered. Therefore, X 
is initialized to 2001, while MBR that stores the result is initialized to zero. We have 
assumed that in this machine all the operations are performed using CPU. The 
programs will execute instructions as: 
 
1st Cycle: 

1001 (with location X = 2001 which is value 10)  1002  1003  
1004 1005 (X is incremented to 2002)  1006 

2nd Cycle 
 
1001 (with X = 2002 which is 20)  1002  1003  1004  1005 (X 

is 2003)  1006 
3rd Cycle  

                                  
1001 (with X = 2003 which is 30)  1002  1003 1004  1005 (X is 

2004)  1006 
4th Cycle                                                                                                                               

          
        1001 (with X = 2004 which is 0)  1002 [AC contains zero so take a 

branch to 1007] 
 
                     1007…………   (MBR contains the added value) 
 
 
The SKIP instruction is a zero-address instruction and skips the next instruction 
to be executed in sequence. In other words, it increments the value of PC by one 
instruction length. The SKIP can also be conditional. For example, the instruction 
ISZ skips the next instruction only if the result of the most recent operation is 
zero. 
 
CALL and RETN are used for CALLing subprograms and RETurning from 
them.  Assume that a memory stack has been built such that stack pointer points to 
a non-empty location stack and expand towards zero address. 
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          CALL X    Procedure Call to function /procedure named X 
      CALL instruction causes the following to happen:  

1. Decrement the stack pointer so that we will not overwrite last thing put on 
stack, 

(SP  SP – 1) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

(a) Program in the Memory     (b) Flow of Control 
 

 PC = 102    PC = 200 
(address of X) 

   PC = 102  

           
500    500    500   
501      :   501    501   
502      :   502    502   
503      :   503    503   
504      :   504 102  SP   504   
505 Stack top 

prior to 
call 

SP 
 

 505 Stack top 
prior to 
call  

  505 Stack top 
prior to 
call 

 SP 

           :          
(Initial 
state) 

    (procedure 
call) 

   (on 
return) 

 

 
(c) Memory Stack Values for first call 
Figure 6: Call and Return Statements 

 
2. The contents of PC, which is pointing to NEXT instruction, the one just after the 

CALL is pushed onto the stack, and, M [SP] PC. 
3. JMP to X, the address of the start of the subprogram is put in the PC register; this 

is all a jump does. Thus, we go off to the subprogram, but we have to remember 
where we were in the calling program, i.e. we must remember where we came 
from, so that we can get back there again.  
 

 PC   X 
 
RETN : 
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       RETN instruction causes the following to happen:  

1. Pops the stack, to yield an address/label; if correctly used, the top of the 
stack will contain the address of the next instruction after the call from 
which we are returning; it is this instruction with which we want to resume 
in the calling program;   

2. Jump to the popped address, i.e., put the address into the PC register. 
 PC  top of stack value; Increment SP. 

 
Miscellaneous and Privileged Instructions: These instructions do not fit in any of 
the above categories. I/O instructions: start I/O, stop I/O, and test I/O. Typically, I/O 
destination is specified as an address. Interrupts and state-swapping operations: There 
are two kinds of exceptions, interrupts that are generated by hardware and traps, 
which are generated by programs. Upon receiving interrupts, the state of current 
processes will be saved so that they can be restarted after the interrupt has been taken 
care of.  
 
Most computer instructions are divided into two categories, privileged and non-
privileged. A process running in privileged mode can execute all instructions from the 
instruction set while a process running in user mode can only execute a sub-set of the 
instructions. I/O instructions are one example of privileged instruction, clock 
interrupts are another one.  
 
1.3.3  Number of Addresses in an Instruction 

In general, the Instruction Set Architecture (ISA) of a processor can be differentiated 
using five categories:  

• Operand Storage in the CPU - Where are the operands kept other than the 
memory?  

• Number of explicitly named operands - How many operands are named in an 
instruction? 

• Operand location - Can any ALU instruction operand be located in memory? Or 
must all operands be kept internally in the CPU registers?  

• Operations - What operations are provided in the ISA? 
• Type and size of operands - What is the type and size of each operand and how 

is it specified?  
 

As far as operations and type of operands are concerned, we have already discussed 
about these in the previous subsection.  In this section let us look into some of the 
architectures that are common in contemporary computer.  But before we discuss the 
architectures, let us look into some basic instruction set characteristics: 

• The operands can be addressed in memory, registers or I/O device address. 
• Instruction having less number of operand addresses in an instruction may 

require lesser bits in the instruction; however, it also restricts the range of 
functionality that can be performed by the instructions. This implies that a CPU 
instruction set having less number of addresses has longer programs, which 
means longer instruction execution time. On the other hand, having more 
addresses may lead to more complex decoding and processing circuits. 

• Most of the instructions do not require more than three operand addresses. 
Instructions having fewer addresses than three, use registers implicitly for 
operand locations because using registers for operand references can result in 
smaller instructions as only few bits are needed for register addresses as against 
memory addresses. 

• The type of internal storage of operands in the CPU is the most basic 
differentiation.  
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1. Evaluation Stack: The operands are implicitly on top of the stack.  
2.    Accumulator: One operand is implicitly the accumulator.  
3. General Purpose Register (GPR): All operands are explicit, either registers or        

memory locations.  
 
Evaluation Stack Architecture: A stack is a data structure that implements Last-In-
First-Out (LIFO) access policy. You could add an entry to the stack with a 
PUSH(value) and remove an entry from the stack with a  POP( ). No explicit operands 
are there in ALU instructions, but one in PUSH/POP. Examples of such computers are 
Burroughs B5500/6500, HP 3000/70 etc. 
 
On a stack machine "C = A + B" might be implemented as: 

        PUSH A 
        PUSH B 
         
ADD         // operator POP operand(s) and PUSH result(s) (implicit on top of stack) 
 
POP C 
 
Stack Architecture: Pros and Cons 

• Small instructions (do not need many bits to specify the operation). 
• Compiler is easy to write. 
• Lots of memory accesses required - everything that is not on the stack is in 

memory. Thus, the machine performance is poor. 
 
Accumulator Architecture: An accumulator is a specially designated register that 
supplies one instruction operand and receives the result. The instructions in such 
machines are normally one-address instructions. The most popular early architectures 
were IBM 7090, DEC PDP-8 etc. 
 
On an Accumulator machine "C = A + B" might be implemented as: 

        LOAD A        // Load memory location A into accumulator 
        ADD B          // Add memory location B to accumulator 
        STORE C     // Store accumulator value into memory location C 
 
Accumulator Architecture: Pros and Cons 

• Implicit use of accumulator saves instruction bits. 
• Result is ready for immediate reuse, but has to be saved in memory if next 

computation does not use it right away. 
• More memory accesses required than stack. Consider a program to do the 

expression:  
       A = B * C + D * E. 
 

Evaluation of Stack Machine  Accumulator Machine  
Program Comments Programs  Comments 

PUSH B Push the value B LOAD B Load B in AC 
PUSH C Push C MULT C Multiply AC with 

C in AC 
MULT Multiply  (B×C) 

and store result on 
stack top  

STORE T Store B×C into 
Temporary T 

PUSH D Push D LOAD D Load D in AC 
PUSH E Push E MULT E Multiply E in AC  
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Architecture MULT Multiply D×E and 
store result on 
stack top 

ADD T B×C + D×E  

ADD  Add the top two 
values on the stack 

STORE A  Store Result in A  

POP A Store the value in 
A  

  

 
General Purpose Register (GPR) Architecture: A register is a word of internal 
memory like the accumulator. GPR architecture is an extension of the accumulator 
idea, i.e., use a set of general-purpose registers, which must be explicitly named by the 
instruction. Registers can be used for anything either holding operands for operations 
or temporary intermediate values. The dominant architectures are IBM 370, PDP-11 
and all Reduced Instant Set Computer (RISC) machines etc. The major instruction set 
characteristic whether an ALU instruction has two or more operands divides GPR 
architectures: 

"C = A + B" might be implemented on both the architectures as: 

      Register - Memory                      Load/Store through Registers 
      LOAD R1, A                                LOAD R1, A 
      ADD R1, B                                   LOAD R2, B 
      STORE C, R1                               ADD R3, R1, R2 
     STORE C, R3 
 
General Purpose Register Architecture: Pros and Cons 

• Registers can be used to store variables as it reduces memory traffic and speeds 
up execution. It also improves code density, as register names are shorter than 
memory addresses. 

• Instructions must include bits to specify which register to operate on, hence 
large instruction size than accumulator type machines. 

• Memory access can be minimized (registers can hold lots of intermediate 
values). 

• Implementation is complicated, as compiler writer has to attempt to maximize 
register usage. 

 
While most early machines used stack or accumulator architectures, in the last 15 
years all CPUs made are GPR processors. The three major reasons are that registers 
are faster than memory; the more data that can be kept internally in the CPU the faster 
the program will run. The third reason is that registers are easier for a compiler to use.  
 
But while CPU’s with GPR were clearly better than previous stack and accumulator 
based CPU’s yet they were lacking in several areas. The areas being: Instructions 
were of varying length from 1 byte to 6-8 bytes. This causes problems with the pre-
fetching and pipelining of instructions. ALU instructions could have operands that 
were memory locations because the time to access memory is slower and so does the 
whole instruction.  
 
Thus in the early 1980s the idea of RISC was introduced. RISC stands for Reduced 
Instruction Set Computer. Unlike CISC, this ISA uses fewer instructions with simple 
constructs so they can be executed much faster within the CPU without having to use 
memory as often. The first RISC CPU, the MIPS 2000, has 32 GPRs. MIPS is a 
load/store architecture, which means that only load and store instructions access 
memory. All other computational instructions operate only on values stored in 
registers.  
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Processing Unit Check Your Progress 2 

1.  Match the following pairs: 

         (a)   Zero address instruction        (i)     Accumulator machines 
         (b)   One address instruction         (ii)    General Purpose Register machine 
         (c)   Three address instruction      (iii)    Evaluation-Stack machine 
 
2.  List the advantages and disadvantages of General Purpose Register machines. 
 
3.  Categorize the following operations with the respective instruction types: 

        (a) MOVE                                     (i) Data Processing Instructions  
         (b) DIV                                        (ii) Data Transfer Instructions  
         (c) STORE                                    (iii)  Privileged Instructions  
         (d) XOR     (iv)  Program Control Instructions 
         (e) BRN           

(f)  COMPARE      
(g)   TRAP 

 

1.4   ADDRESSING SCHEMES 

As discussed earlier, an operation code of an instruction specifies the operation to be 
performed. This operation is executed on some data stored in register or memory. 
Operands may be specified in one of the three basic forms i.e., immediate, register, 
and memory. 
 
But, why addressing schemes? The question of addressing is concerned with how 
operands are interpreted. In other words, the term ‘addressing schemes’ refers to the 
mechanism employed for specifying operands. There are a multitude of addressing 
schemes and instruction formats. Selecting which schemes are available will impact 
not only the ease to write the compiler, but will also determine how efficient the 
architecture can be?  
 
All computers employ more than one addressing schemes to give programming 
flexibility to the user by providing facilities such as pointers to memory, loop control, 
indexing of data, program relocation and to reduce the number of bits in the operand 
field of the instruction. Offering a variety of addressing modes can help reduce 
instruction counts but having more modes also increases the complexity of the 
machine and in turn may increase the average Cycles per Instruction (CPI). Before we 
discuss the addressing modes let us discuss the notations being used in this section. 
 
In the description that follows the symbols A, A1, A2 ...... etc. denote the content of 
an operand field. Thus, Ai may refer to a data or a memory address. In case the 
operand field is a register address, then the symbols R, R1, R2,... etc., are used. If C 
denotes the contents (either of an operand field or a register or of a memory location), 
then (C) denotes the content of the memory location whose address is C.  
 
The symbol EA (Effective Address) refers to a physical address in a non-virtual 
memory environment and refers to a register in a virtual memory address 
environment. This register address is then mapped to physical memory address.  
 
What is a virtual address? von Neumann had suggested that the execution of a 
program is possible only if the program and data are residing in memory. In such a 
situation the program length along with data and other space needed for execution 
cannot exceed the total memory. However, it was found that at the time of execution, 
the complete portion of data and instruction is not needed as most of the time only few 
areas of the program are being referenced. Keeping this in mind a new idea was put 
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Architecture forward where only a required portion is kept in the memory while the rest of the 
program and data reside in secondary storage. The data or program portion which are 
stored on secondary storage are brought to memory whenever needed and the portion 
of memory which is not needed is returned to the secondary storage. Thus, a program 
size bigger than the actual physical memory can be executed on that machine. This is 
called virtual memory. Virtual memory has been discussed in greater details as part of 
the operating system. 
 
The typicality of virtual addresses is that: 

• they are longer than the physical addresses as total addressed memory in virtual 
memory is more than the actual physical memory. 

• if a virtual addressed operand is not in the memory then the operating system 
brings that operand to the memory. 

 
The symbols D, D1, D2,..., etc. refer to actual operands to be used by instructions for 
their execution.  
 
Most of the machines employ a set of addressing modes. In this unit, we will describe 
some very common addressing modes employed in most of the machines. A specific 
addressing mode example, however, is given in Unit 1 of Block 4. 
 
The following tree shows the common addressing modes: 

 
Addressing Modes 

 
 

 Register Displacement Stack 
 Immediate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Reference   Addressing Addressing 

 
But what are the
 
In general not al
the common are
 

Addressing M
Immediate 
Direct 
Register 
Register Indirec
Index 
Auto-index mod
Base Register 

Index 
Stack 
Memory 
Reference
Memory 
Indirect 

Register  Register 
Indirect 
Memory 
Direct 
Figure 7: Common Addressing Modes 

Relative 
Addressing 

Base 
Addressing 

Indexed 
Addressing  

 uses /applications of these addressing modes? 

l of the above modes are used for all applications. However, some of 
as where compilers of high-level languages use them are: 

ode Possible use 
For moving constants and initialization of variables 
Used for global variables and less often for local variables 
Frequently used for storing local variables of procedures 

t For holding pointers to structure in programming languages C 
To access members of an array 

e  For pushing or popping the parameters of procedures 
Employed to relocate the programs in memory specially in  
multi-programming systems 
Accessing iterative local variables such as arrays 
 Used for local variables 
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Processing Unit 1.4.1 Immediate Addressing 

When an operand is interpreted as an immediate value, e.g. LOAD IMMEDIATE  7, 
it is the actual value 7 that is put in the CPU register. In this mode the operand is the 
data in operand address field of the instruction. Since there is no address field at all, 
and hence no additional memory accesses are required for executing this instruction. 
In other words, in this addressing scheme, the actual operand D is A, the content of 
the operand field: i.e. D = A. The effective address in this case is not defined. 
 

                         Main Memory 
 

 
 

Instruction  
LOAD (I)      07 
 

Opcode 
                      
Addressing mode                             Operand value 
      (immediate) 

 
Figure 8: Immediate Addressing 

 
Salient points about the addressing mode are:  

• This addressing mode is used to initialise the value of a variable.  
• The advantage of this mode is that no additional memory accesses are required 

for executing the instruction.  
• The size of instruction and operand field is limited. Therefore, the type of data 

specified under this addressing scheme is also restricted. For example, if an 
instruction of 16 bits uses 6 bits for opcode and 2 bits for addressing mode, then 
10 bits can be used to specify an operand. Thus, 210 possible values only can be 
assigned. 

 
1.4.2 Direct Addressing 

In this scheme the operand field of the instruction specifies the direct address of the 
intended operand, e.g., if the instruction LOAD 500 uses direct addressing, then it will 
result in loading the contents of memory cell 500 into the CPU register. In this mode 
the intended operand is the address of the data in operation. For example, if memory 
cell 500 contains 7, as in the diagram below, then the value 7 will be loaded to CPU 
register.  
 
Addressing mode 
      (Direct) 
 
     Opcode   Operand Address 
 

             
200 

LOAD D 500 

          : 
            
500 

……0111 

  
                       

Figure 9: Direct Addressing 
 

Some salient points about this scheme are: 
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• This scheme provides a limited address space because if the address field has n 
bits then memory space would contain 2n memory words or locations. For 
example, for the example machine of Figure 1, the direct addresses memory 
space would be 210. 
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Architecture • The effective address in this scheme is defined as the address of the operand, 
that is, 

EA  A     and    (EA in the above example will be 500) 
D = (EA)     (D in the above example will be 7) 

 
The second statement implies that the data is stored in the memory location 
specified by effective address.  

• In this addressing scheme only one memory reference is required to fetch the 
operand. 

 
1.4.3 Indirect Addressing 

In this scheme the operand field of the instruction specifies the address of the 
address of intended operand, e.g., if the instruction LOAD I 500 uses indirect 
addressing scheme, and contains a value 50A, and memory location 50A contains 7, 
then the value 7 will get loaded in the CPU register. 
   

  
 LOAD  I  500 
  

500          50 A 

  

50 A     …..0111 

  
 
 
 
 
 

Figure 10: Indirect Addressing 
 

Some salient points about this scheme are:  

• In this addressing scheme the effective address EA and the contents of the 
operand field are related as: 

 EA = (A) and  (Content of location 500 that is 50A above) 
 D = (EA) (Contents of location 50A that is 7) 
 
• The drawback of this scheme is that it requires two memory references to fetch 

the actual operand. The first memory reference is to fetch the actual address of 
the operand from the memory and the second to fetch the actual operand using 
that address.    

• In this scheme the word length determines the size of addressable space, as the 
actual address is stored in a Word.  For example, the memory having a word size 
of 32 bits can have 232 indirect addresses. 

 
1.4.4 Register Addressing 

When operands are taken from register(s), implicitly or explicitly, it is called register      
addressing. These operands are called register operands.  If operands are from        
memory locations, they are called memory operands. In this scheme, a register address 
is specified in the instruction. That register contains the operand. It is conceptually 
similar to direct addressing scheme except that the register name or number is 
substituted for memory address. Sometimes the address of register may be assumed 
implicitly, for example, the Accumulator register in old machines. 
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Figure 11: Register Addressing 
 
The major advantages of register addressing are: 

• Register access is faster than memory access and hence register addressing   
results in faster instruction execution.  However, register obtains operands only 
from memory; therefore, the operands that should be kept in registers are 
selected carefully and efficiently. For example, if an operand is moved into a 
register and processed only once and then returned to memory, then no saving 
occurs. However if an operand is used repeatedly after bringing into register 
then we have saved few memory references. Thus, the task of using register 
efficiently deals with the task of finding what operand values should be kept in 
registers such that memory references are minimised. Normally, this task is 
done by a compiler of a high level language while translating the program to 
machine language.  As a thumb rule the frequently used local variables are kept 
in the registers. 

• The size of register address is smaller than the memory address. It reduces the 
instruction size. For example, for a machine having 32 general purpose registers 
only 5 bits are needed to address a register. 

 
In this addressing scheme the effective address is calculated as: 

EA = R 
D = (EA) 

 
1.4.5 Register Indirect Addressing 

In this addressing scheme, the operand is data in the memory pointed to by a register. 
In other words, the operand field specifies a register that contains the address of the 
operand that is stored in memory. This is almost same as indirect addressing scheme 
except it is much faster than indirect addressing that requires two memory accesses.  
 
 

 
 

 
 

 
 
 
 
 
 
 

Figure 12: Register Indirect Addressing 
 
The effective address of the operand in this scheme is calculated as: 

EA= (R) and 
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The address capability of register indirect addressing scheme is determined by the size 
of the register. 
 
1.4.6 Indexed Addressing Scheme 

In this scheme the operand field of the instruction contains an address and an index 
register, which contains an offset. This addressing scheme is generally used to address 
the consecutive locations of memory (which may store the elements of an array). The 
index register is a special CPU register that contains an index value. The contents of 
the operand field A are taken to be the address of the initial or the reference location 
(or the first element of array). The index register specifies the distance between the 
starting address and the address of the operand. 
 
For example, to address of an element B[i] of an array B[1], B[2],....B[n], with each 
element of the array stored in two consecutive locations, and the starting address of 
the array is assumed to be 101, the operand field A in the instruction shall contain the 
number 101 and the index register R will contain the value of the expression 
(i  - 1) × 2. 
 
Thus, for the first element of the array the index register will contain 0. For addressing 
5th element of the array, the A=101 whereas index register will contain: 

 (5- 1) × 2 = 8 
 
Therefore, the address of the 5th element of array B is=101+8=109. In B[5], however, 
the element will be stored in location 109 and 110. To address any other element of 
the array, changing the content of the index register will suffice. 
 
