

Thinking about Learning
 Indira Gandhi
 National Open University
 School of Computer and
 Information Sciences

 MCS - 012
 COMPUTER

ORGANISATION
& ASSEMBLY

LANGUAGE
PROGRAMMING

Block

4
ASSEMBLY LANGUAGE PROGRAMMING

UNIT 1

Microprocessor Architecture 5

UNIT 2
Introduction to Assembly Language Programme 35

UNIT 3
Assembly Language Programming (Part I) 57

UNIT 4
Assembly Language Programming (Part II) 77

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur
Prof. M. Balakrishnan, IIT , Delhi
Prof Harish Karnick, IIT, Kanpur
Prof. C. Pandurangan, IIT, Madras
Dr. Om Vikas, Sr. Director, MIT
Prof. P. S. Grover, Sr. Consultant
SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences
Shri Shashi Bhushan
Shri Akshay Kumar
Prof. Manohar Lal
Shri V.V. Subrahmanyam
Shri P.Venkata Suresh

Block Preparation Team

Mrs. Suman Madan
S.S College of Business Studies
Delhi University

Ms. Pinki Rani
New Delhi

Mr. Akshay Kumar
SOCIS, IGNOU

Prof. MPS Bhatia (Content Editor)
Netaji Subhash Institute of Technology
New Delhi

Prof. A.K. Verma (Language Editor)
Indian Institute of Mass Communication
(Retd.)

Course Coordinator: Shri Akshay Kumar

Block Production Team

Shri. T.R Manoj, SOCIS

Shri H.K Som, SOCIS

Acknowledgements

Several Assembly programes have been taken from Block 3, CS-01.

September, 2004

©Indira Gandhi National Open University, 2004

ISBN 81 – 266 – 1426 – 9

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means, without
permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the University’s
office at Maidan Garhi, New Delhi-110 068.

Printed and published on behalf of the Indira Gandhi National Open University, New Delhi by The Director, SOCIS.

BLOCK INTRODUCTION

In the previous blocks, we have discussed computers in general, their organizations,
the number systems they work with, and the format of instructions that are required to
program the computer along with their addressing modes. We have also discussed the
way these instructions are represented and stored inside the computer and also the way
they are executed at low level.

In this block, we will discuss the microprocessor architecture and its programming.
Our main emphasis would be on Intel 8086/ 8088 microprocessor, which form a part
of our daily life through Personal Computers (PCs). The newer Personal Computers
that we hear of are based on the Pentium microprocessor, which uses the concepts
covered for 8086 microprocessors.

This block is divided into four units. We start with the introduction to
microprocessors, with special emphasis on 8086 microprocessors. Unit 1 also gives a
brief introduction to the Instruction Set and the addressing modes of the 8086
microprocessor. Taking this as the base, in Unit 2 we get on to the Introduction of
Assembly Language Programming. In this unit, we will also give a brief account of
various tools required to develop and execute an Assembly Language Program. In
Units 3 and 4, a detailed study of Assembly Language, its programming techniques
along with several examples have been taken up.

This block gives you only some details about 8086 microprocessor and assembly
language programming. For complete details on this Intel series of microprocessors,
that is, Intel 8086 to Pentium, you must refer to the further readings, given below:

FURTHER READINGS FOR THE BLOCK

1. IBM PC Assembly Language and Programming, Fifth Edition, Peter Abel.
2. Douglas V. Hall: Microprocessors and Interfacing – Programming and

Hardware by – McGraw Hill – 1986.
3. Peter Norton & John Socha: Assembly Language book for IBM PC-Prentice

Hall of India, 1989.
4. Yu-Cheng Liu, A. Gibson: Micro-computer Systems: The 8086/ 8088 family –

Prentice Hall of India, 1986.
5. Douglas V. Hall; Microprocessors and Digital Systems 2/e, McGraw Hill 1986.
6. William B. Giles, Assembly Language Programming for the Intel 80xxx family,

Maxwell Macmillan International editions 1991.

5

Microprocessor
Architecture

UNIT 1 MICROPROCESSOR

ARCHITECTURE

Structure Page No.

1.0 Introduction 5
1.1 Objectives 5
1.2 Microcomputer Architecture 5
1.3 Structure of 8086 CPU 7
 1.3.1 The Bus Interface Unit
 1.3.2 Execution Unit (EU)
1.4 Register Set of 8086 11
1.5 Instruction Set of 8086 13
 1.5.1 Data Transfer Instructions
 1.5.2 Arithmetic Instructions
 1.5.3 Bit Manipulation Instructions
 1.5.4 Program Execution Transfer Instructions
 1.5.5 String Instructions
 1.5.6 Processor Control Instructions
1.6 Addressing Modes 29
 1.6.1 Register Addressing Mode
 1.6.2 Immediate Addressing Mode
 1.6.3 Direct Addressing Mode
 1.6.4 Indirect Addressing Mode
1.7 Summary 33
1.8 Solutions/Answers 33

1.0 INTRODUCTION

In the previous blocks of this course, we have discussed concepts relating to CPU
organization, register set, instruction set, addressing modes with a few examples. Let
us look at one microprocessor architecture in regard of all the above concepts. We
have selected one of the simplest processors 8086, for this purpose. Although the
processor technology is old, all the concepts are valid for higher end Intel processor.
Therefore, in this unit, we will discuss the 8086 microprocessor in some detail.

We have started the discussion of the basic microcomputer architecture. This
discussion is followed by the details on the components of CPU of the 8086
microprocessor. Then we have discussed the register organization for this processor.
We have also discussed the instruction set and addressing modes for this processor.
Thus, this unit presents exhaustive details of the 8086 microprocessor. These details
will then be used in Assembly Programming.

1.1 OBJECTIVES

After going through this unit, you should be able to:

• describe the features of the 8086 microprocessor;
• list various components of the 8086 microprocessor; and
• identify the instruction set and the addressing modes of the 8086 microprocessor.

1.2 MICROCOMPUTER ARCHITECTURE

The word micro is used in microscopes, microphones, microwaves, microprocessors,
microcomputers, microprogramming, microcodes etc. It means small. A

 6

Assembly Language
Programming microprocessor is an example of VLSI bringing the whole processor to a single small

chip. With the popularity of distributed processing, the emphasis has shifted from the
single mainframe system to independently working workstations or functioning units
with their own CPU, RAM, ROM and a magnetic or optical disk memory. Thus, the
advent of the microprocessor has transformed the mainframe environment to a
distributed platform.

Let us recapitulate the basic components of a microprocessor:

Figure 1: Components of a Microcomputer

Please note the following in the above figure:

• ROM stores the boot program.
• The path from CPU to devices is through Buses. But what would be the size of

these Buses?

Bus Sizes

1. The Address bus: 8085 microprocessor has 16 bit lines. Thus, it can access up to
 216 = 64K Bytes. The address bus of 8086 microprocessor has a 20 bits address

bus. Thus it can access upto 220 = 1M Byte size of RAM directly.

2. Data bus is the number of bits that can be transferred simultaneously. It is 16 bits

in 8086.

Microprocessors

The microprocessor is a complete CPU on a single chip. The main advantages of the
microprocessor are:

• compact but powerful;
• can be microprogrammed for user’s needs;
• easily programmable and maintainable due to small size; and
• useful in distributed applications.

A microprocessor must demonstrate:

• More throughput
• More addressing capability
• Powerful addressing modes
• Powerful instruction set
• Faster operation through pipelining
• Virtual memory management.
However, RISC machine do not agree with above principles.

Some of the most commercially available microprocessors are: Pentium, Xeon, G4
etc.

7

Microprocessor
Architecture The assembly language for more advanced chips subsumes the simplest 8086/ 8088

assembly language. Therefore, we will confine our discussions to Intel 8086/8088
assembly language. You must refer to the further readings for more details on
assembly language of Pentium, G4 and other processors.

All microprocessors execute a continuous loop of fetch and execute cycles.

while (1)
{

 fetch (instruction); ,
 execute (using date);
}

1.3 STRUCTURE OF 8086 CPU

The 8086 microprocessor consists of two independent units:

1. The Bus Interface unit, and
2. The Execution unit.

Please refer to Figure 2.

Figure 2: The CPU of INTEL 8086 Microprocessor

 8

Assembly Language
Programming The word independent implies that these two units can function parallel to each other.

In other words they may be considered as two stages of the instruction pipeline.

1.3.1 The Bus Interface Unit

The BIU (Bus Interface Unit) primarily interacts with the system bus. It performs
almost all the activities relating to fetch cycle such as:

• Calculating the physical address of the next instruction

• Fetching the instruction

• Reading or writing data memory or I/O port from memory or Input/ Output.

The instruction/ data is then passed to the execution unit. This BIU consists of:

(a) The Instruction Queue

The instruction queue is used to store the instruction “bytes” fetched. Please
note two points here: that it is (1) A Byte (2) Queue. This is used to store
information in byte form, with the underlying queue data structure. The
advantage of this queue would only be if the next expected instructions are
fetched in advance, thus, allowing a pipeline of fetch and execute cycles.

(b) The Segment Registers

These are very important registers of the CPU. Why? We will answer this later.
In 8086 microprocessor, the memory is a byte organized, that is a memory
address is byte address. However, the number of bits fetched is 16 at a time. The
segment registers are used to calculate the address of memory location along
with other registers. A segment register is 16 bits long.

The BIU contains four sixteen-bit registers, viz., the CS: Code Segment, the DS:
Data Segment, the SS: Stack Segment, and the ES: Extra Segment. But what is
the need of the segments: Segments logically divide a program into logical
entities of Code, Data and Stack each having a specific size of 64 K. The
segment register holds the upper 16 bits of the starting address of a logical
group of memory, called the segment. But what are the advantages of using
segments? The main advantages of using segments are:

• Logical division of program, thus enhancing the overall possible memory
use and minimise wastage.

• The addresses that need to be used in programs are relocatable as they are
the offsets. Thus, the segmentation supports relocatability.

• Although the size of address, is 20 bits, yet only the maximum segment
size, that is 16 bits, needs to be kept in instruction, thus, reducing
instruction length.

The 8086 microprocessor uses overlapping segments configuration. The typical
memory organization for the 8086 microprocessor may be as per the following figure.

9

Microprocessor
Architecture

Figure 3: Logical Organisation of Memory in INTEL 8086 Microprocessor

Although the size of each segment can be 64K, as they are overlapping segments we
can create variable size of segments, with maximum as 64K. Each segment has a
specific function. 8086 supports the following segments:

As per model of assembly program, it can have more than one of any type of
segments. However, at a time only four segments one of each type, can be active.

The 8086 supports 20 address lines, thus supports 20 bit addresses. However, all the
registers including segment registers are of only 16 bits. So how may this mapping of
20 bits to 16 bits be performed?

Let us take a simple mapping procedure:

The top four hex digits of initial physical address constitute segment address.

You can add offset of 16 bits (4 Hex digits) from 0000h to FFFFh to it . Thus, a
typical segment which starts at a physical address 10000h will range from 10000h to
1FFFFh. The segment register for this segment will contain 1000H and offset will

 10

Assembly Language
Programming range from 0000h to FFFFh. But, how will the segment address and offset be added to

calculate physical address? Let us explain using the following examples:

Example 1 (In the Figure above)

The value of the stack segment register (SS) = 6000h
The value of the stack pointer (SP) which is Offset = 0010h

 Thus, Physical address of the top of the stack is:

SS 6 0 0 0 0 Implied zero
SP + 0 0 1 0

This calculation can be expressed as:
Physical address = SS (hex) × 16 + SP (hex)

Example 2

The offset of the data byte = 0020h
The value of the data segment register (DS) = 3000h
Physical address of the data byte

 Implied Zero

This calculation can
offset (hex).

Example 3

The value of the Inst
The value of the cod
Physical address of t

DS 3 0 0 0 0
Offset + 0 0 2 0

C

I

Physical Address

 6 0 0 1 0
Physical Address

Physical Address

Physical Address = C

(c) Instruction Po

 The instruction
segment. It is u

 3 0 0 2 0

be expressed as physical address = DS (Hex) × 16 + Data byte

ruction Pointer, holding address of the instruction = 1234h
e segment register (CS) = 448Ah
he instruction

 ImpliedZero S 4 4 8 A 0
 + 1 2 3 4

P

 4 5 A 0 4

S (Hex) × 16 + IP

inter

 pointer points to the offset of the current instruction in the code
sed for calculating the address of instruction as shown above.

11

Microprocessor
Architecture 1.3.2 Execution Unit (EU)

Execution unit performs all the ALU operations. The execution unit of 8086 is of 16
bits. It also contains the control unit, which instructs bus interface unit about which
memory location to access, and what to do with the data. Control unit also performs
decoding and execution of the instructions. The EU consists of the following:

(a) Control Circuitry, Instruction Decoder and ALU

The 8086 control unit is primarily micro-programmed control. In addition it has an
instruction decoder, which translates an instruction into sequence of micro operations.
The ALU performs the required operations under the control of CU which issues the
necessary timing and control sequences.

(b) Registers

All CPUs have a defined number of operational registers. 8086 has several general
purpose and special purpose registers. We will discuss these registers in the following
sections.

1.4 REGISTER SET OF 8086

The 8086 registers have five groups of registers. These groupings are done on the
basis of the main functions of the registers. These groups are:
General Purpose Register

8086 microprocessors have four general purpose registers namely, AX, BX, CX, DX.
All these registers are 16 – bit registers. However, each register can be used as two
general-purpose byte registers also. These byte registers are named AH and AL for
AX, BH and BL for BX, CH and CL for CX, and DH and DL for DX. The H in
register name represents higher byte while L represents lower byte of the 16 bits
registers. These registers are primarily used for general computation purposes.
However, in certain instruction executions they acquire a special meaning.

AX register is also known as accumulator. Some of the instructions like divide, rotate,
shift etc. require one of the operands to be available in the accumulator. Thus, in such
instructions, the value of AX should be suitably set prior to the instruction.

BX register is mainly used as a base register. It contains the starting base location of a
memory region within a data segment.

CX register is a defined counter. It is used in loop instruction to store loop counter.

DX register is used to contain I/O port address for I/O instruction.

You will experience their usage in various assembly programs discussed later.
Segment Registers

Segment Registers are used for calculating the physical address of the instruction or
memory. Segment registers cannot be used as byte registers.

Pointer and Index Registers

The 8086 microprocessor has three pointer and index registers. Each of these registers
is of 16 bit and cannot be accessed byte wise. These are Base Pointer (BP), Source
Index (S1) and Destination Index (DI). Although they can be used as general purpose
registers, their main objective is to contain indexes. BP is used in stack segment, SI in
Data segment and DI in Extra Data segment.

 12

Assembly Language
Programming Special Registers

A Last in First Out (LIFO) stack is a data structure used for parameter passing, return
address storage etc. 8086 stack is 64K bytes. Base of the stack is pointed to by the
stack segment (SS) register while the offset or top of the stack is stored in Stack
Pointer (SP) register. Please note that although the memory in 8086 has byte
addresses, stack is a word stack, which is any push operation will occupy two bytes.

Flags Register

A flag represents a condition code that is 0 or 1. Thus, it can be represented using a
flip- flop. 8086 employs a 16-bit flag register containing nine flags. The following
table shows the flags of 8086.

Flags Meaning Comments
Conditional Flags represent result of last arithmetic or logical instruction executed.
Conditional flags are set by some condition generated as a result of the last
mathematical or logical instruction executed. The conditional flags are:

CF Carry Flag 1 if there is a carry bit
PF Parity Flag 1 on even parity 0 on odd parity
AF Auxiliary Flag Set (1) if auxiliary carry for BCD occurs
ZF Zero Flag Set if result is equal to zero
SF Sign Flag Indicates the sign of the result (1 for minus, 0

for plus)
OF Overflow Flag set whenever there is an overflow of the result

Control flags, which are set or reset deliberately to control the operations of the
execution unit. The control flags of 8086 are as follows:

TF Single step trap
flag

Used for single stepping through the program

IF Interrupt Enable

flag
Used to allow/inhibit the interruption of the
program

DF String direction
flag

Used with string instruction.

☞ Check Your Progress 1

1. What is the purpose of the queue in the bus interface unit of 8086
microprocessors?

 ……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2. Find out the physical addresses for the following segment register: offset

(a) SS:SP = 0100h:0020h
(b) DS:BX = 0200h:0100h
(c) CS:IP = 4200h:0123h

3. State True or False.

(a) BX register is used as an index register in a data segment.

(b) CX register is assumed to work like a counter.

T F

13

Microprocessor
Architecture (c) The Source Index (SI) and Destination Index(DI) registers in 8086 can also be

used as general registers.

(d) Trag Flag (TR) is a conditional flag.

1.5 INSTRUCTION SET OF 8086

After discussing the basic organization of the 8086 micro-processor, let us now
provide an overview of various instructions available in the 8086 microprocessor. The
instruction set is presented in the tabular form. An assembly language instruction in
the 8086 includes the following:

Label: Op-code Operand(s); Comment

For example, to add the content of AL and BL registers to get the result in AL, we use
the following assembly instruction.

NEXT: ADD AL,BL ; AL AL + BL

Please note that NEXT is the label field. It is giving an identity to the statement. It is
an optional field, and is used when an instruction is to be executed again through a
LOOP or GO TO. ADD is symbolic op-code, for addition operation. AL and BL are
the two operands of the instructions. Please note that the number of operands is
dependent upon the instructions. 8086 instructions can have zero, one or two
operands. An operand in 8086 can be:

1. A register
2. A memory location
3. A constant called literal
4. A label.

We will discuss the addressing modes of these operands in section 1.6.

Comments in 8086 assembly start with a semicolon, and end with a new line. A long
comment can be extended to more than one line by putting a semicolon at the
beginning of each line. Comments are purely optional, however recommended as they
provide program documentation. In the next few sections we look at the instruction set
of the 8086 microprocessor. These instructions are grouped according to their
functionality.

1.5.1 Data Transfer Instructions

These instructions are used to transfer data from a source operand to a destination
operand. The source operand in most of the cases remains unchanged. The operand
can be a literal, a memory location, a register, or even an I/O port address, as the case
may be. Let us discuss these instructions with the following table:

MNEMONIC DESCRIPTION EXAMPLE

MOV des, src des src; Both the operands should
be byte or word. src operand can be
register, memory location or an
immediate operand des can be
register or memory operand.
Restriction: Both source and
destination cannot be memory
operands at the same time.

MOV CX,037AH
; CX register is initialized
; with immediate value
; 037AH.

MOV AX,BX
; AX BX

 14

Assembly Language
Programming PUSH operand Pushes the operand into a stack.

SP SP – 2;
value [TOS] operand.
Initialise stack segment register, and
the stack pointer properly before
using this instruction. No flags are
effected by this instruction. The
operand can be a general purpose
register, a segment register, or a
memory location. Please note it is a
word stack and memory address is a
byte address, thus, you decrement by
2. Also you decrement as SP is
initialised to maximum offset and
condition of stackful is a zero offset
(so it is a reversed stack)

PUSH BX
; decrement stack pointer
; by; two, and copy BX to
; stack.
; decrement stack pointer
; by two, and copy
; BX to stack

POP des POP a word from stack. The des can
be a general-purpose register, a
segment register (except for CS
register), or a memory location. Steps
are:
des value [TOS]
SP SP + 2

POP AX
; Copy content for top
; of stack to AX.

XCHG des, src Used to exchange bytes or words of
src and des. It requires at least one of
the operands to be a register operand.
The other can be a register or memory
operand. Thus, the instruction cannot
exchange two memory locations
directly. Both the operands should be
either byte type or word type. The
segment registers cannot be used as
operands for this instruction.

XCHG DX,AX
; Exchange word in DX
; with word in AX

XLAT Translate a byte in AL using a table
stored in the memory. The instruction
replaces the AL register with a byte
from the lookup table. This
instruction is a complex instruction.

Example is available in
Unit 3.

IN accumulator,
port address

It transfers a byte or word from
specified port to accumulator register.
In case an 8-bit port is supplied as an
operand then the data byte read from
that part will be transferred to AL
register. If a 16-bit port is read then
the AX will get 16 bit word that was
read. The port address can be an
immediate operand, or contained in
DX register. This instruction does not
change any flags.

IN AL,028h
; read a byte from port
; 028h to AL register

OUT port
address,
Accumulator

It transfers a byte or word from
accumulator register to specified port.
This instruction is used to output on
devices like the monitor or the printer.

LEA register,
source

Load “effective address” (refer to this
term in block 2, Unit 1 in addressing
modes) of operand into specified 16 –
bit register. Since, an address is an
offset in a segment and maximum can

LEA BX, PRICES
; Assume PRICES is
; an array in the data
; segment. The
; instruction loads the

15

Microprocessor
Architecture be of 16 bits, therefore, the register

can only be a 16-bit register. LEA
instruction does not change any flags.
The instruction is very useful for
array processing.

; offset of the first byte of
; PRICES directly into
; the BX register.

LDS des-reg It loads data segment register and

other specified register by using
consecutive memory locations.

LDS SI, DATA
; DS content of memory
; location DATA &
; DATA + 1
; SI content of
; memory locations
; DATA + 2 & DATA +
; 3

LES des-reg It loads ES register and other
specified register by using
consecutive memory locations. This
instruction is used exactly like the
LDS except in this case ES & other
specified registers are initialized.

LAHF Copies the lower byte of flag register
to AH. The instruction does not
change any flags and has no operands.

SAHF Copies the value of AH register to
low byte of flag register. This
instruction is just the opposite of
LAHF instruction. This instruction
has no operands.

PUSHF

Pushes flag register to top of stack.
SP SP – 2; stack [SP] Flag
Register.

POPF Pops the stack top to Flag register.
Flag register stack [SP]
SP SP + 2

1.5.2 Arithmetic Instructions

MNEMONIC DESCRIPTION EXAMPLE

ADD Adds byte to byte, or word to word.
The source may be an immediate
operand, a register or a memory
location. The rules for operands are
the same as that of MOV instruction.
To add a byte to a word, first copy the
byte to a word location, then fill up
the upper byte of the word with zeros.
This instruction effects the following
flags: AF, CF, OF, PF, SF, ZF.

ADD AL,74H
; Add the number 74H to
; AL register, and store the
; result back in AL
ADD DX,BX
; Add the contents of DX to
; BX and store the result in ;
DX, BX remains
; unaffected.

ADC des, src Add byte + byte + carry flag, or word
+ word + carry flag. It adds the two
operands with the carry flag. Rest all
the details are the same as that of
ADD instruction.

INC des It increments specified byte or word
operand by one. The operand can be a
register or a memory location. It can
effect AF, SF, ZF, PF, and OF flags.
It does not affect the carry flag, that
is, if you increment a byte operand

INC BX
; Add 1 to the contents of
; BX register
INC BL
; Add 1 to the contents of
; BL register

 16

Assembly Language
Programming having 0FFH, then it will result in 0

value in register and no carry flag.
AAA ASCII adjusts after addition. The data

entered from the terminal is usually in
ASCII format. In ASCII 0-9 are
represented by codes 30-39. This
instruction allows you to add the
ASCII codes instead of first
converting them to decimal digit
using masking of upper nibble. AAA
instruction is then used to ensure that
the result is the correct unpacked
BCD.

ADD AL,BL
; AL=00110101, ASCII 05
; BL=00111001, ASCII 09
; after addition
; AL = 01101110, that is,
; 6EH- incorrect
; temporary result
AAA
; AL = 00000100.
; Unpacked BCD for 04
; carry = 1, indicates
; the result is 14

DAA Decimal (BCD) adjust after addition.
This is used to make sure that the
result of adding two packed BCD
numbers is adjusted to be a correct
BCD number. DAA only works on
AL register.

; AL = 0101 1001 (59
; BCD)
; BL = 0011 0101 (35
; BCD)
ADD AL, BL
; AL = 10001101 or
; 8Eh (incorrect BCD)
DAA
; AL = 1001 0100
; ≡ 94 BCD : Correct.

SUB des, src Subtract byte from byte, or word from
word. (des des – src). For
subtraction the carry flag functions as
a borrow flag, that is, if the number in
the source is greater than the number
in the destination, the borrow flag is
to set 1. Other details are equivalent
to that of the ADD instruction.