Thus, the effective address in this scheme is calculated as: 

EA = A +(R) 
D = (EA) 
(DA is Direct address) 

 
As the index register is used for iterative applications, therefore, the value of index 
register is incremented or decremented after each reference to it. In several systems 
this operation is performed automatically during the course of an instruction cycle. 
This feature is known as auto-indexing. Auto indexing can be auto-incrementing or 
auto-decrementing. The choice of register to be used as an index register differs from 
machine to machine. Some machines employ general-purpose registers for this 
purpose while other machines may specify special purpose registers referred to as 
index registers. 
 
 
 
 
 
 
 
 

 
 
 

Figure 13: For Displacement Addressing 
 

1.4.7 Base Register Addressing 

An addressing scheme in which the content of an instruction specifies base register is    
added to the displacement field or address field of the instruction. (Refer to Figure 
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Processing Unit 13). The displacement field is taken to be a positive number. For example, if a 

displacement field is of 8 bits then a memory region of 256 words beginning at the 
address pointed to by the base register can be addressed by this mode. This is similar 
to indexed addressing scheme except that the role of Address field and Register is 
reversed. In indexing Address field of instruction is fixed and index register value is 
changed, whereas in Base Register addressing, the Base Register is common and 
Address field of the instruction in various instructions is changed. In this case: 

EA = A+ (B)  
D = (EA) 
(B) Refers to the contents of a base register B. 

 
The contents of the base register may be changed in the privileged mode only. No user 
is allowed to change the contents of the base register. The base-addressing scheme 
provides protection of users from one another. 
 
This addressing scheme is usually employed to relocate the programs in memory 
specially in multiprogramming systems in which only the value of base register 
requires updating to reflect the beginning of a new memory segment. 
 
Like index register a base register may be a general-purpose register or a special 
register reserved for base addressing. 
 
1.4.8 Relative Addressing Scheme 

In this addressing scheme, the register R is the program counter (PC) containing the 
address of the current instruction being executed. The operand field A contains the 
displacement (positive or negative) of an instruction or data with respect to the current 
instruction. This addressing scheme has advantages if the memory references are 
nearer to the current instruction being executed. (Please refer to the Figure 13). 
 
Let us give an example of Index, Base and Relative addressing schemes. 
 
Example 1: What would be the effective address and operand value for the following 
LOAD instructions: 
 
(i)    LOAD   IA   56 R1 Where IA indicates index addressing, R1 is index register              

and 56 is the displacement in Hexadecimal. 
(ii)  LOAD  BA  46 B1  Where BA indicates base addressing, B1 is base register and 

46 is the displacement specified in instruction in 
Hexadecimal notation. 

(iii)  LOAD RA 36        Where RA specifies relative addressing.  
 
The values of registers and memory is given below: 
 
     Values of Memory Location 

 

 

Register Value   
PC 2532H 27A8   10H 
Index Register (R1) 2752H       : 

     : 
Base Register (B1) 2260H 

 

2568H    70H 
        : 

    :   
   22A6H    25H 
        : 
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Architecture The values are shown in the following table: 
 
Addressing Mode Formulae for 

addressing mode 
      EA Data Value 

Index Addressing  EA = A+(R)  
D= (EA) 

56 + 2752 = 27A8H     10H 

Base Addressing EA = A+ (B) 46 + 2260 = 22A6H     25H 
Relative 
Addressing 

EA = (PC) + A 2532 + 36 = 2568H      70H 

 
1.4.9 Stack Addressing 
 
In this addressing scheme, the operand is implied as top of stack. It is not explicit, but 
implied. It uses a CPU Register called Stack Pointer (SP). The SP points to the top of 
the stack i.e. to the memory location where the last value was pushed.  A stack 
provides a sort-of indirect addressing and indexed addressing. This is not a very 
common addressing scheme. The operand is found on the top of a stack. In some 
machines the top two elements of stack and top of stack pointer is kept in the CPU 
registers, while the rest of the elements may reside in the memory. Figure 14 shows 
the stack addressing schemes. 
        
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Stack Addressing 
 
Check Your Progress 3 

1.  What are the numbers of memory references required to get the data for the 
following addressing schemes: 

 (i)  Immediate addressing 
 (ii)  Direct addressing 
 (iii) Indirect addressing 
 (iv) Register Indirect addressing 

(v)   Stack addressing. 
 
2.  What are the advantages of Base Register addressing scheme? 
 
3.  State True or False.    

(i)    Immediate addressing is best suited for initialization of variables. 
 
(ii)   Index addressing is used for accessing global variables.      
 
(iii)  Indirect addressing requires fewer memory accesses than that of direc
        addressing.                
 
(iv)  In stack addressing, operand is explicitly specified.       
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Processing Unit 1.5    INSTRUCTION SET AND FORMAT DESIGN 

ISSUES 

Some of the basic issues of concerns for instruction set design are: 

Completeness: For an initial design, the primary concern is that the instruction set 
should be complete which means there is no missing functionality, that is, it should 
include instructions for the basic operations that can be used for creating any possible 
execution and control operation.  
 
Orthogonal: The secondary concern is that the instructions be orthogonal, that is, not 
unnecessarily redundant. For example, integer operation and floating number 
operation usually are not considered as redundant but different addressing modes may 
be redundant when there are more instructions than necessary because the CPU takes 
longer to decode. 
 
An instruction format is used to define the layout of the bits allocated to these 
elements of instructions. In addition, the instruction format explicitly or implicitly 
indicates the addressing modes used for each operand in that instruction. 
 
Designing of instruction format it is a complex art. In this section, we will discuss 
about the design issues for instruction sets of the machines. We will discuss only point 
wise details of these issues. 
 
1.5.1 Instruction Length 

Significance: It is the basic issue of the format design. It determines the richness and 
flexibility of a machine. 
 
Basic Tardeoff: Smaller instruction (less space) Versus desire for more powerful 
instruction repertoire. 
 
Normally programmer desire: 

• More op-code and operands: as it results in smaller programs 
• More addressing modes: for greater flexibility in implementing functions like 

table manipulations, multiple branching. 
 
However, a 32 bit instruction although will occupy double the space and can be 
fetched at double the rate of a 16 bit instruction, but can not be doubly useful. 
 
Factors, which must be considered for deciding about instruction length 

Memory size : if larger memory range is to be addressed, then     
                      more bits may be required in address field. 

Memory organization : if the addressed memory is virtual memory then  
  memory range which is to be addressed by the 

 instruction is larger than physical memory size. 

Memory transfer length : instruction length should normally be equal to 
  data bus length or multiple of it. 

Memory transfer : the data transfer rate from the memory ideally 
  should be equivalent to the processor speed. It 
        can become a bottleneck if processor executes 
                                             instructions faster than the rate of fetching the  
                                   instructions. One solution for such problem is  
                                    to use cache memory or another solution can be 
                                to keep instruction short. 
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Architecture Normally an instruction length is kept as a multiple of length of a character (that is 8 
bits), and equal to the length of fixed-point number. The term word is often used in 
this context. Usually the word size is equal to the length of fixed point number or 
equal to memory-transfer size. In addition, a word should store integral number of 
characters. Thus, word size of 16 bit, 32 bit, 64 bit are to be coming very common and 
hence the similar length of instructions are normally being used. 
 
1.5.2 Allocation of Bits Among Opcode and Operand 

The tradeoff here is between the numbers of bits of opcode versus the addressing 
capabilities. An interesting development in this regard is the development of variable 
length opcode.  
 
Some of the factors that are considered for selection of addressing bits: 

• Number of addressing modes: The more are the explicit addressing modes the 
more bits are needed for mode selection. However, some machines have implicit 
modes of addressing. 

• ` : As far as memory references are concerned, granularity implies whether an 
address is referencing a byte or a word at a time. This is more relevant for 
machines, which have 16 bits, 32 bits and higher bits words. Byte addressing 
although may be better for character manipulation, however, requires more bits in 
an address. For example, memory of 4K words (1 word = 16 bit) is to be 
addressed directly then it requires: 

WORD Addressing  = 4K words 
     = 212 words 
     ⇒ 12 bits are required for word addressing. 
 

Byte Addressing  = 212 words 
    = 213 bytes 
    ⇒ 13 bits are required for byte addressing. 
 
1.5.3 Variable-Length of Instructions 

With the better understanding of computer instruction sets, the designers came up with 
the idea of having a variety of instruction formats of different length. What could be 
the advantages of such a set? The advantages of such a scheme are: 

• Large number of operations can be provided which have different lengths of 
instructions. 

• Flexibility in addressing scheme can be provided efficiently and compactly. 
 
However, the basic disadvantage of such a scheme is to have a complex CPU.  
 
An important aspect about these variables length instructions is: “The CPU is not 
aware about the length of next instruction which is to be fetched”. This problem can 
be handled if each instruction fetch is made equal to the size of the longest instruction. 
Thus, sometimes in a single fetch multiple instructions can be fetched. 
 
 

1.6   EXAMPLE OF INSTRUCTION FORMAT 

Let us provide you a basic example by which you may be able to define the concept of 
instruction format.  
 
MIPS 2000 
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Processing Unit Let’s consider the instruction format of a MIPS computer. MIPS is an acronym for 

Microprocessor without Interlocked Pipeline Stages. It is a microprocessor 
architecture developed by MIPS Computer Systems Inc. most widely known for 
developing the MIPS architecture. The MIPS CPU family was one of the most 
successful and flexible CPU designs throughout the 1990s. The MIPS CPU has a five-
stage CPU pipeline to execute multiple instructions at the same time. Now what we 
have introduced is a new term Pipelining. What else: the 5 stage pipeline, let us just 
introduce it here. It defines the 5 steps of execution of instructions that may be 
performed in an overlapped fashion.  The following diagram will elaborate this 
concept:  
 
         Instruction execution stages 
 

5 4 3 2 1stage
1

Instruction 1 
 
 

Instruction 2 
 

Instruction 3 
 
      

5 4 3 2 1 

5 4 3 2 1 

Figure15: Pipeline 
 
Please note that in the above figure:  

• All the stages are independent and distinct, that is, the second stage execution of 
Instruction 1 should not hinder Instruction 2. 

• The overall efficiency of the system becomes better. 
 
The early MIPS architectures had 32-bit instructions and later versions have 64-bit 
implementations. 
 
The first commercial MIPS CPU model, the R2000, whose instruction format is 
discussed below, has thirty-two 32-bit registers and its instructions are 32 bits long.  
 
 
         

       6 bits   5 bits            5 bits                5 bits                  5 bits               5 bits 

     op  rs          rt                     rd      shamt                  funct 

 
Figure 16: A Sample Instruction Format of MIPS instruction 

 
The meaning of each field in MIPS instruction is given below: 

• op : operation code or opcode 
• rs : The first register source operand 
• rt : The second register source operand 
• rd : The destination register operand, stores the result of  the operation 
• shamt : used in case of shift operations 
• funct : This field selects the specific variant of the operation in the opcode field, 

and is sometimes referred to as function code. 
 
All MIPS instructions are of the same length, requiring different kinds of instruction 
formats for different types of instructions. 
 
Instruction Format 

All MIPS instructions are of the same size and are 32 bits long. MIPS designers chose 
to keep all instructions of the same length, thereby requiring different kinds of 
instruction formats for different kinds of instructions. For example, R-type (register) 
or R-format is used for arithmetic instructions (Figure 16). A second type of 
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Architecture instruction format is called i-type or i-format and is used by the data transfer 
instructions.  
 
Instruction format of I-type instructions is given below: 
 
 
 
        6 bits   5 bits               5 bits                     16 bits 

     op  rs          rt                     address  

 
Figure 17: I-format of RISC 

 
The 16-bit address means a load word instruction can load any word within a region 
of  + 215 of the base register rs. Consider a load word instruction given below: 

The rt field specifies the destination register, which receives the result of the load.  
 
MIPS Addressing Modes 

MIPS uses various addressing modes: 

1. Uses Register and Immediate addressing modes for operations.  
2. Immediate and Displacement addressing for Load and Store instructions. In 

displacement addressing, the operand is at the memory location whose address 
is the sum of a register. 

 
Check Your Progress 4 

1.  State True or False.  

(i)  Instruction length should normally be equal to data bus length or multiple 
of it. 

 
(ii)   A long instruction executes faster than a short instruction. 
 
(iii)  Memory access is faster than register access.                               
 
(iv)  Large number of opcodes and operands result in bigger program. 
 
(v)   A machine can use at the most one addressing scheme. 
 
(vi)  Large number of operations can be provided in the instruction set, w

have variable-lengths of instructions. 
 

1.7   SUMMARY       

In this unit, we have explained various concepts relating to instructions. We have
discussed the significance of instruction set, various elements of an instruction, 
instruction set design issues, different types of ISAs, various types of instructions
various operations performed by the instructions, various addressing schemes. W
have also provided you the instruction format of MIPS machine. Block 4 Unit 1 
contains a detailed instruction set of 8086 machine. You can refer to further read
for instruction set of various machines. 
 

1.8   SOLUTIONS/ ANSWERS 

Check Your Progress 1 

1.  True 
2.  True 
i
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4.  True 
5.  False 
    
Check Your Progress 2 
 
1.     (a) -  (iii)      (b) - (i)     (c) - (ii) 
2.  

• Speed up of instruction execution as stores temporary results in registers 
• Less code to execute 
• Larger instruction set  
• Difficult for compiler writing  

 
3.     (i) - b), d), f) ;   (ii) - a), c) ;   (iii) - g) ;   (iv) - e)          
 
Check Your Progress 3 

1.    
a) Immediate addressing - 0 memory access 
b) Direct addressing - 1 memory access 
c) Indirect addressing - 2 memory accesses 
d) Register Indirect addressing - 1 memory access 
e) Stack addressing - 1 memory access 

 
2.   It allows reallocation of program on reloading. It allows protection of users from 

one another memory space. 
 
3.    (i)   True. 
 (ii)  False. 
 (iii) False. 
 (iv) False 
 
Check Your Progress 4 

1.  
(i)   True. 
(ii)   False. 
(iii)  False. 
(iv)  False. 
(v)   False. 
(vi)  True. 
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2.0   INTRODUCTION 

The main task performed by the CPU is the execution of instructions. In the previous 
unit, we have discussed about the instruction set of computer system. But, one thing, 
which remained unanswered is: how these instructions will be executed by the CPU? 
 
The above question can be broken down into two simpler questions. These are: 

What are the steps required for the execution of an instruction? How are these steps 
performed by the CPU?  

The answer to the first question lies in the fact that each instruction execution consists 
of several steps. Together they constitute an instruction cycle. A micro-operation is 
the smallest operation performed by the CPU. These operations put together execute 
an instruction.  

For answering the second question, we must have an understanding of the basic 
structure of a computer. As discussed earlier, the CPU consists of an Arithmetic Logic 
Unit, the control unit and operational registers. We will be discussing the register 
organisation in this unit, whereas the arithmetic-logic unit and control unit 
organisation are discussed in subsequent units. 
  
In this unit we will first discuss the basic CPU structure and the register organisation 
in general. This is followed by a discussion on micro-operations and their 
implementation. The discussion on micro-operations will gradually lead us towards 
the discussion of a very simple ALU structure. The detail of ALU structure is the 
topic of the next unit.  
 

2.1    OBJECTIVES 

After going through this unit, you should be able to: 

• describe the register organisation of the CPU; 
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• define what is a micro-operation; 
 
• differentiate among various micro-operations; 
 
• discuss an instruction execution using the micro-operations; and 
 
• define the concepts of instruction pipelining. 
 

2.2   BASIC CPU STRUCTURE 

A computer manipulates data according to the instructions of a stored program. 
Stored program means the program and data are stored in the same memory unit. 
The central processing unit, also referred to as CPU, performs the bulk of the data 
processing operations. It has three main components: 

1. A set of registers for holding binary information. 
 
2. An arithmetic and logic unit (ALU) for performing data manipulation, and 
 
3. A control unit that coordinates and controls the various operations and initiates 

the appropriate sequence of micro-operations for each task. 
 
Computer instructions are normally stored in consecutive memory locations and are 
executed in sequence one by one. The control unit allows reading of an instruction 
from a specific address in memory and executes it with the help of ALU and Register.  
 
Instruction Execution and Registers 

The basic process of instruction execution is:  

1. Instruction is fetched from memory to the CPU registers (called instruction fetch) 
under the control unit.  

 
2. It is decoded by the control unit and converted into a set of lower level control 

signals, which cause the functions specified by that instruction to be executed.  
 
3. After the completion of execution of the current instruction, the next instruction 

fetched is the next instruction in sequence.  
 
This process is repeated for every instruction except for program control instructions, 
like branch, jump or exception instructions. In this case the next instruction to be 
fetched from memory is taken from the part of memory specified by the instruction, 
rather than being the next instruction in sequence. 
 
But why do we need Registers? 

If tcpu is the cycle time of CPU that is the time taken by the CPU to execute a well-
defined micro-operation using registers, and tmem is the memory cycle time, that is the 
speed at which the memory can be accessed by the CPU, then (tcpu/tmem) is in the range 
of 2 to 10, that is CPU is 2 – 10 times faster than memory. Thus, CPU registers are the 
fastest temporary storage areas. Thus, the instructions whose operands are stored in 
the fast CPU registers can be executed rapidly in comparison to the instructions whose 
operands are in the main memory of a computer. Each instruction must designate the 
registers it will address. Thus, a machine requires a large number of registers. 
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Figure 1: CPU with general register organisation 
 
But how do the registers help in instruction execution? We will discuss this with the 
help of Figure 1.  

Step 1: 

The first step of instruction execution is to fetch the instruction that is to be executed. 
To do so we require: 

• Address of the “instruction to be fetched”. Normally Program counter (PC) 
register stores this information. 

• Now this address is converted to physical machine address and put on address 
bus with the help of a buffer register sometimes called Memory Address Register 
(MAR). 

• This, coupled with a request from control unit for reading, fetches the instruction 
on the data bus, and transfers the instruction to Instruction Register (IR). 

• On completion of fetch PC is incremented to point to the next instruction. 
 
In Step 2: 

• The IR is decoded; let us assume that Instruction Register contains an instruction. 
ADD Memory location B with general purpose register R1 and store result in R1, 
then control unit will first instruct to: 

• Get the data of memory location B to buffer register for data (DR) using 
buffer address register (MAR) by issuing Memory read operation. 

• This data may be stored in a general purpose register, if so needed let us say 
R2 
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unit and the result will be put back in R1. The status of ALU operation for 
example result in zero/non zero, overflow/no overflow etc. is recorded in the 
status register. 

 
• Similarly, the other instructions are fetched and executed using ALU and register 

under the control of the Control Unit. 
 
Thus, for describing instruction execution, we must describe the registers layout, 
micro-operations, ALU design and finally the control unit organization. We will 
discuss registers and micro- operation in this unit. ALU and Control Unit are 
described in Unit 3 and Unit 4 of this Block.  
 

2.3 REGISTER ORGANISATION 

The number and the nature of registers is a key factor that differentiates among 
computers. For example, Intel Pentium has about 32 registers. Some of these registers 
are special registers and others are general-purpose registers. Some of the basic 
registers in a machine are: 

• All von-Neumann machines have a program counter (PC) (or instruction counter 
IC), which is a register that contains the address of the next instruction to be 
executed. 

• Most computers use special registers to hold the instruction(s) currently being 
executed. They are called instruction register (IR).  

• There are a number of general-purpose registers. With these three kinds of 
registers, a computer would be able to execute programs.  

• Other types of registers:  

• Memory-address register (MAR) holds the address of next memory 
operation (load or store).  

• Memory-buffer register (MBR) holds the content of memory operation (load 
or store).  

• Processor status bits indicate the current status of the processor. Sometimes 
it is combined with the other processor status bits and is called the program 
status word (PSW).  

 
A few factors to consider when choosing the number of registers in a CPU are:  

• CPU can access registers faster then it can access main memory.  
• For addressing a register, depending on the number of addressable registers a few 

bit addresses is needed in an instruction. These address bits are definetly quite 
less in comparison to a memory address. For example, for addressing 256 
registers you just need 8 bits, whereas, the common memory size of 1MB 
requires 20 address bits, a difference of 60%.  

• Compilers tend to use a small number of registers because large numbers of 
registers are very difficult to use effectively. A general good number of registers 
is 32 in a general machine. 

• Registers are more expensive than memory but far less in number. 
 
From a user’s point of view the register set can be classified under two basic 
categories. 
 