SUB AX, 3427h
; Subtract 3427h from AX
; register, and store the
; result back in AX

SBB des, src

Subtract operands involving previous
carry if any. The instruction is similar
to SUB, except that it allows us to
subtract two multibyte numbers,
because any borrow produced by
subtracting less-significant byte can
be included in the result using this
instruction.

SBB AL,CH
; subtract the contents
; of CH and CF from AL
; and store the result
; back in AL.

DEC src Decrement specified byte or specified
word by one. Rules regarding the
operands and the flags that are
affected are same as INC instruction.
Please note that if the contents of the
operand is equal to zero then after
decrementing the contents it becomes
0FFH or 0FFFFH, as the case may be.
The carry flag in this case is not
affected.

DEC BP
; Decrement the contents
; of BP

; register by one.

NEG src Negate - creates 2's complement of a
given number, this changes the sign
of a number. However, please note
that if you apply this instruction on
operand having value –128 (byte
operand) or –32768 (word operand) it
will result in overflow condition. The
overflow (OF) flag will be set to

NEG AL
; Replace the number in
; AL with it’s 2’s
; complement

Microprocessor

Architecture indicate that operation could not be
done.

CMP des,src

It compares two specified byte
operands or two specified word
operands. The source and destination
operands can be an immediate
number, a register or a memory
location. But, both the operands
cannot be memory locations at the
same time. The comparison is done
simply by internally subtracting the
source operand from the destination
operand. The value of source and the
destination, operands is not changed,
but the flags are set to indicate the
results of the comparison.

CMP CX,BX
; Compare the CX register
; with the BX register
; In the example above, the ;
CF, ZF, and the SF flags
; will be set as follows.
; CX=BX 0 1 0; result of
; subtraction is zero
; CX>BX 0 0 0; no borrow ;
required therefore, CF=0
; CX<BX 1 0 1
; subtraction require
; borrow, so CF=1

AAS ASCII adjust after subtraction. This
instruction is similar to AAA (ASCII
adjust after addition) instruction. The
AAS instruction works on the AL
register only. It updates the AF and
CF flags, but the OF, PF, SF and the
ZF flags remain undefined.

; AL = 0011 0101 ASCII 5
; BL = 0011 9
SUB AL,BL
; (5-9) result:
; AL= 1111 1
; 2’s complem
AAS ;result:
; AL = 0000
; BCD 04,
; CF = 1 borr

DAS Decimal adjust after subtraction. This
instruction is used after subtracting
two packed BCD numbers to make
sure the result is the packed BCD.
DAS only works on the AL register.
The DAS instruction updates the AF,
CF, SF, PF and ZF flags. The
overflow (OF) is undefined after
DAS.

; AL=86 BC
; BH=57 BC
SUB AL,BH
; AL=2Fh, C
DAS
; Results in A

MUL src This is an unsigned multiplication

instruction that multiplies two bytes
to produce a word operand or two
words to produce a double word such
as:
AX AL* src (byte multiplication
src is also byte)
DX or AX AX * src (word
multiplication is two word).
This instruction assumes one of the
operand in AL (byte) or AX (word):
the src operand can be register or
memory operand. If the most
significant word of the result is zero
then, the CF and the OF flags are both
made zero. The AF, SF, PF, ZF flags
are not defined after the MUL
instruction. If you want to multiply a
byte with a word, then first convert
byte to a word operand.

MOV AX,05
MOV CX,02
MUL CX
; results in D
; AX=0Ah

AAM ASCII adjust after multiplication.
Please note that two ASCII numbers
cannot be multiplied directly. To
multiply first convert the ASCII

; AL=0000 0
; BCD 05
; BH=0000 1
BCD 09
1001 ASCII
17

100 = - 4 in
ent, CF = 1

0100 =

ow needed.
D
D

F =0

L = 29 BCD

; AX=05
; CX=02

X=0

101 unpacked

001 unpacked ;

 18

Assembly Language
Programming number to numeric digits by masking

off the upper nibble of each byte. This
leaves unpacked BCD in the register.
AAM instruction is used to adjust the
product to two unpacked BCD digits
in AX after the multiplication has
been performed. AAM defined by the
instruction while the CF, OF and the
AF flags are left undefined.

MUL BH
; AX=AL * BH=002Dh
AAM
; AX=00000100 00000101 ;
BCD 45 : Correct result

DIV src This instruction divides unsigned
word by byte, or unsigned double
word by word. For dividing a word by
a byte, the word is stored in AX
register, divisor the src operand and
the result is obtained in AH :
remainder AL: quotient. It can be
represented as:
AH: Remainder
AL: Quotient
Similarly for double word division by
a word we have
DX: Remainder
AX: Quotient
A division by zero result in run time
error. The divisor src can be either in
a register or a memory operand.

; AX = 37D7h = 14295
; decimal
; BH = 97h = 151 decimal
DIV BH
; AX / BH quotient
; AL = 5Eh = 94
; decimal RernainderAH = ;
65h = 101
; decimal

IDIV

Divide signed word by byte or signed
double word by word. For this
division the operand requirement, the
general format of the instruction etc.
are all same as the DIV instruction.
IDIV instruction leaves all flags
undefined.

; AL = 11001010 = -26h =
; - 38 decimal
; CH = 00000011 = + 3h =
; 3 decimal
; According to the operand
; rules to divide by a byte
; the number should be
; present in a word register, ;
i.e. AX. So, first convert
; the operand in AL to word
; operand. This can be done ;
by sign extending the
; AL register,
; this makes AX
; 11111111 11001010.
; (Sign extension can also
; be done with the help of
; an instruction, discussed
; later)
IDIV CH
; AX/CH
; AL = 11110100 = - 0CH ;
= -12 Decimal

; AH = 11111110 = -02H = ; -
02 Decimal
; Although the quotient is
; actually closer to -13
; (-12.66667) than -12, but
; 8086 truncates the result
; to give -12.

AAD ASCII adjust after division. The BCD
numbers are first unpacked, by

; AX= 0607 unpacked
; BCD for 6

 DX:AX/ src

 AX/ src

19

Microprocessor
Architecture masking off the upper nibble of each

byte. Then ADD instruction is used to
convert the unpacked BCD digits in
AL and AH registers to adjust them to
equivalent binary prior to division.
Such division will result in unpacked
BCD quotient and remainder. The PF,
SF, ZF flags are updated, while the
AF, CF, and the OF flags are left
undefined.

; and 7 CH = 09h
AAD
; adjust to binary before
; division AX= 0043 =
; 043h = 67 Decimal
DIV CH
; Divide AX by unpacked
; BCD in CH
; AL = 07 unpacked BCD
; AH = 04 unpacked BCD
; PF = SF = ZF = 0

CBW Fill upper-byte or word with copies
of sign bit of lower bit. This is called
sign extension of byte to word. This
instruction does not change any
flags. This operation is done with AL
register in the result being stored in
AX.

; AL = 10011011 = -155
; decimal AH = 00000000
CBW ;convert signed
; byte in AL to signed
; word in AX = 11111111
; 10011011 = -155 decimal

CWD Fill upper word or double word with
sign bit of lower word. This
instruction is an extension of the
previous instruction. This instruction
results in sign extension of AX
register to DX:AX double word.

; DX : 0000 0000 0000 0000
; AX : 1111 0000 0101 0001
CWD
; DX:AX = 1111 1111 1111 1111:
; 1111 0000 0101 0001

1.5.3 Bit Manipulation Instructions

These instructions are used at the bit level. These instructions can be used for testing a
zero bit, set or reset a bit and to shift bits across registers. Let us look into some such
basic instructions.

MNEMONIC DESCRIPTION EXAMPLE

NOT des Complements each bit to produce
1’s complement of the specified
byte or word operand. The
operand can be a register or a
memory operand.

; BX = 0011 1010 0001 0000
NOT BX
; BX = 1100 0101 1110 1111

AND des, src Bitwise AND of two byte or word
operands. The result is des des
AND src. The source can be an
immediate operand a register, or a
memory operand. The destination
can be a register or a memory
operand. Both operands cannot be
memory operands at the same
time. The CF and the OF flags are
both zero after the AND
operation. PF, SF and ZF area
updated, Afis left undefined.

; BH = 0011 1010 before
AND BH, 0Fh
; BH = 0000 1010
; after the AND operation

OR des, src

OR each corresponding bits of the
byte or word operands. The other
operands rules are same as AND.
des des OR src

; BH = 0011 1010 before
OR BH, 0Fh
; BH = 0011 1111 after

XOR des,src XOR each corresponding bit in a
byte or word operands rules are
two same as AND and OR.
des Des + src

; BX = 00111101 01101001
; CX = 00000000 11111111
XOR BX,CX
; BX=0011110110010110
; Please note, that the bits in
; the lower byte are inverted.

 20

Assembly Language
Programming TEST des, src AND the operands to update

flags, but donot change operands
value. It can be used to set and
test conditions.CF and OF are
both set to zero, PF, SF and ZF
are all updated, AF is left
undefined after the operation.

; AL = 0101 0001
TEST AL, 80h.
; This instruction would
; test if the MSB bit of the AL
; register is zero or one. After
; the TEST operation ZF will
; be set to 1 if the MSB of AL
; is zero.

SHL/SAL des,
count

Shift bits of word or byte left, by
count. It puts zero(s) in LSB(s).
MSB is shifted into the carry flag.
If more than one bits are shifted
left, then the CF gets the most
recently moved MSB. If the
number of bits desired to be
shifted is only 1, then the
immediate number. 1 can be
written as one of the operands.
However, if the number of bits
desired to be shifted is more than
one, then the second operand is
put in CL register.

SAL BX, 01
; if CF = 0
; BX = 1000 1001
; result : CF = 1
; BX = 0001 0010

SHR des, count It shifts bits of a byte or word to
register put zero in MSB. LSB is
moved into CF.

SHR BX,01
; if CF = 0
; BX = 1000 1001
; result: CF = 1
; BX = 0100 0100
MOV CL, 02
SHR BX, CL
; with same BX, the
; result would be
; CF = 0
; BX = 0010 0100

SAR des, count Shift bits of word or byte right,
but it retains the value of new
MSB to that of old MSB. This is
also called arithmetic shift
operation, as it does not change
the MSB, which is sign bit of a
number.

; AL=0001 1101 = +29
; decimal, CF = 0
SAR AL, 01
; AL = 0000 1110 = +14
; decimal, CF = 1
; OF = PF = SF = ZF = 0
; BH = 1111 0011 = -13
; decimal
SAR BH,01
; BH = 1111 1001 = -7
; decimal, CF =1
; OF = ZF = 0 ; PF = SF = 1

ROL des, count Rotate bits of word or byte left,
MSB is transferred to LSB and
also to CF. Diagrammatically, it
can be represented as:

The operation is called rotate as it
circulates bits. The operands can
be register or memory operand.

ROR des, count Rotate bits of word or byte right, ; CF = 0,

MSB LSBCF

Microprocessor

Architecture LSB is transferred to MSB and
also to CF. The same can be
represented diagrammatically as
follows:

; BX = 0011 1011 0111 0101
ROR BX, 1
; results ; CF = 1,
; BX = 1001 1101 1011 1010

RCL des, count Rotate bits of words or byte left,
MSB to CF and CF to LSB. The
operation is circular and involves
carry flag in rotation.

RCR des, count Rotate bits of word or byte right,
LSB to CF and CF to MSB. This
instruction rotates left.

`

CF MSB LSB

CF MSB LSB

CF MSB LSB

☞ Check Your Progress 2
1. Point out the error/ errors in the following 8086 assembly instruction (if any)?

a. PUSHF AX
b. MOV AX, BX
c. XCHG MEM_WORD1, MEM_WORD2
d. AAA BL, CL
e. IDIV AX, CH

2. State True or False in the context of 8086 assembly language.

(a) LEA and MOV instruction serve the same purpose. The only diffe
between the two is the type of operands they take.

(b) NEG instruction produces 1's complement of a number.

(c) MUL instruction assumes one of the operands to be present in the

AX register.

(d) TEST instruction performs an OR operation, but does not change t

of operands.