Programmer Visible Registers: These registers can be used by machine or assembly 
language programmers to minimize the references to main memory. 
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Status Control and Registers: These registers cannot be used by the programmers 
but are used to control the CPU or the execution of a program. 
 
Different vendors have used some of these registers interchangeably; therefore, you 
should not stick to these definitions rigidly. Yet this categorization will help in better 
understanding of register sets of machine. Therefore, let us discuss more about these 
categories. 
 
2.3.1    Programmer Visible Registers 

These registers can be accessed using machine language. In general we encounter four 
types of programmer visible registers. 

• General Purpose Registers 
• Data Registers 
• Address Registers 
• Condition Codes Registers. 
 
A comprehensive example of registers of 8086 is given in Unit 1 Block 4. 
 
The general-purpose registers as the name suggests can be used for various functions. 
For example, they may contain operands or can be used for calculation of address of 
operand etc. However, in order to simplify the task of programmers and computers 
dedicated registers can be used. For example, registers may be dedicated to floating 
point operations. One such common dedication may be the data and address registers. 
 
The data registers are used only for storing intermediate results or data and not for 
operand address calculation. 
 
Some dedicated address registers are: 

Segment Pointer    :  Used to point out a segment of memory. 
Index Register       :  These are used for index addressing scheme. 
Stack Pointer : Points to top of the stack when programmer visible stack 

addressing is used. 
 
One of the basic issues with register design is the number of general-purpose registers 
or data and address registers to be provided in a microprocessor. The number of 
registers also affects the instruction design as the number of registers determines the 
number of bits needed in an instruction to specify a register reference. In general, it 
has been found that the optimum number of registers in a CPU is in the range 16 to 
32. In case registers fall below the range then more memory reference per instruction 
on an average will be needed, as some of the intermediate results then have to be 
stored in the memory. On the other hand, if the number of registers goes above 32, 
then there is no appreciable reduction in memory references. However, in some 
computers hundreds of registers are used. These systems have special characteristics. 
These are called Reduced Instruction Set Computers (RISC) and they exhibit this 
property. RISC computers are discussed later in this unit.  
 
What is the importance of having less memory references? As the time required for 
memory reference is more than that of a register reference, therefore the increased 
number of memory references results in slower execution of a program. 
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Register Length: An important characteristic related to registers is the length of a 
register. Normally, the length of a register is dependent on its use. For example, a 
register, which is used to calculate address, must be long enough to hold the 
maximum possible addresses. If the size of memory is 1 MB than a minimum of 20 
bits are required to store an instruction address.  Please note how this requirement can 
be optimized in 8086 in the block 4. Similarly, the length of data register should be 
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consecutive registers may be used to hold data whose length is double of the register 
length.  
 
2.3.2    Status and Control Registers 
 
For control of various operations several registers are used. These registers cannot be 
used in data manipulation; however, the content of some of these registers can be used 
by the programmer. One of the control registers for a von-Neumann machine is the 
Program Counter (PC). 
 
Almost all the CPUs, as discussed earlier, have a status register, a part of which may 
be programmer visible. A register which may be formed by condition codes is called 
condition code register. Some of the commonly used flags or condition codes in such 
a register may be: 
 

Flag Comments 

Sign flag This indicates whether the sign of previous arithmetic operation   
was positive (0) or negative (1). 

Zero flag This flag bit will be set if the result of the last arithmetic 
operation was zero. 

Carry flag This flag is set, if a carry results from the addition of the highest 
order bits or borrow is taken on subtraction of highest order bit. 

Equal flag This bit flag will be set if a logic comparison operation finds  
out that both of its operands are equal. 

Overflow flag This flag is used to indicate the condition of arithmetic overflow. 
Interrupt This flag is used for enabling or disabling interrupts. Enable/ 

disable flag. 
Supervisor flag This flag is used in certain computers to determine whether  

the CPU is executing in supervisor or user mode. In case the CPU 
is in supervisor mode it will be allowed to execute certain 
privileged instructions. 

 
These flags are set by the CPU hardware while performing an operation. For example, 
an addition operation may set the overflow flag or on a division by 0 the overflow flag 
can be set etc. These codes may be tested by a program for a typical conditional 
branch operation. The condition codes are collected in one or more registers. RISC 
machines have several sets of conditional code bits. In these machines an instruction 
specifies the set of condition codes which is to be used. Independent sets of condition 
code enable the provisions of having parallelism within the instruction execution unit.  
 
The flag register is often known as Program Status Word (PSW). It contains condition 
code plus other status information. There can be several other status and control 
registers such as interrupt vector register in the machines using vectored interrupt, 
stack pointer if a stack is used to implement subroutine calls, etc. 
 
Check Your Progress 1 
 
1.  What is an address register? 

 ……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 
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2. A machine has 20 general-purpose registers. How many bits will be needed for 
register address of this machine? 
..............................................................................................................................  

..............................................................................................................................  

..............................................................................................................................  

3.  What is the advantage of having independent set of conditional codes? 

 ..............................................................................................................................  

 ..............................................................................................................................  

 ..............................................................................................................................  

3. Can we store status and control information in the memory? 
..............................................................................................................................  

..............................................................................................................................  

..............................................................................................................................  
Let us now look into an example register set of MIPS processor. 
 

2.4   GENERAL REGISTERS IN A PROCESSOR 

In Block 4 Unit 1, you would be exposed to 8086 registers. In this section we will 
provide very brief details of registers of a RISC system called MIPS. 
 
MIPS is a register-to-register or load/store architecture and uses three address 
instructions for data manipulation. It is because of register-register operands that you 
can have more operands in an instruction of 32 bits, as register address are smaller.  
The MIPS have 32 addressable registers = 25 ⇒ 5 bits register address. The table 
given below displays the MIPS general purpose registers.  
 
MIPS register names begin with a $. There are two naming conventions: 

• By number: 

                           $0   $1   $2    …              $31 
 
• By (mostly) two-letter names, such as:  

                           $a0 - $a3   $t0 - $t7   $s0 - $s7    $gp    $fp    $sp    $ra 
 
Not all of these are general-purpose registers. The following table describes how each 
general register is treated, and the actions you can take with each register.  
 

 
Name 

 
Register 
number 

 
Description 

 
Specify in Expression

 
ZERO 

 
0 

 
Always has the value 0.  

 
$zero  

 
AT         1 

 
Reserved for the assembler to handle 
large constants. 

 
 
$at  

 
V0 - V1 

 
 

2-3 

 
Function value registers. Values for 
results and expression evaluation. 

 
 
$v0 - $v1 

A0 - A3 
 

4-7 Argument registers. 
 
$a0 - $a3 
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S0 - S7 

 
16-23 

 
Saved registers  

 
$s0 - $s7 

 
T8 - T9 

 
    24-25 

 
Temporary registers  

 
$t8 - $t9 

 
K0 - K1 

 
26-27 

 
Reserved for the operating system 

 
$k1 - $k2 

 
GP 

 
28 

 
Global pointer register 

 
$gp  

 
SP 

 
29 

 
Stack pointer register 

 
$sp  

 
FP 

 
30 

 
Frame pointer register 

 
$fp  

 
RA 

 
31 

 
Return address register  

 
$ra  

 
You will also study another 8086 based register organization in Block 4 of this course.  
So, all the computers have a number of registers. But, how exactly is the instruction 
execution related to registers?  To explore this concept, let us first discuss the concept 
of Micro-operations.  
 

2.5    MICRO-OPERATION CONCEPTS 

We have discussed the general architecture and register set of MIPS microprocessor. 
Our next task is to look at the functionality of ALU, the control unit and how an 
instruction is executed. In this section, we will define a micro-operation concept, 
which is the key concept to describe instruction execution. 
 
A micro-operation is an elementary operation performed normally during one clock 
pulse. On the information stored in one or more registers. The result of the operation 
may replace the previous content of a register or is transferred to a new register or a 
memory location.  
 
A digital system performs a sequence of micro-operations on data stored in registers 
or memory. The specific sequence of micro-operations performed is predetermined for 
an instruction. Thus, an instruction is a binary code specifying a definite sequence of 
micro-operations to perform a specific function. 
 
For example, a C program instruction sum = sum + 7, will first be converted to 
equivalent assembly program: 

• Move data from memory location “sum” to register R1 (LOAD R1, sum) 
• Add an immediate operand to register (R1) and store the results in R1           

(ADD R1, 7) 
• Store data from register R1 to memory location “sum” (STORE sum, R1). 
 
Thus, several machine instructions may be needed (this will vary from machine to 
machine) to execute a simple C statement. But, how will each of these machine 
statements be executed with the help of micro-operations? Let us try to elaborate the 
execution steps: 

• Fetch the instructions. 

• Pass the address of Program Counter (PC) to Memory Address Register 
(MAR). 

• Issue the memory read operation to fetch instruction in the Buffer Register 
for data, such as M(BR). 
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• Increment Program Counter to refer to next instruction in sequence and 
bring instruction to Instruction Register (IR). 

 
• Execute the instruction  

• Decode the instruction to ascertain operation. 
• As one of the operands is already available in R1 register and the second 

operand is an immediate operand so fetch operand step is not required. The 
immediate operand is available in the address part of the instruction. 

• Perform the ALU based addition with R1 and buffer register, store the result 
in R1. 

 
Thus, we may have to execute the instruction in several steps. For the subsequent 
discussion, for simplicity, let us assume that each micro-operation can be completed 
in one clock period, although some micro-operations require memory read/write that 
may take more time.  
 
Let us first discuss the type of micro-operations. The most common micro-operations 
performed in a digital computer can be classified into four categories: 

1) Register transfer micro-operations: simply transfer binary information from one                                                                
register to another. 

2) Arithmetic micro-operations: perform simple arithmetic operations on numeric 
data stored in registers. 

3) Logic micro-operations: perform bit manipulation (logic) operations on non-
numeric data stored in registers. 

4) Shift micro-operations registers: perform shift operations on data stored in 
registers. 

 
2.5.1 Register Transfer Micro-operations 

These micro-operations, as the name suggests transfer information from one register 
to another. The information does not change during these micro-operations. A register 
transfer micro-operation may be designed as: R1  R2. The  symbol implies that 
the contents of register R2 are transferred to register R1. R2 here is a source register 
while R1 is a destination register. We will use this notation throughout this section. 
Please note the following important points about register transfer micro-operations. 

• For a register transfer micro-operation there must be a path for data transfer from 
the output of the source register to the input of destination register. 

• In addition, the destination register should have a parallel load capability, as we 
expect the register transfer to occur in a predetermined control condition. We will 
discuss more about the control unit in Unit 4 of this block. 

• A common path for connecting various registers is through a common internal 
data bus of the processor. In general the size of this data bus should be equal to 
the number of bits in a general register. 

 
The convention used to represent the micro-operations is: 

1.  Computer register names are designated by capital letters (sometimes followed 
by numerals) to denote its function. For example, R1, R2 (General Purpose 
Registers), AR (Address Register), IR (Instruction Register) etc. 
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2.  The individual bits within a register are numbered from 0 (rightmost bit) to n-1        
(leftmost bit) as shown in Figure 2b). Common ways of drawing the block 
diagram of a computer register are shown below. The name of the 16-bit register 
is IR (Instruction Register) which is partitioned into two subfields in Figure 2d). 
Bits 0 through 7 are assigned the symbol L (for Low byte) and bits 8 through 15 
are assigned the symbol H (for high byte). The symbol IR (L) refers to the low-
order byte and IR (H) refers to high-order byte. 
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            a) Register                                b) Individual bits 
 

15 14 13 ……………2 1 0 R0  
       
             15                                           0                               15                8     7                  0 
 
         
         c) Numbering of bits                                              d) Subfields  

 IR (H)                 IR (L) R1 

 
Figure 2: Register Formats 

 
3.  Information transfer from one register to another is designated in symbolic 

notation by a replacement operator. For example, the statement R2  R1 denotes 
a transfer of all bits from the source register R1 to the destination register R2 
during one clock pulse and the destination register has a parallel load capacity. 
However, the contents of register R1 remain unchanged after the register transfer 
micro-operation. More than one transfer can be shown using a comma operator. 

 
4.  If the transfer is to occur only under a predetermined control condition, then this        

condition can be specified as a control function. For example, if P is a control 
function then P is a Boolean variable that can have a value of 0 or 1. It is 
terminated by a colon (:) and placed in front of the actual transfer statement. The 
operation specified in the statement takes place only when P = 1. Consider the 
statements: 

                    If (P =1) then   (R2   R1) 
                    or, 
                    P:  R2  R1, 
        
  Where P is a control function that can be either 0 or 1. 
 
5.  All micro-operations written on a single line are to be executed at the same time       

provided the statements or a group of statements to be implemented together are 
free of conflict. A conflict occurs if two different contents are being transferred 
to a single register at the same time. For example, the statement: new line X:    
R1  R2,   R1  R3 represents a conflict because both R2 and R3 are trying to 
transfer their contents to R1 at the same time. 

 
6.  A clock is not included explicitly in any statements discussed above. However, it 

is assumed that all transfers occur during the clock edge transition immediately       
following the period when the control function is 1. All statements imply a       
hardware construction for implementing the micro-operation statement as shown      
below: 

       Implementation of controlled data transfer from R2 to R1 only when T = 1 
       T :     R1  R2  
            T =  Load 
Block Diagram 
                                                                                                                             Clock 
 
            Bits                     
 
Timing Diagram 
    
Clock             t  ^                          t+1  ^ 

R1 

R2 

Control 
Circuit 
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  Load   
 
                                              Transfer occurs here 

Figure 3: The Register Transfer Time 
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It is assumed that the control variable is synchronized with the same clock as the one 
applied to the register. The control function T is activated by the rising edge of the 
clock pulse at time t. Even though the control variable T becomes active just after 
time t, the actual transfer does not occur until the register is triggered by the next 
positive transition of the clock at time t+1. At time t+1, load input is again active and 
the data inputs of R2 are then loaded into the register R1 in parallel. The transfer 
occurs with every clock pulse transition while T remains active.  
 
Bus and Memory Transfers 

A digital computer has many registers, and rather than connecting wires between all 
registers to transfer information between them, a common bus is used. Bus is a path 
(consists of a group of wires) one for each bit of a register, over which information is 
transferred, from any of several sources to any of several destinations. 
 
From a register to Bus:  BUS  R. The implementation of bus is explained in Unit 3 
of this block. 
 
 The transfer from bus to register can be expressed symbolically as: 

R1 ← BUS, 
 
The content of the selected register is placed on the BUS, and the content of the bus is 
loaded into register R1 by activating its load control input. 
 
Memory Transfer 

The transfer of information from memory to outside world i.e., I/O Interface is called 
a read operation. The transfer of new information to be stored in memory is called a 
write operation.  These kinds of transfers are achieved via a system bus. It is necessary 
to supply the address of the memory location for memory transfer operations.  
 
Memory Read 

The memory unit receives the address from a register, called the memory address 
register designated by MAR. The data is transferred to another register, called the data 
register designated by DR. The read operation can be stated as:  

Read:        DR  [MAR] 
 
Memory Write 

The memory write operation transfers the content of a data register to a memory word 
M selected by the address. Assume that the data of register R1 is to be written to the 
memory at the address provided in MAR. The write operation can be stated as:  

Write:        [MAR]  R1 
 
Please note, it means that the location pointed by MAR will be written and not MAR. 

                
     Read  

        
                  Write 
        

 
 
 
 
      

DR 

 
MEMORY MAR 

 
Figure 4: Memory Transfer 
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These micro-operations perform simple arithmetic operations on numeric data                           
stored in registers. The basic arithmetic micro-operations are addition, subtraction, 
increment, decrement, and shift. 
 
Addition micro-operation is specified as: 

      R3  R1 +R2  
 
It means that the contents of register R1 are added to the contents of register R2 and 
the sum is transferred to register R3. This operation requires three registers to hold 
data along with the Binary Adder circuit in the ALU. Binary adder is a digital circuit 
that generates the arithmetic sum of two binary numbers of any lengths and is 
constructed with full-adder circuits connected in cascade. An n-bit binary adder 
requires n full-adders. Add micro-operation, in accumulator machine, can be 
performed as: 

AC   AC + DR 
 
Subtraction is most often implemented in machines through complement and adds 
operations. It is specified as: 

        R3  R1 − R2   
        R3  R1 + (2’s complement of R2) 
        R3  R1 + (1’s complement of R2 + 1) 
        R3  R1 + R2 + 1  (The bar on top of R2 implies 1’s complement of R2 which 

is bitwise complement)     
 
Adding 1 to the 1’s complement produces the 2’s complement. Adding the contents of 
R1 to the 2’s complement of R2 is equivalent to subtracting the contents of R2 from 
R1 and storing the result in R3. We will describe the basic circuit required for these 
micro-operations in the next unit. 
 
The increment micro-operation adds one to a number in a register. This operation is 
designated as: 

                 R1  R1 + 1 
 
This can be implemented in hardware by using a binary-up counter.  
 
The decrement micro-operation subtracts one from a number in a register. This 
operation is designated as: 

                 R1  R1 – 1  
 
This can be implemented using binary-down counter. 
 
What about the multiply and division operations? Are not they micro-operations? In 
most of the older computers multiply and divisions were implemented using 
add/subtract and shift micro-operations. If a digital system has implemented division 
and multiplication by means of combinational circuits, then we can call these as the 
micro-operations for that system. 
 
2.5.3    Logic Micro-operations 

Logic operations are basically binary operations, which are performed on the string of 
bits stored in the registers. For a logic micro-operation each bit of a register is treated 
as a variable. A logic micro-operation: 
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R1  R1.R2 specifies AND operation to be performed on the contents of R1 and R2 
and store the results in R1. For example, if R1 and R2 are 8 bits registers and: 

R1 contains  10010011 and 
R2 contains  01010101 

    Then R1 will contain        00010001   after AND operation. 
 
Some of the common logic micro-operations are AND, OR, NOT or Complement, 
Exclusive OR, NOR, and NAND. In many computers only four: AND, OR, XOR 
(exclusive OR) and complement micro-operations are implemented. 
 
Let us now discuss how these four micro-operations can be used in implementing 
some of the important applications of manipulation of bits of a word, such as, 
changing some bit values or deleting a group of bits. We are assuming that the result 
of logic micro-operations go back to Register R1 and R2 contains the second operand. 
 
We will play a trick with the manipulations we are performing. Let us select 1010 as 4 
bit data for register R1, and 1100 data for register R2. Why? Because if you see the bit 
combinations of R2, and R1, they represent the truth table entries (read from right to 
left and bottom to top)  00, 01, 10 and 11. Thus, the resultant of the logical operation 
on them will indicate which logic micro-operation is needed to be performed for that 
data manipulation. The following table gives details on some of these operations: 

    R1 1 0 1 0 
    R2 1 1 0 0 
 

Operation 
name 

What is the 
operation? 

Example and Explanation 

Selective Set Sets those bits in 
Register R1 for 
which the 
corresponding R2 bit 
is 1. 

     R1 = 1010 
     R2 = 1100 

            1110 
The value 1110 suggests that selective set 
can be done using logic OR micro-operation. 
Please note that all those bits of R1, for 
which we have 0 bit in R2, have remained 
unchanged. The bits in R1 which need to be 
set selectively must have the corresponding 
R2 bits as 1. 

Selective Clear Clear those bits in 
register R1 for 
which corresponding 
R2 bits are 1. 

      R1 = 1010 
      R2 = 1100 

            0010 
The R1 value after the operation is 0010 
which suggests that Corresponding micro-
operation is R1 AND 2R  

Selective 
Complement 

Complement those 
bits in register R1 
for which the 
corresponding R2 
bits are 1. 

     R1 = 1010 
     R2 = 1100 

            0110 
The R1, value 0110 after the operation 
suggests that the selective complement can 
be done using exclusive - OR micro- 
operation. The bits in R1 which need to be 
complemented selectively must have the 
corresponding R2 bits as 1. 

Mask 
Operations 

Clears those bits in 
Register R1 for 
which the 
corresponding R2 

      R1 = 1010 
      R2 = 1100 

            1000 
The R1 value after the operation is 1000 
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be performed using AND micro-operation. 
However, the bits in R1 which are cleared or 
masked correspond to the bits on R2 having 
a 0 value. The mask operation is preferred 
over selective clear as most of the computers 
provide AND micro-operation while the 
micro-operation required for implementing 
selective clear is normally not provided in 
computers 

Insert For inserting a new 
value in a bit. It is a 
two-step process:  
Step 1: Mask out the 
existing bit value 
Step 2: Insert the bit 
using OR micro-
operation with the 
bits which are to be 
inserted. 
 

This is a two-step process. 
Example: 
 Say contents of R1 = 0011 1011 
 Suppose, we want to insert 0110 in place of 
left 
     most 0011 then: 
     0011 1011 (R1 before) 
     0000 1111 (R2 for masking) 
                      Perform AND operation 
(mask)  
     0000 1011 (R1 after) 
    Now insert: 01100000 (R2 for insertion) 
                              Perform OR operation 
      0110 1011 R1 after insert 

Clear Clear all the bits      R1 = 1101 
     R2 = 1101 

            0000 
Implemented by taking exclusive OR with 
the same number. The exclusive OR, thus, 
can also be used for checking whether two 
numbers are equal or not. 

 
2.5.4    Shift Micro-operations 

Shift is a useful operation, which can be used for serial transfer of data. Shift 
operations can also be used along with other (arithmetic, logic, etc.) operations. For 
example, for implementing a multiply operation arithmetic micro-operation (addition) 
can be used along with shift operation. The shift operation may result in shifting the 
contents of a register to the left or right. In a shift left operation a bit of data is input at 
the right most flip-flop while in shift right a bit of data is input at the left most flip-
flop. In both the cases a bit of data enters the shift register. Depending on what bit 
enters the register and where the shift out bit goes, the shifts are classified in three 
types. These are: 

• logical 
• arithmetic and 
• circular. 
 
In logical shift the data entering by serial input to left most or right most flip-flop 
(depending on right or left shift operations respectively) is a 0. 
 
If we connect the serial output of a shift register to its serial input then we encounter a 
circular shift. In circular shift left or circular shift right information is not lost, but is 
circulated. 
 
In arithmetic shift a signed binary number is shifted to the left or to the right. Thus, an 
arithmetic shift-left causes a number to be multiplied by 2, on the other hand a shift-
right causes a division by 2. But as in division or multiplication by 2 the sign of a 
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number should not be changed, therefore, arithmetic shift must leave the sign bit 
unchanged. We have already discussed about shift operations in the Unit 1. 
 
Let us summarize micro-operations using the following table: 
 
Sl. No. Micro-operations Examples 

1. Register transfer R1  R2 (register transfer)  
[MAR ]  R1 (Register to memory) 

2. Arithmetic micro-
operations 

ADD R1  R1 + R2 
SUBTRACT R1  R1 + ( 2R +1) 
INCREMENT R1  R1 +1 
DECREMENT R1  R1 – 1 

3. Logical micro operations AND 
OR 
COMPLEMENT 
XOR 

4. Shift Left or right shift 
• Logical 
• Arithmetic 
• Circular 

 
Check Your Progress 2 

1.   How does the memory read / operation carried out using system bus? 
……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

4. Are multiplication and division arithmetic operations micro-operations? 
………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

3.   What will be the value for R2 operand if:  

(i) Mask operation clears register R1 
(ii) Bits 1011 0001 is to be inserted in an 8 bit R1 register. 

 
4. What are the differences between circular and logical shift micro-operations? 

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

2.6 INSTRUCTION EXECUTIONS AND MICRO - 
OPERATIONS 

Let us now discuss instruction execution using the micro-operations. A simple 
instruction may require: 

• Instruction fetch: fetching the instruction from the memory. 
• Instruction decode: decode the instruction. 
• Operand address calculation: find out the effective address of the operands. 
• Execution: execute the instruction. 
• Interrupt Acknowledge: perform an interrupt acknowledge cycle if an interrupt 

request is pending. 

 45



 
The Central 
Processing Unit Let us explain how these steps of instruction execution can be broken down to micro-

operations. For simplifying the discussion, let us assume that the machine has the 
structure as shown in Figure 1. In addition, let us also assume that the instruction set 
of the machine has only two addressing modes direct and indirect memory addresses 
and a memory access take same time as that of a register access that is one clock 
cycle. 
 
Instruction fetch: In this phase the instruction is brought from the address pointed by 
PC to instruction register. The steps required are: 
   

Transfer the address of PC to MAR. (Register Transfer) MAR  PC 
MAR puts its contents on the address bus for main 
memory location selection, the control unit instructs the 
MAR to do so and also uses a memory read signal. The 
word so read is placed on the data bus where it is 
accepted by the Data register (Memory-read using bus. 
It may take more than one clock pulses depending on 
the tcpu and tmem) The PC is incremented by one memory 
word length to point to the next instruction in sequence. 
This micro-operation can be carried out in parallel to the 
micro-operation above.  

DR  (MAR), PC  
PC +1 

The instruction so obtained is transferred from data 
register to the Instruction register for further processing. 
(Register Transfer) 

IR  DR 

 
Instruction Decode: This phase is performed under the control of the Control Unit of 
the computer. The Control Unit determines the operation that is to be performed and 
the addressing mode of the data. In our example, the addressing modes can be direct 
or indirect. 
 
Operand Address Calculation: In actual machines the effective address may be a 
memory address, register or I/O port address. The register reference instructions such 
as complement R1, clear R2 etc. normally do not require any memory reference 
(assuming register indirect addressing is not being used) and can directly go to the 
execute cycle. However, the memory reference instruction can use several addressing 
modes. Depending on the type of addressing the effective address (EA) of operands in 
the memory is calculated. The calculation of effective address may require more 
memory fetches  (for example in the case of indirect addressing), thus in this step we 
may calculate the effective address as:  
 
For Direct Address: 

• Transfer the address portion of instruction is the 
direct address so no further calculation is 
needed.  

 
IR (Address) and DR 
(Address) contain the 
Effective address. 

For Indirect Address: 
• Transfer the address bits of instruction to the 

MAR. This transfer can be achieved using DR, 
as DR and IR at this point of time contain the 
same value. (Register Transfer) 

• Perform a memory read operation as done in 
fetch cycle and the desired address of the 
operand is obtained in the DR. (Memory Read) 

• Transfer the address part so obtained in DR as 
the address part of instruction. (Register 
Transfer) Thus, the indirect address is now 
converted to direct address or effective address. 

 
MAR ← DR (Address) 
 
 
 DR← (MAR) 
 
 
IR  (Address) ← DR 
(Address) 
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Thus, the address portion of IR now contains the effective address, which is the direct 
address of the operand. 
 
Execution: Now the instruction is ready for execution. A different opcode will require 
different sequence of steps for the execution. Therefore, let us discuss a few examples 
of execution of some simple instructions for the purpose of identifying some of the 
steps needed during instruction execution. Let us start the discussions with a simple 
case of addition instruction. Suppose, we have an instruction: Add R1, A which adds 
the content of memory location A to R1 register storing the result in R1. This 
instruction will be executed in the following steps: 
 

Transfer the address portion of the instruction to the 
MAR. (Register transfer) 

MAR  IR (Address) 

Read the memory location A and bring the operand 
in the DR. (Memory read) 

DR  (MAR) 

Add the DR with R1 using ALU and bring the results 
back to R1. (Add micro-operations) 

R1  R1 + DR 

 
Now, let us try a complex instruction - a conditional jump instruction. Suppose an 
instruction: 

 INCSKIP A  
 
increments A and skips the next instruction if the content of A has become zero. This 
is a complex instruction and requires intermediate decision-making. The micro 
operations required for this instruction execution are:  
 

Transfer the address portion of IR to the MAR. 
(Register transfer) 

MAR  IR (Address)  

Read memory. DR on reading will contain the 
operand A. (Memory read) 

DR  (MAR)  

Transfer the contents of DR to R1. We are 
assuming that DR, although it can be used in 
computation, it cannot be used as destination of 
an ALU operation. Thus, we need to transfer its 
content to a general purpose register R1 where 
the operation can be performed. (Register 
transfer) 

R1  DR  

Increment the R1. (Increment micro-operation) R1  R1 +1  
Transfer the content of R1 to DR. (Register 
transfer) 
 

DR  R1  

Store the contents of DR- into the location A 
using MAR. This operation proceeds through 
as: Address bits are applied on address bus by 
MAR. The data is put into the data bus. The 
control unit providing control signal for 
memory write, thus resulting in a memory write 
at a location specified by MAR. (Memory 
write) 

(MAR) DR  

If the content of R1 is zero then increment PC 
by one, thus skipping the next instruction. This 
operation can be performed in parallel to the 
memory write. Please note in the last step a 
comparison and an action is taken as a single 
step. This is possible as it is a simple 
comparison based on status flags. (Increment 
on a condition) 

If R1 = 0 then PC  PC + 1  
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location of subroutine to store the return address, then the steps involved in this 
subroutine call (CALL A) can be: 
 

Transfer the contents of address portion of 
IR to MAR. (Register Transfer) 

 Transfer the return address, that is, the 
contents of PC to DR. This micro-operation 
can be performed in parallel to the previous 
micro-operation. (Register transfer) 

MAR  IR (Address), 
     
 DR  PC  

Transfer the branch address that is stored in 
Address part of the instruction to program 
counter. (Register transfer) 

PC  IR (Address)  

Store the DR using MAR. Thus, the return 
address is stored at the first location of the 
subroutine. (This operation normally is done 
in stack, but in this example we are storing 
the return address in the first location of the 
subroutine). This micro-operation can be 
performed in parallel to previous micro-
operation. (Memory write) 

(MAR) DR  

Increment the PC as it contains the first 
location of subroutine, which is used to store 
the return address. The first instruction of 
subroutine starts from the next location. 
(Increment) 

PC  PC + 1  

 
Thus, the number of steps required in execution may differ from instruction to 
instruction. 
 
Interrupt Processing: On completion of the execution of an instruction, the machine 
checks whether there is any pending interrupt request for the interrupts that are 
enabled. If an enabled interrupt has occurred then that Interrupt may be processed. 
The nature of interrupt varies from machine to machine. However, let us discuss one 
simple illustration of interrupt processing events. A simple sequence of steps followed 
in interrupt phase is: 
 

Transfer the contents of PC to DR, as this is the 
return address after the interrupt service program 
has been executed. This address must be saved.  

DR  PC  

Place the address of location, where the return 
address is to be saved, into MAR. Please note that 
this address is normally predetermined in 
computers. 

MAR  Address of 
location for saving return 
address. 

Store the contents of PC in the memory using DR 
and MAR. (Memory write)   

  Transfer the address of the first instruction of 
interrupt servicing routine to the PC. This micro-
operation can be performed in parallel to the above 
micro-operation. 

(MAR) DR  
  PC  address of the first 
instruction interrupt service 
programs 

 
After completing the above interrupt processing, CPU will fetch the next instruction 
that may be interrupt service program instruction. Thus, during this time CPU might 
be doing the interrupt processing or executing the user program. Please note each 
instruction of interrupt service program is executed as an instruction in an instruction 
cycle.  
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Please note for a complex machine the instruction cycle will not be as easy as this. 
You can refer to further readings for more complex instruction cycles. 
 

2.7 INSTRUCTION PIPELINING 

After discussing instruction execution, let us now define a concept that is very popular 
in any CPU implementation. This concept is instruction pipeline. 
 
To extract better performance, as defined earlier, instruction execution can be done 
through instruction pipeline.  The instruction pipelining involves decomposing of an 
instruction execution to a number of pipeline stages.  Some of the common pipeline 
stages can be instruction fetch (IF), instruction decode (ID), operand fetch (OF), 
execute (EX), store results (SR).  An instruction pipe may involve any combination of 
such stages.  A major design decision here is that the instruction stages should be of 
equal execution time.  Why?  
 
A pipeline allows overlapped execution of instructions. Thus, during the course of 
execution of an instruction the following may be a scenario of execution. 
 
Time Slot -

> 
1 2 3 4 5 6 7 8 9 10 11 

Instruction 
1 

IF ID OF EX SR       

Instruction 
2 

 IF ID OF EX SR      

Instruction 
3 

  IF ID OF EX SR     

Instruction 
4 

   IF ID OF EX SR    

Instruction 
5 

    IF ID OF EX SR   

Instruction 
6 

     IF ID OF EX SR  

Instruction 
7 

      IF ID OF EX SR 

 
Figure 5: Instruction Pipeline 

 
Please note the following observations about the above figure: 

• The pipeline stages are like steps. Thus, a step of the pipeline is to be complete in 
a time slot.  The size of the time slot will be governed by the stage taking 
maximum time.  Thus, if the time taken in various stages is almost similar, we 
get the best results. 

• The first instruction execution is completed on completion of 5th time slot, but 
afterwards, in each time slot the next instruction gets executed.  So, in ideal 
conditions one instruction is executed in the pipeline in each time slot. 

• Please note that after the 5th time slot and afterwards the pipe is full. In the 5th 
time slot the stages of execution of five instructions are: 

SR  (instruction 1)  (Requires memory reference) 
EX  (instruction 2)  (No memory reference) 
OF  (instruction 3)  (Requires memory reference) 
ID  (instruction 4) (No memory reference) 
IF  (instruction 5)  (Requires memory reference) 
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• On the 5th time slot and later, there may be a register or memory conflict in the 
instructions that are performing memory and register references that is various 
stages may refer to same registers/memory location. This will result in slower 
execution instruction pipeline that is one of the higher number instruction has to 
wait till the lower number instructions completed, effectively pushing the whole 
pipelining by one time slot.   

 
• Another important situation in Instruction Pipeline may be the branch instruction.  

Suppose that instruction 2 is a conditional branch instruction, then by the time the 
decision to take the branch is taken (at time interval 5) three more instructions 
have already been fetched.  Thus, if the branch is to be taken then the whole 
pipeline is to be emptied first.  Thus, in such cases, pipeline cannot run at full 
load. 

 
How can we minimize the problems occurring due to the branch instructions? 
 
We can use many mechanisms that may minimize the effect of branch penalty. 

• To keep multiple streams in pipeline in case of branch 
• Pre-fetching the next as well as instruction to which branch is to take place 
• A loop buffer may be used to store the instructions of a loop instruction 
• Predicting whether the branch will take place or not and acting accordingly 
• Delaying the pipeline fill up till the branch decision is taken. 
 

Check Your Progress 3 

State True or False  

1) An instruction cycle does not include indirect cycle if the operands are 
the register. 

 
2) Register transfer micro-operations are not needed for instruction execut
 
3) Interrupt cycle results only in jumping to an interrupt service routine. T

processing of the instructions of this routine is performed in instruction
 

2.8   SUMMARY 

In this unit, we have discussed in detail the register organisation and a simpl
of the CPU. After this we have discussed in details the micro-operations and
implementation in hardware using simple logical circuits. While discussing 
operations our main emphasis was on simple arithmetic, logic and shift micr
operations, in addition to register transfer and memory transfer. The knowle
have acquired about register sets and conditional codes, helps us in giving u
that conditional micro-operations can be implemented by simply checking fl
conditional codes. This idea will be clearer after we go through Unit 3 and U
have completed the discussions on this unit, with providing a simple approac
instruction execution with micro-operations. We have also defined the conce
Instruction Pipeline. We will be using this approach for discussing control u
in Unit 3 and Unit 4.  The following table gives the details of various terms 
this unit.  
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General purpose registers These registers are used for any address 
or data computation / storage 

Status and control register  Stores the various condition codes 

Programmer visible registers Used by programmers during 
programming 

Micro-operations Involves register transfer micro 
operations arithmetic micro-operations 
like add, subtract, logic micro-operations 
like AND, OR, NOT, XOR and shift 
micro-operations left or right shift 

Micro-operations and instruction 
execution 

An instruction is executed through a 
sequence of micro-operations. Thus, a 
program is executed as a sequence of 
instruction is executed when a sequence 
of microinstructions are executed. 

Instruction pipeline  Allows overlapped execution of 
instructions. A good pipe can produce 
one instruction per clock cycle. 

 
You will also get the details on 8086 microprocessor register sets, conditional codes, 
instructions etc. in Unit 1 of Block 4. 
 
You can refer to further readings for more register organisation examples and for 
more details on micro-operations and instruction execution. 
 

2.9 SOLUTIONS /ANSWERS 
 
Check Your Progress 1 
 
1. Registers, which are used only for the calculation of operand addresses, are 

called address registers. 
2. 5 bits 
3. It helps in implementing parallelism in the instruction execution unit. 
4. Yes. Normally, the first few hundreds of words of memory are allocated for 

storing control information. 
 

Check Your Progress 2 
 
1. Read operation involves reading of location pointed to by MAR. The address bus 

is loaded with the contents of MAR  
address BUS MAR  

In addition a read signal is issued by control unit, and data is stored to MBR 
register or data register. 

 DR  data BUS 
 The combined operation can be shown as  
 DR  [MAR] 
 
2. Yes, if implemented through circuits.  

No, if implemented through algorithms involving add/ subtract and shift micro- 
operations. 
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Processing Unit 3. (i)  0000 0000 

(ii) Initially AND with 0000 0000 followed by OR with 1011 0001  
 
4.  The bits circulate and after a complete cycle the data is still intact in circular 

shift. Not so in logical shift. 
 

Check Your Progress 3 

1.  True 
2.  False 
3.  True 
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3.0    INTRODUCTION 

By now we have discussed the instruction sets and register organisation followed by a 
discussion on micro-operations and instruction execution. In this unit, we will first 
discuss the ALU organisation. Then we will discuss the floating point ALU and 
arithmetic co-processors, which are commonly used for floating point computations.  
 
This unit provides a detailed view on implementation of simple micro-operations that 
include register–transfer, arithmetic, logic and shift micro-operation. Finally, the 
construction of a simple ALU is given. Thus, this unit provides you the basic insight 
into the computer system. The next unit covers details of the control unit. Together 
these units describe the two most important components of CPU: the ALU and the 
CU. 
 

3.1    OBJECTIVES 

After going through this unit, you will be able to: 

• describe the basic organisation of ALU; 
• discuss the requirements of a floating point ALU; 
• define the term arithmetic coprocessor; and  
• create simple arithmetic logic circuits. 

 

3.2    ALU ORGANISATION 

As discussed earlier, an ALU performs simple arithmetic-logic and shift operations. 
The complexity of an ALU depends on the type of instruction set which has been 
realized for it. The simple ALUs can be constructed for fixed-point numbers. On the 
other hand the floating-point arithmetic implementation requires more complex 
control logic and data processing capabilities, i.e., the hardware. Several micro-
processor families utilize only fixed-point arithmetic capabilities in the ALUs. For 
floating point arithmetic or other complex functions they may utilize an auxiliary 
special purpose unit. This unit is called arithmetic co-processor. Let us discuss all 
these issues in greater detail in this section.  
 

3.2.1    A Simple ALU Organisation 

An ALU consists of circuits that perform data processing micro-operations. But how 
are these ALU circuits used in conjunction of other registers and control unit? The 
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Processing Unit simplest organisation in this respect for fixed point ALU was suggested by John von 

Neumann in his IAS computer design (Please refer to Figure 1). 
 
               
Bus         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         :                 
                            :   
Control 
             
Signals  
 
 

 
Control Unit 

Flags 

Parallel Adder 
and other Logic 

Circuits 

Data Register 
(DR) 

Multiplier 
Quotient 

Register (MQ) 

Accumulator 
Register (AC) 

 
Figure 1: Structure of a Fixed point Arithmetic logic unit 

 
The above structure has three registers AC, MQ and DR for data storage. Let us 
assume that they are equal to one word each. Please note that the Parallel adders and 
other logic circuits (these are the arithmetic, logic circuits) have two inputs and only 
one output in this diagram. It implies that any ALU operation at most can have two 
input values and will generate single output along with the other status bits. In the 
present case the two inputs are AC and DR registers, while output is AC register. AC 
and MQ registers are generally used as a single AC.MQ register. This register is 
capable of left or right shift operations. Some of the micro-operations that can be 
defined on this ALU are: 

Addition            :  AC  AC + DR 

Subtraction        :  AC  AC – DR  

AND                 :  AC  AC ^ DR 

OR                    :  AC  AC v DR 

Exclusive OR    :  AC  AC (+) DR 

NOT                 :  AC  AC 
 
In this ALU organisation multiplication and division were implemented using shift-
add/subtract operations. The MQ (Multiplier-Quotient register) is a special register 
used for implementation of multiplication and division. We are not giving the details 
of how this register can be used for implementing multiplication and division 
algorithms. For more details on these algorithms please refer to further readings. One 
such algorithm is Booth’s algorithm and you must refer to it in further readings.  
 