(e) Suppose AL contains 0110 0101 and CF is set, then instructions R

and RCL AL will produce the same results.

T F
rence

AL or

he val

OL AL

ue

21

 22

Assembly Language
Programming 1.5.4 Program Execution Transfer Instructions

These instructions are the ones that causes change in the sequence of execution of
instruction. This change can be through a condition or sometimes may be
unconditional. The conditions are represented by flags. For example, an instruction
may be jump to an address if zero flag is set, that is the last ALU operation has
resulted in zero value. These instructions are often used after a compare instruction, or
some arithmetic instructions that are used to set the flags, for example, ADD or SUB.
LOOP is also a conditional branch instruction and is taken till loop variable is below a
certain count.

Please note that a "/" is used to separate two mnemonics which represent the same
instruction.

MNEMONIC DESCRIPTION EXAMPLE
CALL proc 1

This function results in a
procedure/ function call. The
return address is saved on the
stack. There are two basic types
of CALLS. NEAR or Intra-
Segment calls: if the call is made
to a procedure in the same
segment as the calling program.
FAR or Inter segment call: if the
call is made to a procedure in the
segment, other than the calling
program. The saved return
address for NEAR procedure
call is just the IP. For FAR
Procedure call IP and CS are
saved as return address.

CALL procl
CALL proc2
The new instruction
address is determined by
name declaration proc1 is
a near procedure, thus,
only IP is involved. proc2
involves new CS: IP pair.
On call to proc1
stack IP
IP address offset of
proc1
on call to proc2
Stack [top] CS
Stack [top] IP
CS code segment of
proc2
IP address offset of
proc2
Here we assume that procl
is defined within the same
segment as the calling
procedure, while proc2 is
defined in another
segment. As far as the
calling program is
concerned, both the
procedures have been
called in the same manner.
But while declaring these
procedures, we declare
procl as NEAR procedure
and proc2 as FAR
procedure, as follows:
procl PROC NEAR
proc2 PROC FAR

A procedure can also be called
indirectly, by first initializing
some 16-bit register, or some
other memory location with the
new addresses as follows.

LEA BX, procl
; initialize BX with the
; offset of the procedure
; procl
CALL BX
; CALL procl indirectly
; using BX register

RET number It returns the control from RET 6

23

Microprocessor
Architecture procedure to calling program.

Every CALL should be a RET
instruction. A RET instruction,
causes return from NEAR or
FAR procedure call. For return
from near procedure the values
of the instruction pointer is
restored from stack. While for
far procedure the CS:IP pair get
is restored. RET instruction can
also be followed by a number.

; In this case, 8086
; increments the stack
; pointer by this number
; after popping off the IP
; (for new) or IP and CS
; registers (for far) from
; the stack. This cancels
; the local parameters, or
; temporary parameters
; created by the
; programmer. RET
; instruction does not
; affect any flags.

JMP Label

Unconditionally go to specified
address and get next instruction
from the label specified. The
label assigns the instruction to
which jump has to take place
within the program, or it could
be a register that has been
initialised with the offset value.
JMP can be a NEAR JMP or a
FAR jump, just like CALL.

JMP CONTINUE
; CONTINUE is the label
; given to the instruction
; where the control needs
; to be transferred.
JMP BX
; initialize BX with the
; offset of the instruction,
; where the control needs
; to be transferred.

Conditional Jump

All the conditional jumps follow
some conditional statement, or
any instruction that affects the
flag.

MOV CX, 05
MOV BX, 04
CMP CX, BX
; this instruction will set
; various flags like the ZF,
; and the CF.
JE LABEL1
; conditional jump can
; now be applied, which
; checks for the ZF, and if
; it is set implying CX =
; BX, it makes
; a jump to LABEL1,
; otherwise the control
; simply falls
; through to next
; instruction
; in the above example as
; CX is not equal to BX
; the jump will not take
; place and the next
; instruction to conditional
; jump instruction will be
; executed. However, if
; JNE (Jump if not equal
; to) or JA (Jump if
above), ; or JAE (Jump
above or
; equal) jump instructions
; if applied instead of JE,
; will cause the conditional
; jump to occur.

 All the conditional jump instructions which are given below
are self explanatory.

JA/JNBE Jump if above / Jump if not
below nor equal

 24

Assembly Language
Programming JAE/JNB Jump if above or equal/ Jump if

not below

JB/JNAE Jump if below/ Jump if not
above nor equal

JBE/JNA Jump if below or equal/ Jump if
not above

JC Jump if carry flag set
JE/JZ

Jump if equal / Jump if zero flag
is set

JNC Jump if not carry
JNE/JNZ

Jump if not equal / Jump if zero
flag is not set

JO Jump if overflow flag is set
JNO Jump if overflow flag is not set
JP/JPE Jump if parity flag is set / Jump

if parity even

JNP/JPO

Jump if not parity / Jump if
parity odd

JG/JNLE

Jump if greater than / Jump if
not less than nor equal

JA/JNL

Jump if above / Jump if not less
than

JL/JNGE

Jump if less than / Jump if not
greater than nor equal

JLE/JNG

Jump if less than or equal to /
Jump if not greater than

JS Jump if sign flag is set
JNS Jump if sign flag is not set
LOOP label

This is a looping instruction of
assembly. The number of times
the looping is required is placed
in CX register. Each iteration
decrements CX register by one
implicitly, and the Zero Flag is
checked to check whether to
loop again. If the zero flag is not
set (CX is zero) greater than the
control goes back to the
specified label in the instruction,
or else the control falls through
to the next instruction. The
LOOP instruction expects the
label destination at offset of –
128 to +127 from the loop
instruction offset.

; Let us assume we want to
; add 07 to AL register,
; three times.
MOV CX,03
; count of iterations
L1: ADD AL,07
LOOP Ll ; loop back to Ll,
; until CX
; becomes equal to zero
; Loop affects no flags.

LOOPE/ LOOPZ
label

Loop through a sequence of
instructions while zero flag = 1
and CX is not equal to zero.
There are two ways to exit out of
the loop, firstly, when the count
in the CX register becomes equal
to zero, or when the quantities
that are being compared become
unequal.

Let us assume we have an
array of 20 bytes. We want
to see if all the elements of
that array are equal to
0FFh or not. To scan 20
elements of the array, we
loop 20 times. And we
come out of the loop,
when either the count of
iterations has become
equal to 20, or in other
words CX register has

25

Microprocessor
Architecture decremented to zero,

which means all the
elements of the array are
equal to 0FFh, or an
element in the array is
found which is not equal
to 0FFh. In this case, the
CX register may still be
greater than zero, when the
control comes out. This
can be coded as follows:
(Please note here that you
might not understand
everything at this place,
that is because you are still
not familiar with the
various addressing modes.
Just concentrate on the
LOOPE instruction):

MOV BX, OFFSET ARRAY
; Point BX at the start
; of the ARRAY
DEC BX ; put number of
; array elements in CX
MOV CX,10
L1: INC BX ; point to
; next element in array
CMP [BX],0FFh
; compare array element
; with 0FFh
LOOPE L1
; When the control comes
; out of the loop, it has
; either scanned all the
; elements and found them
; to be all equal to 0FFh, or
; it is pointing to the first
; non-0FFh, element in the
; array.

LOOPNE/LOOPNZ
label

This instruction causes Loop
through a sequence of
instructions while zero flag = 0
and CX is not equal to zero. This
instruction is just the opposite of
the previous instruction in its
functionality.

JCXZ label Jump to specified address if CX
=0. This instruction will cause a
jump, if the value of CX register
is zero. Otherwise it will proceed
with the next instruction in
sequence.

This instruction is useful
when you want to check
whether CX is zero even
prior to entering into a
loop. Please note that
LOOP instruction executes
the loop at least once
before decrementing and
checking the value of CX
register. Thus, CX=0 will
execute the loop once and
decrement the CX register,

 26

Assembly Language
Programming making it 0FFFFh, which

is non zero. This will
cause FFFFh times
execution of loop. To
avoid such type of
conditions you can
proceed as follows:
JCXZ SKIP _LOOP
; if CX is already 0, skip
; loop
L1: SUB [BX],07h
INC BX
LOOP L1
; loop until CX=0
SKIP_LOOP: ……..

In addition to these instructions, there are other interrupt handling instructions also,
which too transfer the control of the program to some specified location. We will
discuss these instructions in later units.

1.5.5 String Instructions

These are a very strong set of 8086 instructions as these instructions process strings, in
a compact manner, thus, reducing the size of the program by a considerable amount.
“String” in assembly is just a sequentially stored bytes or words. A string often
consists of ASCII character codes. A subscript B following the instruction indicates
that the string of bytes is to be acted upon, while “W” indicates that it is the string of
words that is being acted upon.

MNEMONIC DESCRIPTION EXAMPLES
REP This is an instruction prefix. It

causes repetition of the following
instruction till CX becomes zero.
REP. It is not an instruction, but it
is an instruction prefix that causes
the CX register to be decremented.
This prefix causes the string
instruction to be repeated, until CX
becomes equal to zero.

REP MOVSB STR1, STR2
The above example copies
byte by byte contents. The
CX register is initialized to
contain the length of source
string REP repeats the
operation MOVSB that
copies the source string byte
to destination byte. This
operation is repeated until
the CX register becomes
equal to zero.

REPE/REPZ It repeats the instruction following
until CX =0 or ZF is not equal to
one. REPE/REPZ may be used
with the compare string instruction
or the scan string instruction.
REPE causes the string instruction
to be repeated, till compared bytes
or words are equal, and CX is not
yet decremented to zero.

REPNE/REPNZ It repeats instruction following it
until CX =0 or ZF is equal to 1.
This comparison here is just
inverse of REPE except for CX,
which is checked to be equal to
zero.

MOVS/MOVSB/
MOVSW

It causes moving of byte or word
from one string to another. This

Assumes both data and extra
segment start at address 1000

27

Microprocessor
Architecture instruction assumes that:

• Source string is in Data
segment.

• Destination string is in extra
data segment

• SI stores offset of source
string in extra segment

• DI stores offset of destination
string is in data segment

• CX contains the count of
operation

A single byte transfer requires;
• One byte transfer from source

string to destination
• Increment of SI and DI to

next byte
• Decrement count register that

is CX register

in the memory. Source string
starts at offset 20h and the
destination string starts at
offset 30h. Length of the
source string is 10 bytes. To
copy the source string to the
destination string, proceed as
follows:
MOV AX,1000h
MOV DS,AX
; initialize data segment and
MOV ES,AX
; extra segment
MOV SI,20h
MOV DI,30h
; load offset of start of
; source string to SI
; Load offset of start of
; destination string to DI
MOV CX,10
; load length of string to CX
; as counter
REP MOVSB
; Decrement CX and
; MOVSB until
; CX =0
; after move SI will be one
; greater than offset of last
; byte in source string, DI
; will be one greater than
; offset of last destination
; string. CX will be equal
; to zero.

CMPS/CMPSB/
CMPSW

It compares two string bytes or
words. The source string and the
destination strings should be
present in data segment and the
extra segment respectively. SI and
DI are used as in the previous
instruction. CX is used if more
than one bytes or words are to be
compared, however for such a case
appropriate repeating prefix like
REP, PEPE etc. need to be used.

MOV CX,10
MOV SI,OFFSET SRC_STR
; offset of source
; string in SI
MOV DI, OFFSET DES_STR
; offset of destination
; string in DI
REPE CMPSB
; Repeat the comparison of
; string bytes until
; end of string or until
; compared bytes are not
; equal.

SCAS/SCASB/
SCASW

It scans a string. Compare a string
byte with byte in AL or a string
word with a word in AX. The
instruction does not change the
operands in AL (AX) or the
operand in the string. The string to
be scanned must be present in the
extra segment, and the offset of the
string must be contained in the DI
register. You can use CX if
operation is to be repeated using
REP prefixes.

MOV AL, 0Dh
; Byte to be scanned
; for in AL
MOV DI,OFFSET DES_STR
MOV CX,10
REPNE SCAS DES_STR
; Compare byte inDES_STR
; with byte in AL register
; Scanning is repeated while ;
the bytes are not equal and ;
it is not end of string. If a
; carriage return 0Dh is
; found, ZF = DI will point ;

 28

Assembly Language
Programming at the next byte after the

; carriage return. If a
; carriage return is not
; found then, ZF = 0 and
; CX = 0. SCASB or
; SCASW can be used to
; explicitly state whether
; the byte comparison or the ;
word comparison is
; required.