For multiplication or division operations DR register stores the multiplicand or divisor 
respectively. The result of multiplication or division on applying certain algorithm can 



 

 

ALU Organisation finally be obtained in AC.MQ register combination. These operations can be 
represented as: 

Multiplication   :  AC.MQ  DR × MQ 

Division           :  AC.MQ  MQ ÷ DR 
 
DR is another important register, which is used for storing second operand. In fact it 
acts as a buffer register, which stores the data brought from the memory for an 
instruction. In machines where we have general purpose registers any of the registers 
can be utilized as AC, MQ and DR. 
 
Bit Slice ALUs 

It was feasible to manufacture smaller such as 4 or 8 bits fixed point ALUs on a single 
IC chip. If these chips are designed as expendable types then using these 4 or 8 bit 
ALU chips we can make 16, 32, 64 bit array like circuits. These are called bit- slice 
ALUs. 
 
The basic advantage of such ALUs is that these ALUs can be constructed for a desired 
word size. More details on bit-slice ALUs can be obtained from further readings. 

Check Your Progress 1 

State True or False 

1. A multiplication operation can be implemented as a logical operation. 
 
2. The multiplier-quotient register stores the remainder for a division opera
 
3. A word is processed sequentially on a bit slice ALU. 
 
3.2.2 A Sample ALU Design 

The basis of ALU design starts with the micro-operation implementation.  So
first explain how the bus can be used for Data transfer micro-operations. 
 
A digital computer has many registers, and rather than connecting wires be
registers to transfer information between them, a common bus is used. Bus
(consists of a group of wires) one for each bit of a register, over which infor
transferred, from any of several sources to any of several destinations. In g
size of this data bus should be equal to the number of bits in a genera
register. 
 
A register is selected for the transfer of data through bus with the help of con
signals. The common data transfer path, that is the bus, is made using the 
multiplexers. The select lines are connected to the control inputs of the multi
and the bits of one register are chosen thus allowing multiplexers to select a s
source register for data transfer. 
 
The construction of a bus system for four registers using 4×1 multiplexers
below. Each register has four bits, numbered 0 through 3. Each multiplexer h
inputs, numbered 0 through 3, and two control or selection lines, C0 and C1.
inputs of 0th MUX are connected to the corresponding 0th input of every r
form four lines of the bus. The 0th multiplexer multiplexes the four 0th b
registers, and similarly for the three other multiplexers. 
 
Since the same selection lines C0 and C1 are connected to all multiplexers,
they choose the four bits of one register and transfer them into the four-line
bus. 
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Register A       Register B               Register C        Register D 
 
 
  
 
 
 
   
     0   1    2    3 
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 0   1    2    3 
4 × 1 

MUX 1 

 0   1    2    3 
4 × 1 

MUX 2 
 
   
 
 
C0 
 
C1 
 
                                     
                                            
 

 
 

0   1    2    3 
4 × 1 

MUX 3 

0    1     2     3 0    1     2     3 0     1      2     3 0    1     2   3 

4-line common bus 
 

Figure 2: Implementation of BUS 
 
When C1 C0 = 00, the 0th data input of all multiplexers are selected and this causes the 
bus lines to receive the content of register A since the outputs of register A are 
connected to the 0th data inputs of the multiplexers which is then applied to the output 
that forms the bus. Similarly, when C1 C0 = 01, register B is selected, and so on. The 
following table shows the register that is selected for each of the four possible values 
of the selection lines:  
 

C1 C0 Register Selected 

0 0 A 

0 1 B 

1 0 C 

1 1 D 

 
Figure 3: Bus Line Selection 

 
To construct a bus for 8 registers of 16 bits each, you would require 16 multiplexers, 
one for each line in the bus. The number of multiplexers needed to construct the bus is 
equal to the number of bits in each register. Each multiplexer must have eight data 
input lines and three selection lines (2 3 = 8) to multiplex one bit in the eight registers. 
 
Implementation of Arithmetic Circuits for Arithmetic Micro-operation  
 
An arithmetic circuit can be implemented using a number of full adder circuits or 
parallel adder circuits. Figure 4 shows a logical implementation of a 4-bit arithmetic 
circuit. The circuit is constructed by using 4 full adders and 4 multiplexers. 
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Figure 4: A Four-bit arithmetic circuit 
 
The diagram of a 4-bit arithmetic circuit has four 4×1 multiplexers and four full 
adders (FA). Please note that the FULL ADDER is a circuit that can add two input 
bits and a carry-in bit to produce one sum-bit and a carry-out-bit.  
 
So what does the adder do? It just adds three bits. What does the multiplexer do? It 
controls one of the input bits. Thus, such combination produces a series of micro-
operations.  
 
Let us find out how the multiplexer control lines will change one of the Inputs for 
Adder circuit. Please refer to the following table. (Please note the convention VALID 
ONLY FOR THE TABLE are that an uppercase alphabet indicates a Data Word, 
whereas the lowercase alphabet indicates a bit.) 
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Input 
Output of 4 × 1 Multiplexers 

S1 S0 MUX(a) MUX(b) MUX(c) MUX(d) 

Y input 
to 

Adder 

Comments 

0 0 b0 b1 b2 b3 B 
The data word B 
is input to Full 
Adders 

0 1 0b  1b  2b  3b  B  
1’s complement 
of B is input to 
Full Adders 

1 0 0 0 0 0 0 
Data word 0 is 
input to Full 
Adders 

1 1 1 1 1 1 FH 

Data word 1111 
= FH is input to 
Full Adders 

 
Figure 5: Multiplexer Inputs and Output of the Arithmetic Circuit of Figure 4 

 
Now let us discuss how by coupling carry bit (Cin) with these input bits we can obtain 
various micro-operations. 
 
Input to Circuits 
 
• Register A bits as a0, a1, a2 and a3 in the corresponding X bits of the Full Adder 

(FA). 

• Register B bits as given in the Figure 5 above as in the corresponding Y bits of 
the FA. 

• Please note each bit of register A and register B is fed to different full adder 
unit. 

• Please also note that each of the four inputs from A are applied to the X inputs 
of the binary adder and each of the four inputs from B are connected to the data 
inputs of the multiplexers. It means that the A input directly goes to adder but B 
input can be manipulated through the Multiplexer to create a number of 
different input values as given in the figure above. The B inputs through 
multiplexers are controlled by two selection lines S1 and S0.  Thus, using various 
combinations of S1 and S0 we can select data bits of B, complement of B, 0 
word, or word having All 1’s. 

• The input carry Cin, which can be equal to 0 or 1, goes to the carry input of the 
full adder in the least significant position. The other carries are cascaded from 
one stage to the next.  Logically it is the same as that of addition performed by 
us. We do pass the carry of lower digits addition to higher digits. The output of 
the binary adder is determined from the following arithmetic sum: 

  
 D = X + Y + Cin         

  OR  

 D = A + Y + Cin 
 
By controlling the value of Y with the two selection lines S1 and S0 and making Cin 
equal to 0 or 1, it is possible to implement the eight arithmetic micro-operations listed 
in the truth table. 
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val 

D = A+Y +Cin Equivalent  
Micro-Operation 

Micro-Operation 
Name 

0 0 0 B D = A + B R   R1 + R2 Add 

0 0  
1 

 
B D = A + B + 1 R   R1 + R2 + 1 Add with carry 

0 1 0 B  D =A+B R  R1 + 2R  
 
Subtract with borrow 

0 1 1 B D = A + B+ 1 
R   R1 + 2's 
complement of R2 

 
Subtract 

1 0 0 0 D = A R   R1  Transfer 
1 0 1 0 D = A + 1 R   R1 + 1 Increment 

1 1 0  
1 D = A – 1  R  R1 + (All 1s) Decrement 

1 1 1  
1 D = A R   R1 Transfer 

Figure 6: Arithmetic Circuit Function Table 
 
Let us refer to some of the cases in the table above. 
 
When S1S0 = 00, input line B is enabled and its value is applied to the Y inputs of the 
full adder. Now, 

  If input carry Cin = 0, the output will be D = A + B 
  If input carry Cin = 1, the output will be D = A + B + 1. 
 
When S1S0 = 01, the complement of B is applied to the Y inputs of the full adder. So 
If Cin = 1, then output D = A +B + 1. This is called subtract micro-operation. (Why?) 
 
Reason: Please observe the following example, where A = 0111 and B=0110, then   
B =1001. The sum will be calculated as: 

  
 

 

     0111          (Value of A) 
     1001          ( Complement of B) 
1   0000 + (Carry in =1) = 0001 

Ignore the carry out bit. Thus, we get simple subtract operation. 
  

If Cin = 0, then D = A +B. This is called subtract with borrow micro-operation. 
(Why?). Let us look into the same addition as above: 
 

     0111        (Value of A) 
     1001        ( Complement of B) 
1   0000 + (Carry in =0) = 0000 

 

 
This operation, thus, can be considered as equivalent to: 

 D = A + B 
=> D = (A – 1) + (B + 1) 
=> D = (A – 1) + 2’s complement of B 
=> D = (A – 1) – B      Thus, is the name complement with Borrow 

 
When S1S2 = 10, input value 0 is applied to Y inputs of the full adder. 

 If Cin = 0, then output D = A + 0 + Cin  =>  D = A  
 If Cin = 1, then D = A + 0 +1 => D = A + 1 
  
The first is a simple data transfer micro-operation; while the second is an increment 
micro-operation. 
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 If Cin = 0, then output D = A + All (1s) + Cin  => D = A – 1 (How? Let us 
explain with the help of the following example). 

 
Example: Let us assume that the Register A is of 4 bits and contains the value 0101 
and it is added to an all (1) value as: 
 

    0101 
    1111 
1   0100 

  
The 1 is carry out and is discarded. Thus, on addition with all (1’s) the number has 
actually got decremented by one.     

 If Cin = 1, then D = A + All(1s) +1 => D = A  
 
The first is the decrement micro-operation; while the second is a data transfer micro-
operation.  
 
Please note that the micro-operation D = A is generated twice, so there are only seven 
distinct micro-operations possible through the proposed arithmetic circuit. 
 
Implementation of Logic Micro-operations 

For implementation, let us first ask the questions how many logic operations can be 
performed with two binary variables. We can have four possible combinations of 
input of two variables. These are 00, 01, 10, and 11. Now, for all these 4 input 
combinations we can have 24 = 16 output combinations of truth-values for a function. 
This implies that for two variables we can have 16 logical operations. The above 
stated fact will be clearer by going through the following figure. 
 

I3 I2 I1 I0 Function Operation Comments 
0 0 0 0 F0 = 0 R  0 Clear 
0 0 0 1 F1 = x. y R  R1∧R2 AND 
0 0 1 0 F2 = x. y  R  R1∧ 2R  R1 AND with 

complement R2  
0 0 1 1 F3 = x R  R1 Transfer of R1 
0 1 0 0 F4 = x . y R  1R ∧R2 R2 AND with 

complement R1 
0 1 0 1 F5 = y R  R2 Transfer of R2 
0 1 1 0 F6 = x ⊕  y R  R1⊕  R2 Exclusive OR 
0 1 1 1 F7 = x + y R  R1 ∨ R2 OR 
1 0 0 0 F8 = ( )yx +  R  ( )21 RR ∨  NOR 

1 0 0 1 F9 = ( )yx⊕  R ( )21 RR ⊕  Exclusive NOR 

1 0 1 0 F10 = y  R  2R  Complement of R2 

1 0 1 1 F11 = x + y  R  R1∨ 2R  R1 OR with 
complement R2 

1 1 0 0 F12 = x  R  1R  Complement of R1 

1 1 0 1 F13 = x  + y R  1R ∨ R2 R2 OR with 
complement R1 

1 1 1 0 F14 = )y.x(  R  ( )21 RR ∧  NAND 

1 1 1 1 F15 = 1 R  All 1’s Set all the Bits to 1 
 

Figure 7: Logic micro-operations on two inputs 
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x and y of Boolean function with registers R1 and R2 on each corresponding bit of the 
registers R1 and R2. Each of these bits will be treated as binary variables. 
 
In many computers only four: AND, OR, XOR (exclusive OR) and complement 
micro-operations are implemented. The other 12 micro-operations can be derived 
from these four micro-operations. Figure 8 shows one bit, which is the ith bit stage of 
the four logic operations. Please note that the circuit consists of 4 gates and a 4 × 1 
MUX. The ith bits of Register R1 and R2 are passed through the circuit. On the basis 
of selection inputs S0 and S1 the desired micro-operation is obtained.  

 
 
 
 
 
 
 
 
 
 

(a)  Logic Diagram    (b)  Functional representation 
 

Figure 8: Logic diagram of one stage of logic circuit 

Implementation of a Simple Arithmetic, Logic and Shift Unit 

So, by now we have discussed how the arithmetic and logic micro-operations can be 
implemented individually. If we combine these two circuits along with shifting logic 
then we can have a possible simple structure of ALU. In effect ALU is a 
combinational circuit whose inputs are contents of specific registers. The ALU 
performs the desired micro-operation as determined by control signals on the input 
and places the results in an output or destination register. The whole operation of ALU 
can be performed in a single clock pulse, as it is a combinational circuit. The shift 
operation can be performed in a separate unit but sometimes it can be made as a part 
of overall ALU. The following figure gives a simple structure of one stage of an ALU.  
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: One stage of ALU with shift capability 
 
Please note that in this figure we have given reference to two previous figures for 
arithmetic and logic circuits. This stage of ALU has two data inputs; the ith bits of the 
registers to be manipulated. However, the (i – 1)th or (i+1)th bit is also fed for the case 
of shift micro-operation of only one register. There are four selection lines, which 
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resultant bit after desired micro-operation. Let us see how the value of Fi changes on 
the basis of the four select inputs. This is shown in Figure 10: 
 
Please note that in Figure 10 arithmetic micro-operations have both S3 and S2 bits as 
zero. Input Ci is important for only arithmetic micro-operations. For logic micro-
operations S3, S2 values are 01. The values 10 and 11 cause shift micro-operations.  
For this shift micro-operation S1 and S0 values and Ci values do not play any role.  
 
S3 S2 S1 S0 Ci F Micro-

operation 
Name  

0 0 0 0 0 F = x R R1 Transfer  
0 0 0 0 1 F = x+1 R R1+1 Increment  
0 0 0 1 0 F = x+y R R1+R2 Addition  
0 0 0 1 1 F = x+y+1 R R1+R2+1 Addition 

with carry 
  Arithmetic  
  Micro-operation 

0 0 1 0 0 F = x+ y  R R1+ 2R  Subtract 
with borrow 

 

0 0 1 0 1 F = x+( y +1) R R1 – R2  Subtract  

0 0 1 1 0 F = x – 1  R R1 – 1  Decrement  
0 0 1 1 1 F = x R R1 Transfer  
         

0 1 0 0  -  F = x.y R R1∧R2 AND  
0 1 0 1 - F = x+y R R1∨ R2 OR    Logic  
0 1 1 0 - F = x⊕ y R R1⊕ R2 Exclusive 

OR 
   Micro-operation 

0 1 1 1 - F = x  R 1R  Complement  

         
1 0 - - - F = Shl(x) R  Shl(R1) Shift left    Shift Micro-  
1 1 - - - F = Shr(y) R Shr(R1) Shift right    operations 
 
  Figure 10: Micro-operations performed by a Sample ALU 

 

3.3 ARITHMETIC PROCESSORS 
 
The questions in this regard are: “What is an arithmetic processor?” and, “What is the 
need for arithmetic processors?” 
 
A typical CPU needs most of the control and data processing hardware for 
implementing non-arithmetic functions. As the hardware costs are directly related to 
chip area, a floating point circuit being complex in nature is costly to implement. They 
need not be included in the instruction set of a CPU. In such systems, floating-point 
operations were implemented by using software routines.  
 
This implementation of floating point arithmetic is definitely slower than the hardware 
implementation. Now, the question is whether a processor can be constructed only for 
arithmetic operations. A processor, if devoted exclusively to arithmetic functions, can 
be used to implement a full range of arithmetic functions in the hardware at a 
relatively low cost. This can be done in a single Integrated Circuit. Thus, a special 
purpose arithmetic processor, for performing only the arithmetic operations, can be 
constructed. This processor physically may be separate, yet can be utilized by the 
CPU to execute complex arithmetic instructions. Please note in the absence of 
arithmetic processors, these instructions may be executed using the slower software 
routines by the CPU itself. Thus, this auxiliary processor enhances the speed of 
execution of programs having a lot of complex arithmetic computations. 
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richer instruction set for a machine. Some of the instructions that can be assigned to 
arithmetic processors can be related to the addition, subtraction, multiplication, and 
division of floating point numbers, exponentiation, logarithms and other trigonometric 
functions.  
 
How can this arithmetic processor be connected to the CPU? 
 
Two mechanisms are used for connecting the arithmetic processor to the CPU. 
 
If an arithmetic processor is treated as one of the Input / Output or peripheral units 
then it is termed as a peripheral processor. The CPU sends data and instructions to the 
peripheral processor, which performs the required operations on the data and 
communicates the results back to the CPU. A peripheral processor has several 
registers to communicate with the CPU. These registers may be addressed by the CPU 
as Input /Output register addresses. The CPU and peripheral processors are normally 
quite independent and communicate with each other by exchange of information using 
data transfer instructions. The data transfer instructions must be specific instructions 
in the CPU. This type of connection is called loosely coupled. 
 
On the other hand if the arithmetic processor has a register and instruction set which 
can be considered an extension of the CPU registers and instruction set, then it is 
called a tightly coupled processor. Here the CPU reserves a special subset of code for 
arithmetic processor. In such a system the instructions meant for arithmetic processor 
are fetched by CPU and decoded jointly by CPU and the arithmetic processor, and 
finally executed by arithmetic processor. Thus, these processors can be considered a 
logical extension of the CPU. Such attached arithmetic processors are termed as co-
processors.  
 
The concept of co-processor existed in the 8086 machine till Intel 486 machines 
where co-processor was separate. However, Pentium at present does not have a 
separate co-processor. Similarly, peripheral processors are not found as arithmetic 
processors in general. However, many chips are used for specialized I/O architecture. 
These can be found in further readings. 

Check Your Progress 2 

1.  Draw the logic circuit for a ALU unit. 
 
2.  What is an Arithmetic Processor?  

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

3.4    SUMMARY 

In this unit, we have discussed in detail the hardware implementation of micro-
operations. The unit starts with an implementation of bus, which is the backbone for 
any register transfer operation. This is followed by a discussion on arithmetic circuit 
and micro-operation thereon using full adder circuits. The logic micro-operation 
implementation has also been discussed. Thus, leading to a logical construction of a 
simple arithmetic – logic –shift unit. The unit revolves around the basic ALU with the 
help of the units that are constructed for the implementation of micro-operations.  
 
In the later part of the unit, we discussed the arithmetic processors. Finally, we have 
presented a few chipsets that support the working of a processor for input/output 
functions from key board, printer etc. 
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Check Your Progress 1 

1. False 
2.   False 
3.   True 
 
Check Your Progress 2 

1. The diagram is the same as that of Figure 9. 
2. Arithmetic processor performs arithmetic computation. These are support 

processors to a computer. 
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4.0 INTRODUCTION 

By now we have discussed instruction sets and register organisation followed by a 
discussion on micro-operations and a simple arithmetic logic unit circuit. We have 
also discussed the floating point ALU and arithmetic processors, which are commonly 
used for floating point computations.  
 
In this unit we are going to discuss the functions of a control unit, its structure 
followed by the hardwired type of control unit. We will discuss the micro-
programmed control unit, which are quite popular in modern computers because of 
flexibility in designing. We will start the discussion with several definitions about the 
unit followed by Wilkes control unit. Finally, we will discuss the concepts involved in 
micro-instruction execution. 
 

4.1 OBJECTIVES 

After going through this unit you will be able to: 

• define what is a control unit and its function; 
• describe a simple control unit organization; 
• define a hardwired control unit; 
• define the micro-programmed control unit; 
• define the term micro-instruction; and 
• identify types and formats of micro-instruction. 

 

4.2 THE CONTROL UNIT 

The two basic components of a CPU are the control unit and the arithmetic and logic 
unit. The control unit of the CPU selects and interprets program instructions and then 
sees that they are executed. The basic responsibilities of the control unit are to 
control: 

a)  Data  exchange of CPU with the memory or I/O modules. 
b)  Internal operations in the CPU such as: 

•  moving data between registers (register transfer operations) 
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•  regulating other internal operations.   
 