LODS/LODSB/
LODSW

It loads string byte into AL or a
string word into AX. The string
byte is assumed to be pointed to by
SI register. After the load, the SI
pointer is automatically adjusted to
point to the next byte or word as
the case may be. This instruction
does not affect any flag.

MOV SI,OFFSET SRC_STR
LODS SRC_STR
; LODSB or LODSW can
; be used to indicate to the
; assembler, explicitly,
; whether it is the byte that
; is required to be loaded or
; the word.

STOS/STOSB/
STOSW

It stores byte from AL or word
from AX into the string present in
the extra segment with offset given
by DI. After the copy, DI is
automatically adjusted to point to
the next byte or word as per the
instruction. No flags are affected.

MOVDI,OFFSET DES_STR
STOSB DES_STR

1.5.6 Processor Control Instructions

The objectives of these instructions are to control the processor. This raises two
questions:

How can you control processor, as this is the job of control unit?
How much control of processor is actually allowed?

Well, 8086 only allows you to control certain control flags that causes the processing
in a certain direction, processor synchronization if more than one processors are
attached through LOCK instruction for buses etc.

Note: Please note that these instructions may not be very clear to you right now. Thus,
some of these instructions have been discussed in more detail in later units. You must
refer to further readings for more details on these instructions.

MNEMONIC DESCRIPTION EXAMPLE
STC It sets carry flag to 1.
CLC It clears the carry flag to 0.
CMC It complements the state of the

carry flag from 0 to 1 or 1 to 0 as
the case may be.

CMC; Invert the carry flag

STD It sets the direction flag to 1. The

string instruction moves either
forward (increment SI, DI) or
backward (decrement SI, DI)
based on this flag value. STD
instruction does not affect any
other flag. The set direction flag
causes strings to move from right
to left.

CLD This is opposite to STD, the string CLD

29

Microprocessor
Architecture operation occurs in the reverse

direction.
; Clear the direction flag
; so that the string pointers
; auto-increment.
MOV AX,1000h
MOV DS, AX
; Initialize data segment
; and extra segment
MOV ES, AX
 MOV SI, 20h
; Load offset of start of
; source string to SI
MOV DI,30h
; Load offset of start of
; destination string to DI
MOV CX,10
; Load length of string to
; CX as counter
REP MOVSB
; Decrement CX and
; increment
; SI and DI to point to next
; byte, then MOVSB until
; CX = 0

There are many process control instructions other than these; you may please refer to
further reading for such instructions. These instructions include instructions for setting
and closing interrupt flag, halting the computer, LOCK (locking the bus), NOP etc.

1.6 ADDRESSING MODES

The basic set of operands in 8086 may reside in register, memory and immediate
operand. How can these operands be accessed through various addressing modes? The
answer to the question above is given in the following sub-section. Large number of
addressing modes help in addressing complex data structures with ease. Some specific
Terms and registers roles for addressing:

Base register (BX, BP): These registers are used for pointing to base of an array, stack
etc.
Index register (SI, DI): These registers are used as index registers in data and/or extra
segments.
Displacement: It represents offset from the segment address.

Addressing modes of 8086
Mode Description Example
Direct Effective address is the

displacement of memory
variable.

[BX]
[SI]
[DI]

Register Indirect Effective address is the
contents of a register.

[BP]
LIST[BX]
(OFFSET LIST + BX)

Based Effective address is the sum
of a base register and a
displacement. [BP + 1]

LIST[SI]
[LIST +DI]

Indexed Effective address is the sum
of an index register and a
displacement. [DI + 2]

Based Indexed [BX + SI]

 30

Assembly Language
Programming [BX][DI] Effective address is the sum

of a base and an index
register.

[BP + DI]

Based Indexed with
displacement

Effective address is the sum
of a base register, an index
register, and a displacement.

[BX + SI + 2]

1.6.1 Register Addressing Mode

Operand can be a 16-bit register:

Addressing Mode Description Example
AX, BX, CX, DX, SI,
DI,BP,IP,CS,DS,ES,SS
Or it may be AH, AL, BH, BL,
CH, CL, DH, DL

In general, the register
addressing mode is the most
efficient because registers are
within the CPU and do not
require memory access.

MOV AL,CH
MOV AX,CX

1.6.2 Immediate Addressing Mode

An immediate operand can be a constant expression, such as a number, a character, or
an arithmetic expression. The only constraint is that the assembler must be able to
determine the value of an immediate operand at assembly time. The value is directly
inserted into the machine instruction.

 MOV AL,05

Mode Description Example
Immediate Please note in the last

examples the expression (2
+ 3)/5, is evaluated at
assembly time.

MOV AL,10
MOV AL,'A'
MOV AX,'AB'
MOV AX, 64000
MOV AL, (2 + 3)/5

 1.6.3 Direct Addressing Mode

A direct operand refers to the contents of memory at an address implied by the name
of the variable.

Mode Description Example
DIRECT The direct operands are also

called as relocatable operands
as they represent the offset of
a label from the beginning of a
segment. On reloading a
program even in a different
segment will not cause change
in the offset that is why we
call them relocatable. Please
note that a variable is
considered in Data segment
(DS) and code label in code
segment (SS) by default. Thus,
in the example, COUNT, by

MOV COUNT, CL
; move CL to COUNT (a
; byte variable)
MOV AL,COUNT
; move COUNT to AL
JMP LABEL1
; jump to LABEL1
MOV AX,DS:5
; segment register and
; offset
MOV BX,CSEG:2Ch
; segment name and offset
MOV AX,ES:COUNT
; segment register and
; variable.

31

Microprocessor
Architecture default will be assumed to be

in data segment, while LABEL
1, will be assumed to be in
code segment. If we specify,
as a direct operand then the
address is non-relocatable.
Please note the value of
segment register will be
known only at the run time.

; The offsets of these
; variables are calculated
; with respect to the
; segment name (register)
; specified in the
; instruction.

1.6.4 Indirect Addressing Mode

In indirect addressing modes, operands use registers to point to locations in memory.
So it is actually a register indirect addressing mode. This is a useful mode for handling
strings/ arrays etc. For this mode two types of registers are used. These are:

• Base register BX, BP
• Index register SI, DI

BX contain offset/ pointer in Data Segment
BP contains offset/ pointer in Stack segment.
SI contains offset/pointer in Data segment.
DI contains offset /pointer in extra data segment.

There are five different types of indirect addressing modes:

1. Register indirect
2. Based indirect
3. Indexed indirect
4. Based indexed
5. Based indexed with displacement.

Mode Description Example
Register
indirect

Indirect operands are
particularly powerful when
processing list of arrays,
because a base or an index
register may be modified at
runtime.

MOV BX, OFFSET ARRAY
; point to start of array
MOV AL,[BX]
; get first element
INC BX
; point to next
MOV DL,[BX]
; get second element
The brackets around BX signify
that we are referring to the contents
of memory location, using the
address stored in BX.
In the following example, three
bytes in an array are added together:
MOV SI,OFFSET ARRAY
; address of first byte
MOV AL,[SI]
; move the first byte to AL
INC SI
; point to next byte
ADD AL,[SI]
; add second byte
INC SI
; point to the third byte
ADD AL,[SI]
; add the third byte

 32

Assembly Language
Programming Based Indirect

and Indexed
Indirect

Based and indirect addressing
modes are used in the same
manner. The contents of a
register are added to a
displacement to generate an
effective address. The register
must be one of the following:
SI, DI, BX or BP. If the
registers used for
displacement are base
registers, BX or BP, it is said
to be base addressing or else
it is called indexed
addressing. A displacement is
either a number or a label
whose offset is known at
assembly time. The notation
may take several equivalent
forms. If BX, SI or DI is
used, the effective address is
usually an offset from the DS
register; BP on the other
hand, usually contains an
offset from the SS register.

; Register added to an offset
MOV DX, ARRAY[BX]
MOV DX,[DI + ARRAY]
MOV DX,[ARRAY + SI]
; Register added to a constant
MOV AX,[BP + 2]
MOV DL,[DI – 2] ; DI + (-2)
MOV DX,2[SI]

Mode Description Example

Based Indexed In this type of addressing the
operand’s effective address is
formed by combining a base
register with an index register.

MOV AL,[BP] [SI]
MOV DX,[BX + SI]
ADD CX,[DI] [BX]
; Two base registers or two
; index registers cannot be
; combined, so the
; following would be
; incorrect:
MOV DL,[BP + BX]
; error : two base registers
MOV AX,[SI + DI]
; error : two index registers

Based Indexed with
Displacement

The operand’s effective
address is formed by
combining a base register, an
index register, and a
displacement.

MOV DX,ARRAY[BX][SI]
MOV AX, [BX + SI +
ARRAY]
ADD DL,[BX + SI + 3]
SUB CX, ARRAY[BP +
SI]
Two base registers or two
index registers cannot be
combined, so the
following would be
incorrect:
MOV AX,[BP + BX + 2]
MOV DX,ARRAY[SI +
DI]

☞ Check Your Progress 3

T FState True or False.

1. CALL instruction should be followed by a RET instruction.

33

Microprocessor
Architecture 2. Conditional jump instructions require one of the flags to be tested.

3. REP is an instruction prefix that causes execution of an instruction until CX value

become 0.

4. In the instruction MOV BX, DX register addressing mode has been used.

5. In the instruction MOV BX,ES:COUNTER the second operand is a direct

operand.

6. In the instruction ADD CX, [DI] [BX] the second operand is a based index

operand, whose effective address is obtained by adding the contents of DI and BX
registers.

7. The instruction ADD AX,ARRAY [BP + SI] is incorrect.

1.7 SUMMARY

In this unit, we have studied one of the most popular series of microprocessors, viz.,
Intel 8086. It serves as a base to all its successors, 8088, 80186, 80286, 80486, and
Pentium. The successors of 8086 can be directly run on any successors. Therefore,
though, 8086 has become obsolete from the market point of view, it is still needed to
understand advanced microprocessors.

To summarize the features of 8086, we can say 8086 has:

- a 16-bit data bus
- a 20-bit address bus
- CPU is divided into Bus Interface Unit and Execution Unit
- 6-byte instruction prefetch queue
- segmented memory
- 4 general purpose registers (each of 16 bits)
- instruction pointer and a stack pointer
- set of index registers
- powerful instruction set
- powerful addressing modes
- designed for multiprocessor environment
- available in versions of 5Mhz and 8Mhz clock speed.

You can refer to further readings for obtaining more details on INTEL and Motorola
series of microprocessors.

1.8 SOLUTIONS/ANSWERS
Check Your Progress 1

1. It improves execution efficiency by storing the next instruction in the register
queue.

2. a) 0100 × 10h (- 16 in decimal) + 0020h
 = 01000h + 0020h
 = 01020h

b) 0200h × 10h + 0100h
 = 02000h + 0100h
 = 02100h

c) 4200h × 10h + 0123

 34

Assembly Language
Programming = 42000h + 0123h

 = 42123h

3. a) False b) True c) True d) False

Check Your Progress 2

1. (a) PUSHF instructions do not take any operand.
 (b) No error.
 (c) XCHG instruction cannot have two memory operands
 (d) AAA instruction performs ASCII adjust after addition. It is used after an

ASCII Add. It does not have any operands.
 (e) IDIV assumes one operand in AX so only second operand is needed to be

specified.

2. (a) False
 (b) False
 (c) True
 (d) False

(e) False

Check Your Progress 3

1. False
2. True
3. True
4. True
5. True
6. True
7. False

 35

Introduction to
Assembly Language

Programming
Unit Name

UNIT 2 INTRODUCTION TO ASSEMBLY

LANGUAGE PROGRAMMING

Structure Page No.

2.0 Introduction 35
2.1 Objectives 35
2.2 The Need and Use of the Assembly Language 35
2.3 Assembly Program Execution 36
2.4 An Assembly Program and its Components 41
 2.4.1 The Program Annotation

2.4.2 Directives
2.5 Input Output in Assembly Program 45

2.5.1 Interrupts
2.5.2 DOS Function Calls (Using INT 21H)

2.6 The Types of Assembly Programs 51
2.6.1 COM Programs
2.6.2 EXE Programs

2.7 How to Write Good Assembly Programs 53
2.8 Summary 55
2.9 Solutions/Answers 56
2.10 Further Readings 56

2.0 INTRODUCTION

In the previous unit, we have discussed the 8086 microprocessor. We have discussed
the register set, instruction set and addressing modes for this microprocessor. In this
and two later units we will discuss the assembly language for 8086/8088
microprocessor. Unit 1 is the basic building block, which will help in better
understanding of the assembly language. In this unit, we will discuss the importance
of assembly language, basic components of an assembly program followed by
discussions on the program developmental tools available. We will then discuss what
are COM programs and EXE programs. Finally we will present a complete example.
For all our discussions, we have used Microsoft Assembler (MASM). However, for
different assemblers the assembly language directives may change. Therefore, before
running an assembly program you must consult the reference manuals of the
assembler you are using.

2.1 OBJECTIVES

After going through this unit you should be able to:

• define the need and importance of an assembly program;
• define the various directives used in assembly program;
• write a very simple assembly program with simple input – output services;
• define COM and EXE programs; and
• differentiate between COM and EXE programs.

2.2 THE NEED AND USE OF THE ASSEMBLY
LANGUAGE

Machine language code consists of the 0-1 combinations that the computer decodes
directly. However, the machine language has the following problems:

 36

The Central
Processing Unit

Assembly Language
Programming

• It greatly depends on machine and is difficult for most people to write in 0-1
forms.

• DEBUGGING is difficult.
• Deciphering the machine code is very difficult. Thus program logic will be

difficult to understand.

To overcome these difficulties computer manufacturers have devised English-like
words to represent the binary instruction of a machine. This symbolic code for each
instruction is called a mnemonic. The mnemonic for a particular instruction consists
of letters that suggest the operation to be performed by that instruction. For example,
ADD mnemonic is used for adding two numbers. Using these mnemonics machine
language instructions can be written in symbolic form with each machine instruction
represented by one equivalent symbolic instruction. This is called an assembly
language.

Pros and Cons of Assembly Language

The following are some of the advantages / disadvantages of using assembly
language:

• Assembly Language provides more control over handling particular hardware and
software, as it allows you to study the instructions set, addressing modes,
interrupts etc.

• Assembly Programming generates smaller, more compact executable modules: as
the programs are closer to machine, you may be able to write highly optimised
programs. This results in faster execution of programs.

Assembly language programs are at least 30% denser than the same programs written
in high-level language. The reason for this is that as of today the compilers produce a
long list of code for every instruction as compared to assembly language, which
produces single line of code for a single instruction. This will be true especially in
case of string related programs.

On the other hand assembly language is machine dependent. Each microprocessor has
its own set of instructions. Thus, assembly programs are not portable.

Assembly language has very few restrictions or rules; nearly everything is left to the
discretion of the programmer. This gives lots of freedom to programmers in
construction of their system.

Uses of Assembly Language

Assembly language is used primarily for writing short, specific, efficient interfacing
modules/ subroutines. The basic idea of using assembly is to support the HLL with
some highly efficient but non–portable routines. It will be worth mentioning here that
UNIX mostly is written in C but has about 5-10% machine dependent assembly code.
Similarly in telecommunication application assembly routine exists for enhancing
efficiency.

2.3 ASSEMBLY PROGRAM EXECUTION

An assembly program is written according to a strict set of rules. An editor or word
processor is used for keying an assembly program into the computer as a file, and then
the assembler is used to translate the program into machine code.

There are 2 ways of converting an assembly language program into machine
language:

 37

Introduction to
Assembly Language

Programming

1) Manual assembly

2) By using an assembler.

Manual Assembly

It was an old method that required the programmer to translate each opcode into its
numerical machine language representation by looking up a table of the
microprocessor instructions set, which contains both assembly and machine language
instructions. Manual assembly is acceptable for short programs but becomes very
inconvenient for large programs. The Intel SDK-85 and most of the earlier university
kits were programmed using manual assembly.

Using an Assembler

The symbolic instructions that you code in assembly language is known as - Source
program.

An assembler program translates the source program into machine code, which is
known as object program.

Mnemonic
Program

Machine
Instructions Assembler

Source Code Object Code

The steps required to assemble, link and execute a program are:

Step 1: The assembly step involves translating the source code into object code and
generating an intermediate .OBJ (object file) or module.

The assembler also creates a header immediately in front of the generated
.OBJ module; part of the header contains information about incomplete
addresses. The .OBJ module is not quite in executable form.

Step 2: The link step involves converting the .OBJ module to an .EXE machine code

module. The linker’s tasks include completing any address left open by the
assembler and combining separately assembled programs into one executable
module.

 The linker:

• combines assembled module into one executable program

• generates an .EXE module and initializes with special instructions to

facilitate its subsequent loading for execution.

Step 3: The last step is to load the program for execution. Because the loader knows

where the program is going to load in memory, it is now able to resolve any
remaining address still left incomplete in the header. The loader drops the
header and creates a program segment prefix (PSP) immediately before the
program is loaded in memory.

 38

The Central
Processing Unit

Assembly Language
Programming

Figure 2: Program Assembly

All this conversion and execution of Assembly language performed by Two-pass
assembler.

Two-pass assembler: Assemblers typically make two or more passes through a
source program in order to resolve forward references in a program. A forward
reference is defined as a type of instruction in the code segment that is referencing the
label of an instruction, but the assembler has not yet encountered the definition of that
instruction.

Pass 1: Assembler reads the entire source program and constructs a symbol table of
names and labels used in the program, that is, name of data fields and programs labels
and their relative location (offset) within the segment.

 39

Introduction to
Assembly Language

Programming

Pass 1 determines the amount of code to be generated for each instruction.

Pass 2: The assembler uses the symbol table that it constructed in Pass 1. Now it
knows the length and relative position of each data field and instruction, it can
complete the object code for each instruction. It produces .OBJ (Object file), .LST
(list file) and cross reference (.CRF) files.

Tools required for assembly language programming

The tools of the assembly process described below may vary in details.

Editor

The editor is a program that allows the user to enter, modify, and store a group of
instructions or text under a file name. The editor programs can be classified in 2
groups.

• Line editors
• Full screen editors.

Line editors, such as EDIT in MS DOS, work with the manage one line at a time. Full
screen editors, such as Notepad, Wordpad etc. manage the full screen or a paragraph
at a time. To write text, the user must call the editor under the control of the operating
system. As soon as the editor program is transferred from the disk to the system
memory, the program control is transferred from the operating system to the editor
program. The editor has its own command and the user can enter and modify text by
using those commands. Some editor programs such as WordPerfect are very easy to
use. At the completion of writing a program, the exit command of the editor program
will save the program on the disk under the file name and will transfer the control to
the operating system. If the source file is intended to be a program in the 8086
assembly language the user should follow the syntax of the assembly language and the
rules of the assembler.

Assembler

An assembly program is used to transfer assembly language mnemonics to the binary
code for each instruction, after the complete program has been written, with the help
of an editor it is then assembled with the help of an assembler.

An assembler works in 2 phases, i.e., it reads your source code two times. In the first
pass the assembler collects all the symbols defined in the program, along with their
offsets in symbol table. On the second pass through the source program, it produces
binary code for each instruction of the program, and give all the symbols an offset
with respect to the segment from the symbol table.

The assembler generates three files. The object file, the list file and cross reference
file. The object file contains the binary code for each instruction in the program. It is
created only when your program has been successfully assembled with no errors. The
errors that are detected by the assembler are called the symbol errors. For example,

MOVE AX1, ZX1 ;

In the statement, it reads the word MOVE, it tries to match with the mnemonic sets, as
there is no mnemonic with this spelling, it assumes it to be an identifier and looks for
its entry in the symbol table. It does not even find it there therefore gives an error as
undeclared identifier.

List file is optional and contains the source code, the binary equivalent of each
instruction, and the offsets of the symbols in the program. This file is for purely

 40

The Central
Processing Unit

Assembly Language
Programming

documentation purposes. Some of the assemblers available on PC are MASM,
TURBO etc.

Linker

For modularity of your programs, it is better to break your program into several sub
routines. It is even better to put the common routine, like reading a hexadecimal
number, writing hexadecimal number, etc., which could be used by a lot of your other
programs into a separate file. These files are assembled separately. After each file
has been successfully assembled, they can be linked together to form a large file,
which constitutes your complete program. The file containing the common routines
can be linked to your other program also. The program that links your program is
called the linker.

The linker produces a link file, which contains the binary code for all compound
modules. The linker also produces link maps, which contains the address information
about the linked files. The linker however does not assign absolute addresses to your
program. It only assigns continuous relative addresses to all the modules linked
starting from the zero. This form a program is said to be relocatable because it can be
put anywhere in memory to be run.

Loader

Loader is a program which assigns absolute addresses to the program. These
addresses are generated by adding the address from where the program is loaded into
the memory to all the offsets. Loader comes into action when you want to execute
your program. This program is brought from the secondary memory like disk. The
file name extension for loading is .exe or .com, which after loading can be executed
by the CPU.

Debugger

The debugger is a program that allows the user to test and debug the object file. The
user can employ this program to perform the following functions.

• Make changes in the object code.
• Examine and modify the contents of memory.
• Set breakpoints, execute a segment of the program and display register contents

after the execution.
• Trace the execution of the specified segment of the program and display the

register and memory contents after the execution of each instruction.
• Disassemble a section of the program, i.e., convert the object code into the

source code or mnemonics.

In summary, to run an assembly program you may require your computer:

• A word processor like notepad
• MASM, TASM or Emulator
• LINK.EXE, it may be included in the assembler
• DEBUG.COM for debugging if the need so be.

Errors

Two possible kinds of errors can occur in assembly programs:

a. Programming errors: They are the familiar errors you can encounter in the course
of executing a program written in any language.

 b. System errors: These are unique to assembly language that permit low-level
operations. A system error is one that corrupts or destroys the system under
which the program is running - In assembly language there is no supervising

 41

Introduction to
Assembly Language

Programming

interpreter or compiler to prevent a program from erasing itself or even from
erasing the computer operating system.

2.4 AN ASSEMBLY PROGRAM AND ITS
COMPONENTS

Sample Program

In this program we just display:

Line Offset
Numbers Source Code
0001 DATA SEGMENT
0002 0000 MESSAGE DB “HAVE A NICE DAY!$”
0003 DATA ENDS
0004 STACK SEGMENT
0005 STACK 0400H
0006 STACK ENDS
0007 CODE SEGMENT
0008 ASSUME CS: CODE, DS: DATA SS: STACK
0009 Offset Machine Code
0010 0000 B8XXXX MOV AX, DATA
0011 0003 8ED8 MOV DS, AX
0012 0005 BAXXXX MOV DX, OFFSET MESSAGE
0013 0008 B409 MOV AH, 09H
0014 000A CD21 INT 21H
0015 000C B8004C MOV AX, 4C00H
0016 000F CD21 INT 21H
0017 CODE ENDS
0018 END

The details of this program are:

2.4.1 The Program Annotation

The program annotation consists of 3 columns of data: line numbers, offset and
machine code.

• The assembler assigns line numbers to the statements in the source file

sequentially. If the assembler issues an error message; the message will contain a
reference to one of these line numbers.

• The second column from the left contains offsets. Each offset indicates the

address of an instruction or a datum as an offset from the base of its logical
segment, e.g., the statement at line 0010 produces machine language at offset
0000H of the CODE SEGMENT and the statement at line number 0002 produces
machine language at offset 0000H of the DATA SEGMENT.

• The third column in the annotation displays the machine language produce by

code instruction in the program.

Segment numbers: There is a good reason for not leaving the determination of
segment numbers up to the assembler. It allows programs written in 8086 assembly
language to be almost entirely relocatable. They can be loaded practically anywhere
in memory and run just as well. Program1 has to store the message “Have a nice
day$” somewhere in memory. It is located in the DATA SEGMENT. Since the

 42

The Central
Processing Unit

Assembly Language
Programming

characters are stored in ASCII, therefore it will occupy 15 bytes (please note each
blank is also a character) in the DATA SEGMENT.