But how does a control unit control the above operations? What are the functional 
requirements of the control unit? What is its structure? Let us explore answers of these 
questions in the next sections. 
 
Functional Requirements of a Control Unit 

Let us first try to define the functions which a control unit must perform in order to 
get things to happen. But in order to define the functions of a control unit, one must 
know what resources and means it has at its disposal. A control unit must know about 
the:   

(a) Basic components of the CPU 

(b) Micro-operation this CPU performs. 
 
The CPU of a computer consists of the following basic functional components:  

• The Arithmetic Logic Unit (ALU), which performs the basic arithmetic and 
logical operations. 

• Registers which are used for information storage within the CPU.  

• Internal Data Paths: These paths are useful for moving the data between two 
registers or between a register and ALU.  

• External Data Paths: The roles of these data paths are normally to link the CPU 
registers with the memory or I/O interfaces. This role is normally fulfilled by the 
system bus. 

• The Control Unit: This causes all the operations to happen in the CPU. 
 
The micro-operations performed by the CPU can be classified as:    

• Micro-operations for data transfer from register-register, register-memory, I/O-
register etc. 

• Micro- operations for performing arithmetic, logic and shift operations. These 
micro-operations involve use of registers for input and output.  

 
The basic responsibility of the control unit lies in the fact that the control unit must be 
able to guide the various components of CPU to perform a specific sequence of micro-
operations to achieve the execution of an instruction. 
 
What are the functions, which a control unit performs to make an instruction 
execution feasible? The instruction execution is achieved by executing micro-
operations in a specific sequence. For different instructions this sequence may be 
different. Thus the control unit must perform two basic functions:  

• Cause the execution of a micro-operation. 

• Enable the CPU to execute a proper sequence of micro-operations, which is 
determined by the instruction to be executed. 

 
But how are these two tasks achieved? The control unit generates control signals, 
which in turn are responsible for achieving the above two tasks. But, how are these 
control signals generated? We will answer this question in later sections. First let us 
discuss a simple structure of control unit.  
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A control unit has a set of input values on the basis of which it produces an output 
control signal, which in turn performs micro-operations. These output signals control 
the execution of a program.  A general model of control unit is shown in Figure 1.   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: A General Model of Control Unit 
 
In the model given above the control unit is a black box, which has certain inputs and 
outputs. 
 
The inputs to the control unit are:   

• The Master Clock Signal: This signal causes micro-operations to be performed 
in a square. In a single clock cycle either a single or a set of simultaneous micro-
operations can be performed. The time taken in performing a single micro-
operation is also termed as processor cycle time or the clock cycle time in some 
machines.  

 
• The Instruction Register: It contains the operation code (opcode) and 

addressing mode bits of the instruction. It helps in determining the various cycles 
to be performed and hence determines the related micro-operations, which are 
needed to be performed.  

 
• Flags: Flags are used by the control unit for determining the status of the CPU & 

the outcomes of a previous ALU operation. For example, a zero flag if set 
conveys to control unit that  for  instruction ISZ  (skip the next instruction if zero 
flag is set) the next instruction is to be skipped. For such a case control unit cause 
increment of PC by program instruction length, thus skipping next instruction.  

 
• Control Signals from Control Bus: Some of the control signals are provided to 

the control unit through the control bus. These signals are issued from outside the 
CPU.  Some of these signals are interrupt signals and acknowledgement signals. 

 
On the basis of the input signals the control unit activates certain output control 
signals, which in turn are responsible for the execution of an instruction. These output 
control signals are: 

• Control signals, which are required within the CPU: These control signals 
cause two types of micro-operations, viz., for data transfer from one register to 
another; and for performing an arithmetic, logic and shift operation using ALU.  

 
• Control signals to control bus: These control signals transfer data from or to 

CPU register to or from memory or I/O interface.  These control signals are 
issued on the control bus to activate a data path on the data / address bus etc.  
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Now, let us discuss the requirements from such a unit. A prime requirement for 
control unit is that it must know how all the instructions will be executed. It should 
also know about the nature of the results and the indication of possible errors.  All this 
is achieved with the help of flags, op-codes, clock and some control signals to itself. 
 
A control unit contains a clock portion that provides clock-pulses. This clock signal is 
used for measuring the timing of the micro-operations. In general, the timing signals 
from control unit are kept sufficiently long to accommodate the proportional delays of 
signals within the CPU along various data paths.  Since within the same instruction 
cycle different control signals are generated at different times for performing different 
micro-operations, therefore a counter can be utilised with the clock to keep the count. 
However, at the end of each instruction cycle the counter should be reset to the initial 
condition. Thus, the clock to the control unit must provide counted timing signals. 
Examples, of the functionality of control units along with timing diagrams are given 
in further readings.   
 
How are these control signals applied to achieve the particular operation?   The 
control signals are applied directly as the binary inputs to the logic gates of the logic 
circuits. All these inputs are the control signals, which are applied to select a circuit 
(for example, select or enable input) or a path (for example, multiplexers) or any other 
operation in the logic circuits.  
 
A program execution consists of a sequence of instruction cycles. Each instruction 
cycle is made up of a number of sub cycles.  One such simple subdivision includes 
fetch, indirect, execute, and interrupt cycles, with only fetch and execute cycles 
always occurring. Each sub cycle involves one or more micro-operations. 
 
Let us revisit the micro-operations described in Unit 2 to discuss how the events of 
any instruction cycle can be described as a sequence of such micro-operations.   
 
The Fetch Cycle 

The beginning of each instruction cycle is the fetch cycle, and causes an instruction to 
be fetched from memory.  
 
The fetch cycle consists of four micro-operations that are executed in three timing 
steps. The fetch cycle can be written as: 

 T1 :  MAR  PC 
 T2 :  MBR  [MAR] 
         PC       PC + I 
 T3 :  IR        MBR 
 

where I is the instruction length. We assume that a clock is available for timing 
purposes and that it emits regularly spaced clock pulses. Each clock pulse defines a 
time unit. Thus, all the units are of equal duration. Each micro-operation can be 
performed within the time of a single time unit. The notation (T1, T2, T3) represents 
successive time units. What is done in these time units? 

• In the first time unit the content of PC is moved to MAR. 
 
• In the second time unit the contents of memory location specified by MAR is 

moved to MBR and the contents of the PC is incremented by I. 
• In the third time unit the content of MBR is moved to IR. 
 
The Indirect Cycle 
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The Control Unit Once an instruction is fetched, the next step is to fetch the operands. Considering the 

same example as of Unit 2, the instruction may have direct and indirect addressing 
modes. An indirect address is handled using indirect cycle. The following micro-
operations are required in the indirect cycle: 

T1 :   MAR  IR (address) 
T2 :   MBR  [MAR] 
T3 :   IR (address)  MBR (address) 

 
The MAR is loaded with the address field of IR register. Then the memory is read to 
fetch the address of operand, which is transferred to the address field of IR through 
MBR as data is received in MBR during the read operation.   
 
Thus, the IR now is in the same state as of direct address, viz., as if indirect addressing 
had not been used. IR is now ready for the execute cycle. 
 
The Execute Cycle 

The fetch and indirect cycles involve a small, fixed sequence of micro-operations. 
Each of these cycles has fixed sequence of micro-operations that are common to all 
instructions.  
 
This is not true of the execute cycle. For a machine with N different opcodes, there are 
N different sequences of micro-operations that can occur. Let us consider some 
hypothetical instructions: 

An add instruction that adds the contents of memory location X to Register R1 with 
R1 storing the result: 

ADD R1, X 
 
The sequence of micro-operations may be: 

T1 :  MAR    IR (address) 

T2 :  MBR    [MAR] 

T3 :  R1       R1 + MBR 
 

At the beginning of the execute cycle IR contains the ADD instruction and its direct 
operand address (memory location X). At time T1, the address portion of the IR is 
transferred to the MAR. At T2 the referenced memory location is read into MBR 
Finally, at T3 the contents of R1 and MBR are added by the ALU.  
 
Let us discuss one more instruction: 

ISZ X, it increments the content of memory location X by 1. If the result is 0, the next 
instruction in the sequence is skipped. A possible sequence of micro-operations for 
this instruction may be: 

          T1  :  MAR    IR (address) 

         T2  :  MBR   [MAR] 

         T3  :  MBR    MBR+ 1 

         T4  :  [MAR]    MBR 

          If  (MBR  = 0) then  (PC    PC+ I ) 
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Please note that for this machine we have assumed that MBR can be incremented by 
ALU directly. 



 
The Central 
Processing Unit  

The PC is incremented if MBR contains 0. This test and action can be implemented as 
one micro-operation. Note also that this micro-operation can be performed during the 
same time unit during which the updated value in MBR is stored back to memory. 
Such instructions are useful in implementing looping. 
 
The Interrupt Cycle 
 
On completion of the execute cycle the current instruction execution gets completed. 
At this point a test is made to determine whether any enabled interrupts have occurred. 
If so, the interrupt cycle is performed. This cycle does not execute an interrupt but 
causes start of execution of Interrupt Service Program (ISR). Please note that ISR is 
executed as just another program instruction cycle. The nature of this cycle varies 
greatly from one machine to another. A typical sequence of micro-operations of the 
interrupt cycle are: 

 
T1 :   MBR  PC 

T2 :   MAR   Save-Address  

         PC     ISR- Address  

T3 :   [MAR]  MBR 
 
At time T1, the contents of the PC are transferred to the MBR, so that they can be 
saved for return from the interrupt.  At time T2 the MAR is loaded with the address at 
which the contents of the PC are to be saved, and PC is loaded with the address of the 
start of the interrupt-servicing routine. At time T3 MBR, which contains the old value 
of the PC, is stored in the memory.  The processor is now ready to begin the next 
instruction cycle. 
 
The Instruction Cycle 
 
The instruction cycle for this given machine consists of four cycles. Assume a 2-bit   
instruction cycle code (ICC). The ICC can represent the state of the processor in terms 
of cycle. For example, we can use:  

 
00 :  Fetch  

 01 :  Indirect 

 10 : Execute 

 11 : Interrupt 
  
At the end of each of the four cycles, the ICC is set appropriately. Please note that an 
indirect cycle is always followed by the execute cycle and the interrupt cycle is 
always followed by the fetch cycle. For both the execute and fetch cycles, the next 
cycle depends on the state of the system. Let us show an instruction execution using 
timing diagram and instruction cycles: 
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Figure 2: Timing Diagram for ISZ instruction 
 
Please note that the address line determine the location of memory. Read/ write signal 
controls whether the data is being input or output. For example, at time T2 in M2 the 
read control signal becomes active, A9 – A0 input contains MAR that value is kept 
enabled on address bits and the data lines are enabled to accept data from RAM, thus 
enabling a typical RAM data output on the data bus. 
 
For reading no data input is applied by CPU but it is put on data bus by memory after 
the read control signal to memory is activated. Write operation is activated along with 
data bus carrying the output value. 
 
This diagram is used for illustration of timing and control. However, more 
information on these topics can be obtained from further readings. 
  

4.3 THE HARDWIRED CONTROL 

With the last section we have discussed the control unit in terms of its inputs, output 
and functions. A variety of techniques have been used to organize a control unit. Most 
of them fall into two major categories: 

1. Hardwired control organization 
2. Microprogrammed control organization. 
 
In the hardwired organization, the control unit is designed as a combinational circuit. 
That is, the control unit is implemented by gates, flip-flops, decoder and other digital 
circuits. Hardwired control units can be optimised for fast operations. 
The block diagram of control unit is shown in Figure 3. The major inputs to the circuit 
are instruction register, the clock, and the flags. The control unit uses the opcode of 
instruction stored in the IR register to perform different actions for different 
instructions. The control unit logic has a unique logic input for each opcode. This 
simplifies the control logic. This control line selection can be performed by a decoder. 
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input patterns will activate a single unique output line. 
 
The clock portion of the control unit issues a repetitive sequence of pulses for the SS 
duration of micro-operation(s). These timing signals control the sequence of execution 
of instruction and determine what control signal needs to applied at what time for 
instruction execution.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3: Block Diagram of Control Unit Operation 
 

Check Your Progress 1 

1.  What are the inputs to control unit? 
 ..................................................................................................................................

........................……………………………………………………………………

…………………………………………………………………………………….. 

2.  How does a control unit control the instruction cycle? 
 ..................................................................................................................................

......................................................................................................................………

…………………………………………………………………………………….. 

3.  What is a hardwired control unit? 
 ..................................................................................................................................

......................................................................................................................………

…………………………………………………………………………………….. 

4.4 WILKES CONTROL 

Prof. M. V. Wilkes of the Cambridge University Mathematical Laboratory coined the 
term microprogramming in 1951. He provided a systematic alternative procedure for 
designing the control unit of a digital computer. During instruction executing a 
machine instruction, a sequence of transformations and transfer of information from 
one register in the processor to another take place. These were also called the micro 
operations. Because of the analogy between the execution of individual steps in a 
machine instruction to the execution of the individual instruction in a program, 
Wilkes introduced the concept of microprogramming. The Wilkes control unit 
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simple control unit in conjunction with a storage unit that stores the sequence of steps 
of instruction that is a micro-program. 
 
In Wilkes microinstruction has two major components: 

a) Control field which indicates the control lines which are to be activated and 
b) Address field, which provides the address of the next microinstruction to be 

executed. 
 
The figure 4 below is an example of Wilkes control unit design. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Wilkes Control Unit 
 

The control memory in Wilkes control is organized, as a PLA’s like matrix made of 
diodes. This is partial matrix and consists of two components, the control signals and 
the address of the next micro-instruction. The register I contains the address of the 
next micro-instruction that is one step of instruction execution, for example T1 in M1 
or T2 in M2 etc. as in Figure 2. On decoding the control signals are generated that 
cause execution of micro-operation(s) of that step. In addition, the control unit 
indicates the address of the next micro-operation which gets loaded through register II 
to register I. Register I can also be loaded by register II and “enable IR input” control 
signal. This will pass the address of first micro-instruction of execute cycle. During a 
machine cycle one row of the matrix is activated. The first part of the row generates 
the control signals that control the operations of the processor. The second part 
generates the address of the row to be selected in the next machine cycle. 
 
At the beginning of the cycle, the address of the row to be selected is contained in 
register I. This address is the input to the decoder, which is activated by a clock pulse. 
This activates the row of the control matrix. The two-register arrangement is needed, 
as the decoder is a combinational circuit; with only one register, the output would 
become the input during a cycle. This may be an unstable condition due to repetitive 
loop. 
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An alternative to a hardwired control unit is a micro-programmed control unit, in 
which the logic of the control unit is specified by a micro-program. A micro-program 
is also called firmware (midway between the hardware and the software). It consists 
of: 

(a) One or more micro-operations to be executed; and  
(b) The information about the micro-instruction to be executed next. 
 
The general configuration of a micro-programmed control unit is demonstrated in 
Figure 5 below: 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5: Operation of Micro-Programmed Control Unit 
 

The micro-instructions are stored in the control memory. The address register for the 
control memory contains the address of the next instruction that is to be read. The 
control memory Buffer Register receives the micro-instruction that has been read. A 
micro-instruction execution primarily involves the generation of desired control 
signals and signals used to determine the next micro-instruction to be executed. The 
sequencing logic section loads the control memory address register. It also issues a 
read command to control memory. The following functions are performed by the 
micro-programmed control unit: 

1. The sequence logic unit specifies the address of the control memory word that is 
to be read, in the Address Register of the Control Memory. It also issues the 
READ signal. 

2. The desired control memory word is read into control memory Buffer Register. 
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The Control Unit 3. The content of the control memory buffer register is decoded to create control 

signals and next-address information for the sequencing logic unit. 
4. The sequencing logic unit finds the address of the next control word on the basis 

of the next-address information from the decoder and the ALU flags. 
 
As we have discussed earlier, the execute cycle steps of micro-operations are different 
for all instructions in addition the addressing mode may be different. All such 
information generally is dependent on the opcode of the instruction Register (IR). 
Thus, IR input to Address Register for Control Memory is desirable. Thus, there exist 
a decoder from IR to Address Register for control memory. (Refer Figure 5). This 
decoder translates the opcode of the IR into a control memory address.  
 
Check Your Progress 2 

1. What is firmware? How is it different from software? 
 ..................................................................................................................................

......................................................................................................................………

…………………………………………………………………………………….. 

2. State True or False 

(a)  A micro-instruction can initiate only one micro-operation at a time. 

T     F

 
(b)  A control word is equal to a memory word. 
 
(c)   Micro-programmed control is faster than hardwired control. 
 
(d)  Wilkes control does not provide a branching micro-instruction. 
 

3. What will be the control signals and address of the next micro-instruction in 
Wilkes control example of Figure 4, if the entry address for a machine instru
selects the last but one (branching control line) and the conditional bit value 
branch is true? 

 ..........................................................................................................................

......................................................................................................................…

…………………………………………………………………………………

4.6 THE MICRO-INSTRUCTIONS 

A micro-instruction, as defined earlier, is an instruction of a micro-program. It 
specifies one or more micro-operations, which can be executed simultaneously. O
executing a micro-instruction a set of control signals are generated which in turn c
the desired micro-operation to happen. 
 
4.6.1 Types of Micro-instructions 

In general the micro-instruction can be categorised into two general types. These 
branching and non-branching. After execution of a non-branching micro-instructi
the next micro-instruction is the one following the current micro-instruction.  

However, the sequences of micro-instructions are relatively small and last only fo
or 4 micro-instructions. 
A conditional branching micro-instruction tests conditional variable or a flag 
generated by an ALU operation. Normally, the branch address is contained in the
micro-instruction itself. 
 

 
4.6.2 Control Memory Organization 
.
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Processing Unit The next important question about the micro-instruction is: how are they organized in 

the control memory? One of the simplest ways to organize control memory is to 
arrange micro-instructions for various sub cycles of the machine instruction in the 
memory. The Figure 6 shows such an organisation. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Control Memory Organisation 
 
Let us give an example of control memory organization. Let us take a machine 
instruction: Branch on zero. This instruction causes a branch to a specified main 
memory address in case the result of the last ALU operation is zero, that is, the zero 
flag is set. The pseudocode of the micro-program for this instruction can be; 

                         Test "zero flag” If SET branch to label ZERO 

                         Unconditional branch to label NON-ZERO  

ZERO:  (Microcode which causes replacement of program counter with the address 
provided in the instruction) 

  Branch to interrupt or fetch cycle. 

NON -ZERO:  (Microcode which may set flags if desired indicating the branch has 
not taken place). 

  Branch to interrupt or fetch cycle. (For Next- Instruction Cycle) 
 
 
 
 
4.6.3 Micro-instruction Formats 

Now let us focus on the format of a micro-instruction. The two widely used formats 
used for micro-instructions are horizontal and vertical. In the horizontal micro-
instruction each bit of the micro-instruction represents a control signal, which directly 
controls a single bus line or sometimes a gate in the machine. However, the length of 
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The Control Unit such a micro-instruction may be hundreds of bits. A typical horizontal micro-

instruction with its related fields is shown in Figure 7(a).  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 (a) Horizontal Micro-instruction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) Vertical Micro-instructions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) A Realistic Micro-instructions 
Figure 7: Micro- instruction Formats 

 
In a vertical micro-instruction many similar control signals can be encoded into a few 
micro-instruction bits. For example, for 16 ALU operations, which may require 16 
individual control bits in horizontal micro-instruction, only 4 encoded bits are needed 
in vertical micro-instruction. Similarly, in a vertical micro-instruction only 3 bits are 
needed to select one of the eight registers. However, these encoded bits need to be 
passed from the respective decoders to get the individual control signals. This is 
shown in figure 7(b).  
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In general, a horizontal control unit is faster, yet requires wider instruction words, 
whereas vertical control units, although; require a decoder, are shorter in length. Most 
of the systems use neither purely horizontal nor purely vertical micro-instructions 
figure 7(c). 
 

4.7 THE EXECUTION OF MICRO-PROGRAM  

The micro-instruction cycle can consist of two basic cycles: the fetch and the execute. 
Here, in the fetch cycle the address of the micro-instruction is generated and this 
micro-instruction is put in a register used for the address of a micro-instruction for 
execution. The execution of a micro-instruction simply means generation of control 
signals. These control signals may drive the CPU (internal control signals) or the 
system bus. The format of micro-instruction and its contents determine the complexity 
of a logic module, which executes a micro-instruction. 
 