Missing offset: The xxxx in the machine language for the instruction at line 0010 is
there because the assembler does not know the DATA segment location that will be
determined at loading time. The loader must supply that value.

Program Source Code

Each assembly language statement appears as:

{identifier} Keyword {{parameter},} {;comment}.

The element of a statement must appear in the appropriate order, but significance is
attached to the column in which an element begins. Each statement must end with a
carriage return, a line feed.

Keyword: A keyword is a statement that defines the nature of that statement. If the
statement is a directive then the keyword will be the title of that directive; if the
statement is a data-allocation statement the keyword will be a data definition type.
Some examples of the keywords are: SEGMENT (directive), MOV (statement) etc.

Identifiers: An identifier is a name that you apply to an item in your program that
you expect to reference. The two types of identifiers are name and label.

1. Name refers to the address of a data item such as counter, arr etc.
2. Label refers to the address of our instruction, process or segment. For example

MAIN is the label for a process as:

 MAIN PROC FAR
 A20: BL,45 ; defines a label A20.

Identifier can use alphabet, digit or special character but it always starts with an
alphabet.

Parameters: A parameter extends and refines the meaning that the assembler
attributes to the keyword in a statement. The number of parameters is dependent on
the Statement.

Comments: A comment is a string of a text that serves only as internal document
action for a program. A semicolon identifies all subsequent text in a statement as a
comment.

2.4.2 Directives

Assembly languages support a number of statements. This enables you to control the
way in which a source program assembles and list. These statements, called
directives, act only when the assembly is in progress and generate no machine-
executable code. Let us discuss some common directives.

1. List: A list directive causes the assembler to produce an annotated listing on the
printer, the video screen, a disk drive or some combination of the three. An
annotated listing shows the text of the assembly language programs, numbers of
each statement in the program and the offset associated with each instruction and
each datum. The advantage of list directive is that it produces much more
informative output.

2. HEX: The HEX directive facilitates the coding of hexadecimal values in the

body of the program. That statement directs the assembler to treat tokens in the

 43

Introduction to
Assembly Language

Programming

source file that begins with a dollar sign as numeric constants in hexadecimal
notation.

3. PROC Directive: The code segment contains the executable code for a

program, which consists of one or more procedures defined initially with the
PROC directive and ended with the ENDP directive.

 Procedure-name PROC FAR ; Beginning of Procedure
 Procedure-name ENDP FAR ; End Procedure

4. END DIRECTIVE: ENDS directive ends a segment, ENDP directive ends a

procedure and END directive ends the entire program that appears as the last
statement.

5. ASSUME Directive: An .EXE program uses the SS register to address the base

of stack, DS to address the base of data segment, CS to address base of the code
segment and ES register to address the base of Extra segment. This directive tells
the assembler to correlate segment register with a segment name. For example,

ASSUME SS: stack_seg_name, DS: data_seg_name, CS: code_seg_name.

6. SEGMENT Directive: The segment directive defines the logical segment to

which subsequent instructions or data allocations statement belong. It also gives
a segment name to the base of that segment.

The address of every element in a 8086 assembly program must be represented
in segment - relative format. That means that every address must be expressed
in terms of a segment register and an offset from the base of the segmented
addressed by that register. By defining the base of a logical segment, a segment
directive makes it possible to set a segment register to address that base and also
makes it possible to calculate the offset of each element in that segment from a
common base.

An 8086 assembly language program consists of logical segments that can be a
code segment, a stack segment, a data segment, and an extra segment.

A segment directive indicates to assemble all statements following it in a single
source file until an ENDS directive.

CODE SEGMENT

The logical program segment is named code segment. When the linker links a
program it makes a note in the header section of the program’s executable file
describing the location of the code segment when the DOS invokes the loader to
load an executable file into memory, the loader reads that note. As it loads the
program into memory, the loader also makes notes to itself of exactly where in
memory it actually places each of the program’s other logical segments. As the
loader hands execution over to the program it has just loaded, it sets the CS
register to address the base of the segment identified by the linker as the code
segment. This renders every instruction in the code segment addressable in
segment relative terms in the form CS: xxxx.

The linker also assumes by default that the first instruction in the code segment
is intended to be the first instruction to be executed. That instruction will appear
in memory at an offset of 0000H from the base of the code segment, so the linker
passes that value on to the loader by leaving an another note in the header of the
program’s executable file.

 44

The Central
Processing Unit

Assembly Language
Programming

The loader sets the IP (Instruction Pointer) register to that value. This sets CS:IP
to the segment relative address of the first instruction in the program.

STACK SEGMENT

8086 Microprocessor supports the Word stack. The stack segment parameters
tell the assembler to alert the linker that this segment statement defines the
program stack area.

A program must have a stack area in that the computer is continuously carrying
on several background operations that are completely transparent, even to an
assembly language programmer, for example, a real time clock. Every 55
milliseconds the real time clock interrupts. Every 55 ms the CPU is interrupted.
The CPU records the state of its registers and then goes about updating the
system clock. When it finishes servicing the system clock, it has to restore the
registers and go back to doing whatever it was doing when the interruption
occurred. All such information gets recorded in the stack. If your program has
no stack and if the real time clock were to pulse while the CPU is running your
program, there would be no way for the CPU to find the way back to your
program when it was through updating the clock. 0400H byte is the default size
of allocation of stack. Please note if you have not specified the stack segment it
is automatically created.

DATA SEGMENT

It contains the data allocation statements for a program. This segment is very
useful as it shows the data organization.

Defining Types of Data

The following format is used for defining data definition:

Format for data definition:

{Name} <Directive> <expression>
Name - a program references the data item through the name although it is
optional.
Directive: Specifying the data type of assembly.
Expression: Represent a value or evaluated to value.

The list of directives are given below:

Directive Description Number of Bytes

DB Define byte 1
DW Define word 2
DD Define double word 4
DQ Define Quad word 8
DT Define 10 bytes 10

DUP Directive is used to duplicate the basic data definition to ‘n’ number of
times

 ARRAY DB 10 DUP (0)

In the above statement ARRAY is the name of the data item, which is of byte
type (DB). This array contains 10 duplicate zero values; that is 10 zero values.

EQU directive is used to define a name to a constant

 CONST EQU 20

Introduction to
Assembly Language

Programming

Type of number used in data statements can be octal, binary, haxadecimal,
decimal and ASCII. The above statement defines a name CONST to a value 20.

Some other examples of using these directives are:

TEMP DB 0111001B ; Binary value in byte operand
 ; named temp
VALI DW 7341Q ; Octal value assigned to word
 ; variable
Decimal DB 49 ; Decimal value 49 contained in
 ; byte variable
HEX DW 03B2AH ; Hex decimal value in word
 ; operand
ASCII DB ‘EXAMPLE’ ; ASCII array of values.

☞ Check Your Progress 1

1. Why should we learn assembly language?
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. What is a segment? Write all four main segment names.
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. State True or False.

(a) The directive DT defines a quadword in the memory

(b) DUP directive is used to indicate if a same memory location is use

different variables name.

(c) EQU directive assign a name to a constant value.

(d) The maximum number of active segments at a time in 8086 can be

(e) ASSUME directive specifies the physical address for the data valu
instruction.

(f) A statement after the END directive is ignored by the assembler.

2.5 INPUT OUTPUT IN ASSEMBLY PROGRA

A software interrupt is a call to an Interrupt servicing program located in the
system. Usually the input-output routine in 8086 is constructed using these in

2.5.1 Interrupts

An interrupt causes interruption of an ongoing program. Some of the comm
interrupts are: keyboard, printer, monitor, an error condition, trap etc.

8086 recognizes two kinds of interrupts: Hardware interrupts and Software
interrupts.
T F
d by t

 four.

es of

M

 opera
terrup

on

wo

ti
t

45

ng
s.

 46

The Central
Processing Unit

Assembly Language
Programming

Hardware interrupts are generated when a peripheral Interrupt servicing program
requests for some service. A software interrupt causes a call to the operating system. It
usually is the input-output routine.

Let us discuss the software interrupts in more detail. A software interrupt is initiated
using the following statements:

 INT number

In 8086, this interrupt instruction is processing using the interrupt vector table
(IVT). The IVT is located in the first 1K bytes of memory, and has a total of 256
entities, each of 4 bytes. An entry in the interrupt vector table is identified by the
number given in the interrupt instruction. The entry stores the address of the operating
system subroutine that is used to process the interrupt. This address may be different
for different machines. Figure 1 shows the processing of an interrupt.

Figure 1: Processing of an Interrupt

The interrupt is processed as:

Step 1: The number field in INT instruction is multiplied by 4 to find its entry in the
interrupt vector table. For example, the IVT entry for instruction INT 10h will
be found at IVT at an address 40h. Similarly the entry of INT 3h will be
placed at 0Ch.

Step 2: The CPU locates the interrupt servicing routine (ISR) whose address is stored

at IVT entry of the interrupt. For example, in the figure above the ISR of INT
10h is stored at location at a segment address F000h and an offset F065h.

Step 3: The CPU loads the CS register and the IP register, with this new address in

the IVT, and transfers the control to that address, just like a far CALL,
(discussed in the unit 4).

Step 4: IRET (interrupt return) causes the program to resume execution at the next

instruction in the calling program.

Keyboard Input and Video output

A Keystroke read from the keyboard is called a console input and a character
displayed on the video screen is called a console output. In assembly language,
reading and displaying character is most tedious to program. However, these tasks
were greatly simplified by the convenient architecture of the 8086/8088. That

 47

Introduction to
Assembly Language

Programming

architecture provides for a pack of software interrupt vectors beginning at address
0000:0000.

The advantage of this type of call is that it appears static to a programmer but flexible
to a system design engineer. For example, INT 00H is a special system level vector
that points to the “recovery from division by zero” subroutine. If new designer come
and want to move interrupt location in memory, it adjusts the entry in the IVT vector
of interrupt 00H to a new location. Thus from the system programmer point of view,
it is relatively easy to change the vectors under program control.

One of the most commonly used Interrupts for Input /Output is called DOS function
call. Let us discuss more about it in the next subsection:

2.5.2 DOS Function Calls (Using INT 21H)

INT 21H supports about 100 different functions. A function is identified by putting
the function number in the AH register. For example, if we want to call function
number 01, then we place this value in AH register first by using MOV instruction
and then call INT 21H:

Some important DOS function calls are:

DOS
Function Call

Purpose Example

AH = 01H For reading a single
character from keyboard
and echo it on monitor.
The input value is put in
AL register.

To get one character input in a variable
in data segment you may include the
following in the code segment:
MOV AH,01
INT 21H
MOV X, AL
(Please note that interrupt call will
return value in AL which is being
transferred to variable of data segment
X. X must be byte type).

AH = 02H This function prints 8 bit
data (normally ASCII)
that is stored in DL
register on the screen.

To print a character let say ‘?’ on the
screen we may have to use following
set of commands:
MOV AH, 02H;
MOV DL, ‘?’
INT 21H

AH = 08H This is an input function
for inputting one
character. This is same as
AH = 01H functions with
the only difference that
value does not get
displayed on the screen.

Same example as 01 can be used only
difference in this case would be that the
input character wouldn’t get displayed
MOV AH, 08H
INT 21H
MOV X, AL

AH = 09H

This program outputs a
string whose offset is
stored in DX register and
that is terminated using a
$ character. One can print
newline, tab character
also.

To print a string “hello world” followed
by a carriage return (control character)
we may have to use the following
assembly program segment.

 48

The Central
Processing Unit

Assembly Language
Programming

Example of
AH = 09H

CR EQU ODH
; ASCII code of carriage return.
DATA SEGMENT
STRING DB ‘HELLO WORLD’, CR, ‘$’
DATA ENDS
CODE SEGMENT
 :
 MOV AX, DATA
 MOV DS, AX
 MOV AH, 09H
 MOV DX, OFFSET STRING
; Store the offset of string in DX register.
 INT 21H

AH = 0AH For input of string up to
255 characters. The string
is stored in a buffer.

Look in the examples given.