One of the key features incorporated in a micro-instruction is the encoding of micro-
instructions. What is encoding of micro-instruction? For answering this question let us 
recall the Wilkes control unit. In Wilkes control unit, each bit of information either 
generates a control signal or form a bit of next instruction address. Now, let us assume 
that a machine needs N total number of control signals. If we follow the Wilkes 
scheme we require N bits, one for each control signal in the control unit.  
 
Since we are dealing with binary control signals, therefore, a ‘N’ bit micro-instruction 
can represent 2N combinations of control signals. 
 
The question is do we need all these 2N combinations? 
 
No, some of these 2N combinations are not used because: 

1. Two sources may be connected by respective control signals to a single 
destination; however, only one of these sources can be used at a time. Thus, the 
combinations where both these control signals are active for the same 
destination are redundant. 

2. A register cannot act as a source and a destination at the same time. Thus, such 
a combination of control signals is redundant. 

3. We can provide only one pattern of control signals at a time to ALU, making 
some of the combinations redundant. 

4. We can provide only one pattern of control signals at a time to the external 
control bus also. 

 
Therefore, we do not need 2N combinations. Suppose, we only need 2K (which is less 
than 2N) combinations, then we need only K encoded bits instead of N control signals. 
The K bit micro-instruction is an extreme encoded micro-instruction. Let us touch 
upon the characteristics of the extreme encoded and unencoded micro-instructions: 
 
Unencoded micro-instructions 

• One bit is needed for each control signal; therefore, the number of bits required 
in a micro-instruction is high. 

• It presents a detailed hardware view, as control signal need can be determined. 
• Since each of the control signals can be controlled individually, therefore these 

micro-instructions are difficult to program. However, concurrency can be 
exploited easily. 

• Almost no control logic is needed to decode the instruction as there is one to 
one mapping of control signals to a bit of micro-instruction. Thus, execution of 
micro-instruction and hence the micro-program is faster.  
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• The unencoded micro-instruction aims at optimising the performance of a 
machine. 
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Highly Encoded micro-instructions 

• The encoded bits needed in micro-instructions are small. 
• It provided an aggregated view that is a higher view of the CPU as only an 

encoded sequence can be used for micro-programming. 
• The encoding helps in reduction in programming burden; however, the 

concurrency may not be exploited to the fullest. 
• Complex control logic is needed, as decoding is a must. Thus, the execution of 

a micro-instruction can have propagation delay through gates. Therefore, the 
execution of micro-program takes a longer time than that of an unencoded 
micro-instruction. 

• The highly encoded micro-instructions are aimed at optimizing programming 
effort. 

 
In most of the cases, the design is kept between the two extremes. The LSI 11 (highly 
encoded) and IBM 3033 (unencoded) control units are close examples of these two 
approaches.  
 
Execution/decoding of slightly encoded micro-instructions 

In general, the micro-programmed control unit designs are neither completely 
unencoded nor highly encoded. They are slightly coded. This reduces the width of 
control memory and micro-programming efforts. The basic technique for encoding is 
shown in Figure 8. The micro-instruction is organised as a set of fields. Each field 
contains a code, which, upon decoding, activates one or more control signals. The 
execution of a micro-instruction means that every field is decoded and generates 
control signals. Thus, with N fields, N simultaneous actions can be specified. Each 
action results in the activation of one or more control signals. Generally each control 
signal is activated by no more than one field. The design of an encoded micro-
instruction format can be stated in simple terms: 

• Organize the format into independent fields. That is, each field depicts a set of 
actions such that actions from different fields can occur simultaneously. 

• Define each field such that the alternative actions that can be specified by the 
field are mutually exclusive. That is, only one of the actions specified for a 
given field could occur at a time. 

 
Another aspect of encoding is whether it is direct or indirect (Figure 8). With indirect 
encoding, one field is used to determine the interpretation of another field.  
 
Another aspect of micro-instruction execution is the micro-instruction sequencing that 
involves address calculation of the next micro-instruction. In general, the next micro- 
instruction can be (refer Figure 6): 

• Next micro-instruction in sequence 
• Calculated on the basis of opcode 
• Branch address (conditional or unconditional). 
 
A detailed discussion on these topics is beyond this unit. You must refer to further 
readings for more detailed information on Micro-programmed Control Unit Design. 
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Figure (a):  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (b): 
Figure 8: Micro-instruction Encoding 

 
Check Your Progress 3 

1. State True or False 

a) A branch micro-instruction can have only an unconditional jump
 
b) Control store stores opcode-based micro-programs. 

 
c) A true horizontal micro-instruction requires one bit for every con

signal. 
 

d) A decoder is needed to find a branch address in the vertical micr
instruction. 

 
e) One of the responsibilities of sequencing logic (Refer Figure 5) i

reading of micro-instruction addressed by a micro-program coun
the micro-instruction buffer. 

 
f) Status bits supplied from ALU to sequencing logic have no role 

with the sequencing of micro-instruction. 
 
2.  What art the possibilities for the next instruction address? 
 ..............................................................................................................

..............................................................................................................

.............................................................................................................…

…. 

 …………………………………………………………………………

…………………………………………………………………………

 
 
3.  How many address fields are there in Wilkes Control Unit?  
 ..............................................................................................................

..............................................................................................................

..............................................................................................................

… 
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The Control Unit 4.  Compare and contrast unencoded and highly encoded micro-instructions. 
 ...............................................................................................................................

...............................................................................................................................

..............................................................................................................…………

… 

4.8 SUMMARY 

In this unit we have discussed the organization of control units. Hardwired, Wilkes 
and micro-programmed control units are also discussed. The key to such control units 
are micro-instruction, which can be briefly (that is types and formats) described in this 
unit. The function of a micro-programmed unit, that is, micro-programmed execution, 
has also been discussed. The control unit is the key for the optimised performance of a 
computer. The information given in this unit can be further appended by going 
through further readings. 
 

4.9 SOLUTIONS/ ANSWERS 
Check Your Progress 1 

1. IR, Timing Signal, Flags Register 
2. The control unit issues control signals that cause execution of micro-operations in 

a pre-determined sequence. This, enables execution sequence of an instruction. 
3. A logic circuit based implementation of control unit. 
 
Check Your Progress 2 

1.  Firmware is basically micro-programs, which are used in a micro-programmed 
control unit. Firmwares are more difficult to write than software. 

 
2.  (a) False (b) False (C) False (d) False 
 
3. In sequence from left to right as per figure.  

110……00 (control signals …… indicate more values) 
110……00 (address of next, micro-instruction is found after assuming that 
bottom line after condition code represent true in the Figure 4) 

 
Check Your Progress 3 

1.  (a) False (b) False (c) True (d) False (e) True (f) False. 
 
2  The address of the next micro-instruction can be one of the following: 

• the address of the next micro-instruction in sequence.  
• determined by opcode using mapping or any other method. 
• branch address supplied on the internal address bus. 

 
3. Wilkes control typically has one address field. However, for a conditional 

branching micro-instruction, it contains two addresses. The Wilkes control, in 
fact, is a hardware representation of a micro-programmed control unit. 

 
 
4. 

Unencoded Micro instructions  Highly encoded 
• Large number of bits 
• Difficult to program 
• No decoding logic 

Relatively less bits 
Easy to program 
Need decoding logic 
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performances  
• Detailed hardware view 

Optimizes programming effort 
Aggregated view 
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Structure        Page No. 

5.0  Introduction        83 
5.1  Objectives        83 
5.2  Introduction to RISC       83 
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5.7  Summary         98 
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5.0 INTRODUCTION 

In the previous units, we have discussed the instruction set, register organization and 
pipelining, and control unit organization. The trend of those years was to have a large 
instruction set, a large number of addressing modes and about 16 –32 registers. 
However, their existed a pool of thought which was in favour of having simplicity in 
instruction set. This logic was mainly based on the type of the programs, which were 
being written for various machines. This led to the development of a new type of 
computers called Reduced Instruction Set Computer (RISC). In this unit, we will 
discuss about the RISC machines. Our emphasis will be on discussing the basic 
principles of RISC and its pipeline. We will also discuss the arithmetic and logic units 
here. 
 

5.1 OBJECTIVES 

After going through this unit you should be able to: 

• define why complexity of instruction increased?; 
• describe the reasons for developing RISC; 
• define the basic design principles of RISC;  
• describe the importance of having large register file; 
• discuss some of the common comments about RISC; 
• describe RISC pipelining; and 
• define the optimisation in RISC pipelining. 
 

5.2  INTRODUCTION TO RISC 

The aim of computer architects is to design computers which are cheaper and more 
powerful than their predecessors. A cheaper computer has: 

• Low hardware manufacturing cost. 
• Low Cost for programming scalable/ portable architecture that require low costs 

for debugging the initial hardware and subsequent programs. 
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Processing Unit If we review the history of computer families, we find that the most common 

architectural change is the trend towards even more complex machines. 
 
5.2.1 Importance of RISC Processors 

Reduced Instruction Set Computers recognize a relatively limited number of 
instructions. One advantage of a reduced instruction set is that RISC can execute the 
instructions very fast because these are so simple.  Another advantage is that RISC 
chips require fewer gates and hence transistors, which makes them cheaper to design 
and produce. 
 
An instruction of RISC machine can be executed in one cycle, as there exists an 
instruction pipeline. This may enhance the speed of instruction execution. In addition, 
the control unit of the RISC processor is simpler and smaller, so much so that it 
acquires only 6% space for a processor in comparison to Complex Instruction Set 
Computers (CISC) in which the control unit occupies about 50% of space. This saved 
space leaves a lot of room for developing a number of registers.  
 
This further enhances the processing capabilities of the RISC processor. It also 
necessitates that the memory to register  “LOAD” and  “STORE” are independent 
instructions. 
 
Various RISC Processors 

RISC has fewer design bugs, its simple instructions reduce design time. Thus, because 
of all the above important reasons RISC processors have become very popular. Some 
of the RISC processors are: 
 
SPARC Processors 

Sun 4/100 series, Sun 4/310 SPARCserver 310, Sun 4/330 SPARCserver 330, Sun 
4/350 SPARCserver 350, Sun 4/360 SPARCserver 360, Sun 4/370 SPARCserver 370, 
Sun 4/20, SPARCstation SLC, Sun 4/40 SPARCstation IPC, Sun 4/75, SPARCstation 
2. 
 
PowerPC Processors 

MPC603, MPC740, MPC750, MPC755, MPC7400/7410, MPC745x, MPC7450, 
MPC8240, MPC8245. 
 
Titanium – IA64 Processor 
 
5.2.2 Reasons for Increased Complexity 

Let us see what the reasons for increased complexity are, and what exactly we mean 
by this. 
 
Speed of Memory Versus Speed of CPU 

In the past, there existed a large gap between the speed of a processor and memory. 
Thus, a subroutine execution for an instruction, for example floating point addition, 
may have to follow a lengthy instruction sequence. The question is; if we make it a 
machine instruction then only one instruction fetch will be required and rest will be 
done with control unit sequence. Thus, a “higher level” instruction can be added to 
machines in an attempt to improve performance. 
 
However, this assumption is not very valid in the present era where the Main memory 
is supported with Cache technology. Cache memories have reduced the difference 
between the CPU and the memory speed and, therefore, an instruction execution 
through a subroutine step may not be that difficult. 
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Let us explain it with the help of an example: 

Suppose the floating point operation ADD A, B requires the following steps 
(assuming the machine does not have floating point registers) and the registers being 
used for exponent are E1, E2, and EO (output); for mantissa M1, M2 and MO 
(output): 

• Load the exponent of A in E1 
• Load the mantissa of A in M1 
• Load the exponent of B in E2 
• Load the mantissa of B in M2 
• Compare E1 and E2 

- If  E1 = E2 then MO  M1 + M2 and EO  E1 
Normalise MO and adjust EO 
• Result will be contained in MO, E1 

 else if E1< E2 then find the difference = E2 – E1 
• Shift Right M1, by difference 
• MO  M1 + M2 and EO  E2 
• Normalise MO and adjust EO 
• Result is contained in MO, EO 

 else E2 < E1, if so find the difference = E1 – E2 
• Shift Right M2 by difference above 
• MO  M1 + M2 and EO  E1 
• Normalise MO and adjust E1 into EO 
• Result is contained in MO, EO 

 Store the above results in A 
 Checks overflow underflow if any. 
 
If all these steps are coded as one machine instruction, then this simple instruction will 
require many instruction execution cycles. If this instruction is made as part of the 
machine instruction set as: ADDF A,B (Add floating point numbers A & B and store 
results in A) then it will just be a single machine instruction. All the above steps 
required will then be coded with the help of micro-operations in the form of Control 
Unit Micro-Program. Thus, just one instruction cycle (although a long one) may be 
needed. This cycle will require just one instruction fetch. Whereas in the program 
memory instructions will be fetched. 
 
However, faster cache memory for Instruction and data stored in registers can create 
an almost similar instruction execution environment. Pipelining can further enhance 
such speed. Thus, creating an instruction as above may not result in faster execution. 
 
Microcode and VLSI Technology 

It is considered that the control unit of a computer be constructed using two ways; 
create micro-program that execute micro-instructions or build circuits for each 
instruction execution. Micro-programmed control allows the implementation of 
complex architectures more cost effective than hardwired control as the cost to expand 
an instruction set is very small, only a few more micro-instructions for the control 
store. Thus, it may be reasoned that moving subroutines like string editing, integer to 
floating point number conversion and mathematical evaluations such as polynomial 
evaluation to control unit micro-program is more cost effective. 

Code Density and Smaller Faster Programs  

The memory was very expensive in the older computer. Thus there was a need of less 
memory utilization, that is, it was cost effective to have smaller compact programs. 
Thus, it was opined that the instruction set should be more complex, so that programs 
are smaller. However, increased complexity of instruction sets had resulted in 
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stated that the code compaction is important, but the cost of 10 percent more memory 
is often far less than the cost of reducing code by 10 percent out of the CPU 
architecture innovations. 
 
The smaller programs are advantageous because they require smaller RAM space. 
However, today memory is very inexpensive, this potential advantage today is not so 
compelling. More important, small programs should improve performance. How? 
Fewer instructions mean fewer instruction bytes to be fetched. 
 
However, the problem with this reasoning is that it is not certain that a CISC program 
will be smaller than the corresponding RISC program. In many cases CISC program 
expressed in symbolic machine language may be smaller but the number of bits of 
machine code program may not be noticeably smaller. This may result from the 
reason that in RISC we use register addressing and less instruction, which require 
fewer bits in general. In addition, the compilers on CISCs often favour simpler 
instructions, so that the conciseness of complex instruction seldom comes into play. 
 
Let us explain this with the help of the following example: 

Assumptions: 

• The Complex Instruction is: Add C, A, B having 16 bit addresses and 8 bit data 
operands 

• All the operands are direct memory reference operands 
• The machine has 16 registers. So the size of a register address is = 24 = 16 = 4 

bits. 
• The machine uses an 8-bit opcode. 
 
                                                                            8            4                    16 

     Load rA A 
8 16 16 16  Load rB B 
Add C A B  Add rC rA rB 
     Store rC C 

 
Memory-to-Memory Register-to-Register 
 Instruction size (I) = 56 bits  I = 104 bits 
 Data Size      (D)   = 24   bits  D = 24bits 
 Total Memory Load (M) = 80 bits  M = 128 bits 

(a) Add A & B to store result in C 

     8 4  16 
     Load rA A 
8 16 16 16  Load rB B 
Add C A B  Add rC rB rA 
Add A C D  Load rD D 
Sub D D B  Add rA rC Rd 
     Sub rD rD rB 
     Store rD D  

 
Memory-to-Memory Register-to-Register 
 Instruction size (I) = 168 bits  I = 172 bits 
 Data Size      (D)   =   72   bits  D = 32bits 
 Total Memory Load (M) = 240 bits  M = 204 bits 
 

(b) Execution of the Instruction Sequence: C = A + B, A = C + D, D = D - B 
 

Figure 1: Program size for different Instruction Set Approaches 
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So, the expectation that a CISC will produce smaller programs may not be realised.  
 
Support for High-Level Language 

With the increasing use of more and higher level languages, manufacturers had 
provided more powerful instructions to support them. It was argued that a stronger 
instruction set would reduce the software crisis and would simplify the compilers. 
Another important reason for such a movement was the desire to improve 
performance.  
 
However, even though the instructions that were closer to the high level languages 
were implemented in Complex Instruction Set Computers (CISCs), still it was hard to 
exploit these instructions since the compilers were needed to find those conditions that 
exactly fit those constructs. In addition, the task of optimising the generated code to 
minimise code size, reduce instruction execution count, and enhance pipelining is 
much more difficult with such a complex instruction set. 
 
Another motivation for increasingly complex instruction sets was that the complex 
HLL operation would execute more quickly as a single machine instruction rather 
than as a series of more primitive instructions. However, because of the bias of 
programmers towards the use of simpler instructions, it may turn out otherwise. CISC 
makes the more complex control unit with larger microprogram control store to 
accommodate a richer instruction set. This increases the execution time for simpler 
instructions. 
 
Thus, it is far from clear that the trend to complex instruction sets is appropriate. This 
has led a number of groups to pursue the opposite path. 
 
5.2.3 High Level Language Program Characteristics 

Thus, it is clear that new architectures should support high-level language 
programming. A high-level language system can be implemented mostly by hardware 
or mostly by software, provided the system hides any lower level details from the 
programmer. Thus, a cost-effective system can be built by deciding what pieces of the 
system should be in hardware and what pieces in software. 
 
To ascertain the above, it may be a good idea to find program characteristics on 
general computers. Some of the basic findings about the program characteristics are: 
 

Variables Operations Procedure Calls 
Integral Constants 15-25% 

Scalar Variables 50-60%  

Array/ structure 20-30%  

Simple assignment 35-
45% 

Looping 2-6% 

Procedure call 10-15% 

IF 35-45% 

GOTO FEW     

Others 1-5% 

Most time consuming 
operation. 

FACTS: Most of the 
procedures are called with 
fewer than 6 arguments. 
Most of these have fewer 
than 6 local variables  

 

Figure 2: Typical Program Characteristics 
 
Observations 

• Integer constants appeared almost as frequently as arrays or structures. 
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structures were global variables. 
• Most of the dynamically called procedures pass lower than six arguments.  
• The numbers of scalar variables are less than six.  
• A good machine design should attempt to optimize the performance of most time 

consuming features of high-level programs. 
• Performance can be improved by more register references rather than having more 

memory references. 
• There should be an optimized instructional pipeline such that any change in flow 

of execution is taken care of. 
 
The Origin of RISC 

In the 1980s, a new philosophy evolved having optimizing compilers that could be 
used to compile “normal” programming languages down to instructions that were as 
simple as equivalent micro-operations in a large virtual address space. This made the 
instruction cycle time as fast as the technology would permit. These machines should 
have simple instructions such that it can harness the potential of simple instruction 
execution in one cycle – thus, having reduced instruction sets – hence the reduced 
instruction set computers (RISCs). 
 
Check Your Progress 1 

1.  List the reasons of increased complexity. 
......................................................................................................................................

......................................................................................................................................

..................................................................................................................…………… 

2.  State True or False 

 a)  The instruction cycle time for RISC is equivalent to CISC.  
 
 b)  CISC yields smaller programs than RISC, which improves its perfor

therefore, it is very superior to RISC.  
 
 c)  CISC emphasizes optional use of register while RISC does not. 
  

5.3 RISC ARCHITECTURE 

Let us first list some important considerations of RISC architecture: 

1. The RISC functions are kept simple unless there is a very good reason to
otherwise. A new operation that increases execution time of an instructio
per cent can be added only if it reduces the size of the code by at least 10
Even greater reductions might be necessary if the extra modification nec
change in design. 

2.  Micro-instructions stored in the control unit cannot be faster than simple
instructions, as the cache is built from the same technology as writable c
unit store, a simple instruction may be executed at the same speed as tha
micro-instruction. 

3.  Microcode is not magic. Moving software into microcode does not make
it just makes it harder to change. The runtime library of RISC has all the
characteristics of functions in microcode, except that it is easier to chang

4.  Simple decoding and pipelined execution are more important than progr
Pipelined execution gives a peak performance of one instruction every s
longest step determines the performance rate of the pipelined machine, s
each pipeline step should take the same amount of time.  
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5.  Compiler should simplify instructions rather than generate complex instructions. 
RISC compilers try to remove as much work as possible during compile time so 
that simple instructions can be used. For example, RISC compilers try to keep 
operands in registers so that simple register-to-register instructions can be used. 
RISC compilers keep operands that will be reused in registers, rather than 
repeating a memory access or a calculation. They, therefore, use LOADs and 
STOREs to access memory so that operands are not implicitly discarded after 
being fetched. (Refer to Figure 1(b)). 

 
Thus, the RISC were designed having the following: 

• One instruction per cycle: A machine cycle is the time taken to fetch two 
operands from registers, perform the ALU operation on them and store the 
result in a register. Thus, RISC instruction execution takes about the same time 
as the micro-instructions on CISC machines. With such simple instruction 
execution rather than micro-instructions, it can use fast logic circuits for control 
unit, thus increasing the execution efficiency further. 

 
• Register-to-register operands: In RISC machines the operation that access 

memories are LOAD and STORE. All other operands are kept in registers. This 
design feature simplifies the instruction set and, therefore, simplifies the control 
unit. For example, a RISC instruction set may include only one or two ADD 
instructions (e.g. integer add and add with carry); on the other hand a CISC 
machine can have 25 add instructions involving different addressing modes. 
Another benefit is that RISC encourages the optimization of register use, so that 
frequently used operands remain in registers. 

 
• Simple addressing modes: Another characteristic is the use of simple 

addressing modes. The RISC machines use simple register addressing having 
displacement and PC relative modes.  More complex modes are synthesized in 
software from these simple ones. Again, this feature also simplifies the 
instruction set and the control unit. 

 
• Simple instruction formats: RISC uses simple instruction formats. Generally, 

only one or a few instruction formats are used. In such machines the instruction 
length is fixed and aligned on word boundaries. In addition, the field locations 
can also be fixed.  Such an instruction format has a number of benefits. With 
fixed fields, opcode decoding and register operand accessing can occur in 
parallel. Such a design has many advantages. These are:  

• It simplifies the control unit 
• Simple fetching as memory words of equal size are to be fetched 
• Instructions are not across page boundaries. 

 
Thus, RISC is potentially a very strong architecture. It has high performance potential 
and can support VLSI implementation. Let us discuss these points in more detail. 

• Performance using optimizing compilers:  As the instructions are simple the 
compilers can be developed for efficient code organization also maximizing 
register utilization etc. Sometimes even the part of the complex instruction can 
be executed during the compile time. 

• High performance of Instruction execution: While mapping of HLL to 
machine instruction the compiler favours relatively simple instructions. In 
addition, the control unit design is simple and it uses little or no micro-
instructions, thus could execute simple instructions faster than a comparable 
CISC. Simple instructions support better possibilities of using instruction 
pipelining. 
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the VLSI implementation of microprocessor. The VLSI Technology has 
reduced the delays of transfer of information among CPU components that 
resulted in a microprocessor. The delays across chips are higher than delay 
within a chip; thus, it may be a good idea to have the rare functions built on a 
separate chip. RISC chips are designed with this consideration. In general, a 
typical microprocessor dedicates about half of its area to the control store in a 
micro-programmed control unit. The RISC chip devotes only about 6% of its 
area to the control unit. Another related issue is the time taken to design and 
implement a processor. A VLSI processor is difficult to develop, as the designer 
must perform circuit design, layout, and modeling at the device level. With 
reduced instruction set architecture, this processor is far easier to build. 

 

5.4 THE USE OF LARGE REGISTER FILE 
 
In general, the register storage is faster than the main memory and the cache. Also the 
register addressing uses much shorter addresses than the addresses for main memory 
and the cache. However, the numbers of registers in a machine are less as generally 
the same chip contains the ALU and control unit.  Thus, a strategy is needed that will 
optimize the register use and, thus, allow the most frequently accessed operands to be 
kept in registers in order to minimize register-memory operations. 
 
Such optimisation can either be entrusted to an optimising complier, which requires 
techniques for program analysis; or we can follow some hardware related techniques. 
The hardware approach will require the use of more registers so that more variables 
can be held in registers for longer periods of time. This technique is used in RISC 
machines. 
 
On the face of it the use of a large set of registers should lead to fewer memory 
accesses, however in general about 32 registers were considered optimum. So how 
does this large register file further optimize the program execution? 
 
Since most operand references are to local variables of a function in C they are the 
obvious choice for storing in registers. Some registers can also be used for global 
variables. However, the problem here is that the program follows function call - return 
so the local variables are related to most recent local function, in addition this call - 
return expects saving the context of calling program and return address. This also 
requires parameter passing on call. On return, from a call the variables of the calling 
program must be restored and the results must be passed back to the calling program. 
 
RISC register file provides a support for such call- returns with the help of register 
windows. Register files are broken into multiple small sets of registers and assigned to 
a different function. A function call automatically changes each of these sets. The use 
from one fixed size window of registers to another, rather than saving registers in 
memory as done in CISC. Windows for adjacent procedures are overlapped. This 
feature allows parameter passing without moving the variables at all. The following 
figure tries to explain this concept:  
 
Assumptions: 
 
Register file contains 138 registers. Let them be called by register number 0 – 137. 
 
The diagram shows the use of registers: when there is call to function A (fA) which 
calls function B (fB) and function B calls function C (fC). 

 



 

 91

Reduced Instruction 
Set Computer 

Architecture 

Registers Nos. Used for  
0 – 9 Global variables 

required by fA, fB, and 
fC 

 
Function A 

 
 Function B 

 
 Function C 

10 – 83 Unused    
84 – 89 
(6 Registers) 

Used by parameters of 
fC that may be passed 
to next call 

  Temporary 
variables of 
function C 

90 – 99 
(10 Registers) 

Used for local variable 
of fC 

  Local 
variables of 
function C 

100 – 105 
(6 Registers) 

Used by parameters 
that were passed from 
fB  fC 

 Temporary 
variables of 
function B 

Parameters 
of function 
C 

106 – 115 
(10 Registers) 

Local variables of fB  Local 
variables of 
function B 

 

116 – 121 
(6 Registers) 

Parameters that were 
passed from fA to fB 

Temporary 
variables of 
function A 

Parameters 
of function 
B 

 

122 – 131  
(10 Registers) 

Local variable of fA Local 
variables of 
function A 

  

132 – 138 
(6 Registers) 

Parameter passed to fA Parameters 
of function 
A 

  

 
Figure 3: Use of three Overlapped Register Windows 

 
Please note the functioning of the registers:  at any point of time the global registers 
and only one window of registers is visible and is addressable as if it were the only set 
of registers. Thus, for programming purpose there may be only 32 registers. Window 
in the above example although has a total of 138 registers. This window consists of:  

• Global registers which are shareable by all functions. 
• Parameters registers for holding parameters passed from the previous function to 

the current function. They also hold the results that are to be passed back. 
• Local registers that hold the local variables, as assigned by the compiler. 
• Temporary registers: They are physically the same as the parameter registers at 

the next level. This overlap permits parameter passing without the actual 
movement of data. 

 
But what is the maximum function calls nesting can be allowed through RISC? Let us 
describe it with the help of a circular buffer diagram, technically the registers as above 
have to be circular in the call return hierarchy. 
 
This organization is shown in the following figure. The register buffer is filled as 
function A called function B, function B called function C, function C called function 
D. The function D is the current function. The current window pointer (CWP) points 
to the register window of the most recent function (function D in this case). Any 
register references by a machine instruction is added with the contents of this pointer 
to determine the actual physical registers.  On the other hand the saved window 
pointer identifies the window most recently saved in memory. This action will be 
needed if a further call is made and there is no space for that call. If function D now 
calls function E arguments for function E are placed in D’s temporary registers 
indicated by D temp and the CWP is advanced by one window. 
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Figure 4: Circular-.Buffer Organization of Overlapped Windows 
 
If function E now makes a call to function F, the call cannot be made with the current 
status of the buffer, unless we free space equivalent to exactly one window. This 
condition can easily be determined as current window pointer on incrementing will be 
equal to saved window pointer. Now, we need to create space; how can we do it? The 
simplest way will be to swap FA register to memory and use that space. Thus, an N 
window register file can support N –1 level of function calls. 
 
Thus, the register file, organized in the form as above, is a small fast register buffer 
that holds most of the variables that are likely to be used heavily. From this point of 
view the register file acts almost like a cache memory.  
 
So let us find how the two approaches are different: 

Characteristics of large-register-file and cache organizations 
 

Large Register File Cache 
Hold local variables for almost all 
functions. This saves time. 

Recently used local variables are fetched 
from main memory for any further use. 
Dynamic use optimises memory. 

The variables are individual. The transfer from memory is block wise. 
Global variables are assigned by the 
compilers. 

It stores recently used variables. It cannot 
keep track of future use. 

Save/restore needed only after the 
maximum call nesting is over (that is n – 
1 open windows) . 

Save/restore based on cache replacement 
algorithms. 

It follows faster register addressing. It is memory addressing. 
 
All but one point above basically show comparative equality. The basic difference is 
due to addressing overhead of the two approaches. 
 
The following figure shows the difference. Small register (R) address is added with 
current window Pointer W#. This generates the address in register file, which is 
decoded by decoder for register access. On the other hand Cache reference will be 
generated from a long memory address, which first goes through comparison logic to 
ascertain the presence of data, and if the data is present it goes through the select 
circuit. Thus, for simple variables access register file is superior to cache memory.  
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However, even in RISC computer, performance can be enhanced by the addition of 
instruction cache. 
 
 

 
 
 
 
 
 
 
 

(a) Windows based Register file 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

(b) Cache Reference  
 

Figure 5: Referencing a local Simple Variables 
 
Check Your Progress 2 

1.  State True or False in the context of RISC architecture: 

a. RISC has a large register file so that more variables can be stored i
or longer periods of time. 

 
b.  Only global variables are stored in registers.                             
 
c. Variables are passed as parameters in registers using temporary reg

window. 
 
d.  Cache is superior to a large register file as it stores most recently us

scalars. 
 
2.  An overlapped register window RISC machine is having 32 registers. S

of these registers are dedicated to global variables and the remaining 24
for incoming parameters, local and scalar variables and outgoing param
What are the ways of allocating these 24 registers in the three categorie

 .................................................................................................................

 .................................................................................................................

 .................................................................................................................

5.5 COMMENTS ON RISC 

Let us now try and answer some of the comments that are asked for RISC 
architectures. Let us provide our suggestions on those.  
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language constructs such as CASE, CALL etc. 
 
Yes CISC architecture tries to narrow the gap between assembly and High Level 
Language (HLL); however, this support comes at a cost. In fact the support can be 
measured as the inverse of the costs of using typical HLL constructs on a particular 
machine. If the architect provides a feature that looks like the HLL construct but runs 
slowly, or has many options, the compiler writer may omit the feature, or even, the 
HLL programmer may avoid the construct, as it is slow and cumbersome. Thus, the 
comment above does not hold. 
 
It is more difficult to write a compiler for a RISC than a CISC. 
 
The studies have shown that it is not so due to the following reasons:  

If an instruction can be executed in more ways than one, then more cases must be 
considered. For it the compiler writer needed to balance the speed of the compilers to 
get good code. In CISCs compilers need to analyze the potential usage of all available 
instruction, which is time consuming. Thus, it is recommended that there is at least 
one good way to do something. In RISC, there are few choices; for example, if an 
operand is in memory it must first be loaded into a register. Thus, RISC requires 
simple case analysis, which means a simple compiler, although more machine 
instructions will be generated in each case. 
 
RISC is tailored for C language and will not work well with other high level 
languages. 
 
But the studies of other high level languages found that the most frequently executed 
operations in other languages are also the same as simple HLL constructs found in C, 
for which RISC has been optimized. Unless a HLL changes the paradigm of 
programming we will get similar result. 
 
The good performance is due to the overlapped register windows; the reduced 
instruction set has nothing to do with it. 
 
Certainly, a major portion of the speed is due to the overlapped register windows of 
the RISC that provide support for function calls. However, please note this register 
windows is possible due to reduction in control unit size from 50 to 6 per cent. In 
addition, the control is simple in RISC than CISC, thus further helping the simple 
instructions to execute faster. 
 

5.6 RISC PIPELINING  

Instruction pipelining is often used to enhance performance. Let us consider this in the 
context of RISC architecture. In RISC machines most of the operations are register-to-
register. Therefore, the instructions can be executed in two phases: 

 F: Instruction Fetch to get the instruction. 
 E: Instruction Execute on register operands and store the results in register. 
 
In general, the memory access in RISC is performed through LOAD and STORE 
operations. For such instructions the following steps may be needed: 

 F: Instruction Fetch to get the instruction 
 E: Effective address calculation for the desired memory operand 
 D: Memory to register or register to memory data transfer through bus. 
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Let us explain pipelining in RISC with an example program execution sample. Take 
the following program (R indicates register). 

LOAD RA   (Load from memory location A) 
LOAD RB   (Load from memory location B) 
ADD RC ,RA , RB  (RC = RA + RB) ) 
SUB RD , RA , RB (RD = RA - RB)  
MUL RE , RC , RD  (RE = RC × RD) 
STOR RE   (Store in memory location C) 
Return to main. 

 
Load RA  M(A) F E D 

Load RB  M(B)    F E D 

Add RC  RA +RB       F E 

Sub RD  RA - RB         F E 

Mul RE  RC×RD           F E 

Stor RE M( C ) Time --------------  F E D 

Return Time = 17 units F E 
   1     2    3      4    5     6    7     8    9    10  11  12  13  14   15     16  17 

 
Figure 6:  Sequential Execution of Instructions 

 
Figure 7 shows a simple pipelining scheme, in which F and E phases of two different 
instructions are performed simultaneously. This scheme speeds up the execution rate 
of the sequential scheme. 
 
Load RA  M(A) F E D 
Load RB  M(B)  F  E D 
Add RC  RA + RB    F  E 
Sub RD  RA - RB      F E 
Mul RE  RC × RD       F E 
Stor  RE  M(C)        F E D 
Return         F  E 
          Time                          1      2      3     4     5    6      7     8       9   10    11 
Total time = 11 units 

 
Figure 7: Two Way Pipelined Timing 

 
Please note that the pipeline above is not running at its full capacity. This is because 
of the following problems: 

• We are assuming a single port memory thus only one memory access is allowed at 
a time. Thus, Fetch and Data transfer operations cannot occur at the same time. 
Thus, you may notice blank in the time slot 3, 5 etc.  

• The last instruction is an unconditional jump. Please note that after this instruction 
the next instruction of the calling program will be executed.  Although not visible 
in this example a branch instruction interrupts the sequential flow of instruction 
execution. Thus, causing inefficiencies in the pipelined execution.  

 
This pipeline can simply be improved by allowing two memory accesses at a time.  
 
Thus, the modified pipeline would be: 

The pipeline may suffer because of data dependencies and branch instructions 
penalties. A good pipeline has equal phases. 
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Load RA  M(A) F E D 

Load RB  M(B)  F E D 
Add RC RA + RB   F E 
Sub RD  RA - RB    F E 
Mul RE = RC × RD     F E 
Stor RE  M( C )  Time ------  F E D 
Return Time = 8 units  F E 

 
Figure 8: Three-way Pipelining Timing 

 
Optimization of Pipelining 
 
RISC machines can employ a very efficient pipeline scheme because of the simple 
and regular instructions. Like all other instruction pipelines RISC pipeline suffer from 
the problems of data dependencies and branching instructions. RISC optimizes this 
problem by using a technique called delayed branching. 
 
One of the common techniques used to avoid branch penalty is to pre-fetch the branch 
destination also. RISC follows a branch optimization technique called delayed jump 
as shown in the example given below: 
 
Load RA  M(A) F E D 

Load RB  M(B)  F E D 

Add RC RA + RB   F E 

Sub RD  RA - RB    F E 

If RD < 0 Return      F E 

Stor RC  M( C )   F E D 

Return   F E 

 
(a) The instruction “If RD < 0 Return” may cause pipeline to empty 

 
 

Load RA  M(A) F E D

Load RB  M(B)  F E D 
Add RC  RA + RB   F E 

Sub RD  RA - RB    F E 
If RD < 0 Return      F E 

NO Operation       F E 

Stor RC  M(C) Or 
Return as the case may be 

  F E D 

Return    F E 

 
(b) The No operation instruction causes decision of the If instruction known, thus 

correct instruction can be fetched. 
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Load RA M(A) F E D 
Load RB  M(B)  F E D 
Sub RD  RA - RB    F E 
If RD < 0 Return     F E 
Add RC  RA + RB     F E 
Stor RC  M( C )   F E D 
Return   F E 
 
(c) The branch is calculated before, thus the pipeline need not be emptied. This is 

delayed branch. 
 

Figure 9: Delayed Branch 
 
Finally, let us summarize the basic differences between CISC and RISC architecture. 
The following table lists these differences: 
 

CISC RISC 
1. Large number of instructions – from 

120 to 350. 
1. Relatively fewer instructions - less 
     than 100. 

2. Employs a variety of data types and a 
    large number of addressing modes. 

2. Relatively fewer addressing modes. 

3. Variable-length instruction formats. 3. Fixed-length instructions usually 32  
     bits, easy to decode instruction format. 

4. Instructions manipulate operands 
    residing in memory. 

4. Mostly register-register operations.  
    The only memory access is through  
    explicit LOAD/STORE instructions. 

5. Number of Cycles Per Instruction  
    (CPI) varies from 1-20 depending upon  
    the instruction.  

5. Number of CPI is one as it uses  
    pipelining. Pipeline in RISC is  
    optimised because of simple  
    instructions and instruction formats. 

6. GPRs varies from 8-32. But no support 
    is available for the parameter passing  
    and function calls. 

6. Large number of GPRs are available 
    that are primarily used as Global  
    registers and as a register based  
    procedural call and parameter passing  

stack, thus, optimised for structured 
    programming.  

7. Microprogrammed Control Unit. 7. Hardwired Control Unit. 

 
Check Your Progress 3 

1.  What are the problems, which prevent RISC pipelining to achieve maximum 
speed? 

 ..............................................................................................................................  

 ..............................................................................................................................  

 ..............................................................................................................................  

2. How can the above problems be handled? 
 ..............................................................................................................................

 ..............................................................................................................................

 ..............................................................................................................................  
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compensated such that there is no reduction in performance? 
 ..............................................................................................................................  

 ..............................................................................................................................

..............................................................................................................................  

5.7 SUMMARY 

RISC represents new styles of computers that take less time to build yet provide a 
higher performance. While traditional machines support HLLs with instruction that 
look like HLL constructs, this machine supports the use of HLLs with instructions that 
HLL compilers can use efficiently. The loss of complexity has not reduced RISC’s 
functionality; the chosen subset, especially when combined with the register window 
scheme, emulates more complex machines. It also appears that we can build such a 
single chip computer much sooner and with much less effort than traditional 
architectures. 
 
Thus, we see that because of all the features discussed above, the RISC architecture 
should prove to be far superior to even the most complex CISC architecture. 
 
In this unit we have also covered the details of the pipelined features of the RISC 
architecture, which further strengthen our arguments for the support of this 
architecture.  
 

5.8  SOLUTIONS/ ANSWERS 

Check Your Progress 1 

1.  
• Speed of memory is slower than the speed of CPU. 
• Microcode implementation is cost effective and easy. 
• The intention of reducing code size. 
• For providing support for high-level language. 

 
2.  

a)  False 
b)  False 
c) False 

 
Check Your Progress 2 

1.  
(a)  True 
(b)  False 
(c)  True 
(d)  False 

 
2.  Assume that the number of incoming parameters is equal to the number of 

outgoing parameters. 
  
 Therefore, Number of locals = 24 –(2 × Number of incoming parameters) 

 
Return address is also counted as a parameter, therefore, number of incoming 
parameters is more than or equal to 1 or in other terms the possible combination, 
are: 
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Incoming 
Parameter 
Registers 

Outgoing 
Parameter 
Registers 

No. of Local 
Registers  

1 1 22 

2 2 20 

3 3 18 
4 4 16 
5 5 14 
6 6 12 
7 7 10 
8 8 8 
9 9 6 
10 10 4 
11 11 2 
12 12 0 
 
Check Your Progress 3 

1.  The following are the problems: 

• It has a single port memory reducing the access to one device at a time 
• Branch instruction 
• The data dependencies between the instructions 

 
2.  It can be improved by: 

• allowing two memory accesses per phase 
• introducing three phases of approximately equal duration in pipelining 
• causing optimized delayed jumps/loads etc. 

 
3.  The problems of RISC architecture are: 

• More instructions to achieve the same amount of work as CISC. 
• Higher instruction traffic 
• However, the cycle time of one instruction per cycle and instruction cache in 

the chip may compensate for these problems. 
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