AH = 4CH Return to DOS

Some examples of Input

(i) Input a single ASCII character into BL register without echo on screen

 CODE SEGMENT

 MOV AH, 08H ; Function 08H
 INT 21H ; The character input in AL is
 MOV BL, AL ; transfer to BL
 :
CODE ENDS

(ii) Input a Single Digit for example (0,1, 2, 3, 4, 5, 6, 7, 8, 9)

 CODE SEGMENT
 …

; Read a single digit in BL register with echo. No error check in the Program
 MOV AH, 01H

 INT 21H
; Assuming that the value entered is digit, then its ASCII will be stored in AL.
; Suppose the key pressed is 1 then ASCII ‘31’ is stored in the AL. To get the
; digit 1 in AL subtract the ASCII value ‘0’ from the AL register.
; Here it store 0 as ASCII 30,
; 1 as 31, 2 as 32…….9 as 39
; to store 1 in memory subtract 30 to get 31 – 30 = 1

MOV BL, AL
SUB BL, ‘ 0’ ; ‘ 0’ is digit 0 ASCII

 ; OR
SUB BL, 30H

; Now BL contain the single digit 0 to 9
; The only code missing here is to check whether the input is in the specific
; range.
…
CODE ENDS.

(iii) Input numbers like (10, 11…………..99)

; If we want to store 39, it is actually 30 + 9
; and it is 3 × 10 + 9
; to input this value through keyboard, first we input the tenth digit e.g., 3 and

 49

Introduction to
Assembly Language

Programming

; then type 9
 MOV AH, 08H

INT 21H
MOV BL, AL ; If we have input 39 then, BL will first have character

; 3, we can convert it to 3 using previous logic that is 33 – 30 = 3.
SUB BL, ‘0’

 MUL BL, AH ; To get 30 Multiply it by 10.
; Now BL Store 30
; Input another digit from keyboard

MOV AH, 08H
INT 21H;
MOV DL, AL ; Store AL in DL
SUB DL, ‘0’ ; (39 – 30) = 9.

; Now BL contains the value: 30 and DL has the value 9 add them and get the
; required numbers.

ADD BL, DL
; Now BL store 39. We have 2 digit value in BL.

Let us try to summarize these segments as:

CODE SEGMENT
; Set DS register
 MOV AX, DATA ; boiler plate code to set the DS register so that the

MOV DS, AX ; program can access the data segment.

; read first digit from keyboard
 MOV AH, 08

INT 21H
MOV BL, AL
SUB BL, ‘0’
MUL BL, 10H

; read second digit from keyboard
MOV AH, 08H
INT 21H
MOV DL, AL
SUB DL, ‘0’

; DL = 9 AND BL = 30
SUM BL, DL

; now BL store 39
CODE ENDS.

Note: Boilerplate code is the code that is present more or less in the same form in
every assembly language program.

Strings Input

CODE SEGMENT
…
MOV AH, 0AH ; Move 04 to AH register
MOV DX, BUFF ; BUFF must be defined in data segment.
INT 21H

…..
CODE ENDS
DATA SEGMENT
 BUFF DB 50 ; max length of string,
 ; including CR, 50 characters
 DB ? ; actual length of string not known at present
 DB 50 DUP(0) ; buffer having 0 values
DATA ENDS.

 50

The Central
Processing Unit

Assembly Language
Programming

Explanation

The above DATA segment creates an input buffer BUFF of maximum 50 characters.
On input of data ‘JAIN’ followed by enter data would be stored as:

50 4 J A I N #

Examples of Display on Video Monitor

(1) Displaying a single character

; display contents of BL register (assume that it has a single character)
MOV AH, 02H
MOV DL, BL.
INT 21 H.

Here data from BL is moved to DL and then data display on monitor function is called
which displays the contents of DL register.

(2) Displaying a single digit (0 to 9)

Assume that a value 5 is stored in BL register, then to output BL as ASCII value add
character ‘0’ to it

ADD BL, ‘0’
MOV AH, 02H
MOV DL, BL
INT 21H

(3) Displaying a number (10 to 99)

Assuming that the two digit number 59 is stored as number 5 in BH and number 9 in
BL, to convert them to equivalent ASCII we will add ‘0’ to each of them.

ADD BH, ‘0’
ADD BL, ‘0’
MOV AH, 02H
MOV DL, BH
INT 21H
MOV DL, BL
INT 21H

(4) Displaying a string

MOV AH, 09H
MOV DX, OFFSET BUFF
INT 21H

Here data in input buffer stored in data segment is going to be displayed on the
monitor.

A complete program:

Input a letter from keyboard and respond. “The letter you typed is ___”.

 51

Introduction to
Assembly Language

Programming

CODE SEGMENT
; set the DS register
 MOV AX, DATA
 MOV DS, AX
; Read Keyboard
 MOV AH, 08H
 INT 21H
; Save input
 MOV BL, AL
; Display first part of Message
 MOV AH, 09H
 MOV DX, OFFSET MESSAGE
 INT 21 H
; Display character of BL register
 MOV AH, 02H
 MOV DL, BL
 INT 21 H
; Exit to DOS
 MOV AX, 4C00H
 INT 21H
CODE ENDS

DATA SEGMENT

MESSAGE DB “The letter you typed is $”
DATA ENDS
END.

2.6 THE TYPES OF ASSEMBLY PROGRAMS

Assembly language programs can be written in two ways:

COM Program: Having all the segments as part of one segment
EXE Program: which have more than one segment.

Let us look into brief details of these programs.

2.6.1 COM Programs

A COM (Command) program is the binary image of a machine language program. It
is loaded in the memory at the lowest available segment address. The program code
begins at an offset 100h, the first 1K locations being occupied by the IVT.

A COM program keeps its code, data, and stack segments within the same segment.
Since the offsets in a physical segment can be of 16 bits, therefore the size of COM
program is limited to 216 = 64K which includes code, data and stack. The following
program shows a COM program:

; Title add two numbers and store the result and carry in memory variables.
; name of the segment in this program is chosen to be CSEG

CSEG SEGMENT
 ASSUME CS:CSEG, DS:CSEG, SS:CSEG
 ORG 100h
START:MOV AX, CSEG ; Initialise data segment
 MOV DS, AX ; register using AX
 MOV AL, NUM1 ; Take the first number in AL

 52

The Central
Processing Unit

Assembly Language
Programming

 ADD AL, NUM2 ; Add the 2nd number to it
 MOV RESULT, AL ; Store the result in location RESULT
 RCL AL, 01 ; Rotate carry into LSB
 AND AL, 00000001B ; Mask out all but LSB

MOV CARRY, AL ; Store the carry result
MOV AX,4C00h
INT 21h
NUM1 DB 15h ; First number stored here
NUM2 DB 20h ; Second number stored here
RESULT DB ? ; Put sum here
CARRY DB ? ; Put any carry here

CSEG ENDS
END START

These programs are stored on a disk with an extension .com. A COM program
requires less space on disk rather than equivalent EXE program. At run-time the COM
program places the stack automatically at the end of the segment, so they use at least
one complete segment.

2.6.2 EXE Programs

An EXE program is stored on disk with extension .exe. EXE programs are longer than
the COM programs, as each EXE program is associated with an EXE header of 256
bytes followed by a load module containing the program itself. The EXE header
contains information for the operating system to calculate the addresses of segments
and other components. We will not go into such details in this unit.

The load module of EXE program consists of up to 64K segments, although at the
most only four segments may be active at any time. The segments may be of variable
size, with maximum size being 64K.

We will write only EXE programs for the following reasons:

• EXE programs are better suited for debugging.

• EXE-format assembler programs are more easily converted into subroutines for
high-level languages.

• EXE programs are more easily relocatable. Because, there is no ORG statement,
forcing the program to be loaded from a specific address.

• To fully use multitasking operating system, programs must be able to share
computer memory and resources. An EXE program is easily able to do this.

An example of equivalent EXE program for the COM program is:

; ABSTRACT this program adds 2 8-bit numbers in the memory locations
; NUM1 and NUM2. The result is stored in the
; memory location RESULT. If there was a carry
; from the addition it will be stored as 0000 0001 in
; the location CARRY
; REGISTERS Uses CS, DS, AX
DATA SEGMENT
 NUM1 DB 15h ; First number
 NUM2 DB 20h ; Second number

 53

Introduction to
Assembly Language

Programming

 RESULT DB ? ; Put sum here
 CARRY DB ? ; Put any carry here
DATA ENDS
CODE SEGMENT
 ASSUME CS:CODE, DS:DATA
START:MOV AX, DATA ; Initialise data segment
 MOV DS, AX ; register using AX
 MOV AL, NUM1 ; Bring the first number in AL
 ADD AL, NUM2 ; Add the 2nd number to AL
 MOV RESULT, AL ; Store the result
 RCL AL, 01 ; Rotate carry into Least Significant Bit (LSB)
 AND AL, 00000001B ; Mask out all but LSB
 MOV CARRY, AL ; Store the carry
 MOV AX, 4C00h ; Terminate to DOS
 INT 21h
CODE ENDS
 END START

2.7 HOW TO WRITE GOOD ASSEMBLY
PROGRAMS

Now that we have seen all the details of assembly language programming, let us
discuss the art of writing assembly programs in brief.

Preparation of writing the program

1. Write an algorithm for your program closer to assembly language. For example,

the algorithm for preceding program would be:
get NUM1
add NUM2
put sum into memory at RESULT
position carry bit in LSB of byte
 mask off upper seven bits
 store the result in the CARRY location.

2. Specify the input and output required.

input required - two 8-bit numbers
output required - an 8-bit result and a 8-bit carry in memory.

3. Study the instruction set carefully. This step helps in specifying the available

instructions and their format and constraints. For example, the segment registers
cannot be directly initialized by a memory variable. Instead we have to first move
the offset for segment into a register, and then move the contents of register to the
segment register.

You can exit to DOS, by using interrupt routine 21h, with function 4Ch, placed in AH
register.

 54

The Central
Processing Unit

Assembly Language
Programming

It is a nice practice to first code your program on paper, and use comments liberally.
This makes programming easier, and also helps you understand your program later.
Please note that the number of comments do not affect the size of the program.

After the program development, you may assemble it using an assembler and correct
it for errors, finally creating exe file for execution.

☞ Check Your Progress 2

State True or False

1. For input/ output on Intel 8086/8088 machine running on DOS

require special routines to be written by the assembly programmers.

2. Intel 8086 processor recognises only the software interrupts.

3. INT instruction in effect calls a subroutine, which is identified by a

number.

4. Interrupt vector table IVT stores the interrupt handling programs.

5. INT 21H is a DOS function call.

6. INT 21H will output a character on the monitor if AH register

contains 02.

7. String input and output can be achieved using INT 21H with

function number 09h and 0Ah respectively.

8. To perform final exit to DOS we must use function 4CH with

the INT 21H.

9. Notepad is an editor package.

10. Linking is required to link several segments of a single

assembly program.

11. Debugger helps in removing the syntax errors of a program.

12. COM program is loaded at the 0th location in the memory.

13. The size of COM program should not exceed 64K.

14. A COM program is longer than an EXE program.

15. STACK of a COM program is kept at the end of the occupied

segment by the program.

16. EXE program contains a header module, which is used by DOS for

calculating segment addresses.

17. EXE program cannot be easily debugged in comparison to

COM programs.

18. EXE programs are more easily relocatable than COM programs.
T F

 55

Introduction to
Assembly Language

Programming 2.8 SUMMARY

We summarize the complete discussion in the following flow chart.

 56

The Central
Processing Unit

Assembly Language
Programming

2.9 SOLUTIONS/ ANSWERS

Check Your Progress 1

1. (a) It helps in better understanding of computer architecture and work in
 machine language.
 (b) Results in smaller machine level code, thus result in efficient execution of
 programs.
 (c) Flexibility of use as very few restrictions exist.

2. A segment identifier a group of instructions or data value. We have four

segments.
1. Data segment 2. Code segment 3. Stack segment 4. Extra Segment

3. (a) False

 (b) False
 (c) True
 (d) True
 (e) False
 (f) True

Check Your Progress 2

1. False
2. False
3. True
4. False
5. True
6. True
7. True
8. True
9. True
10. False
11. False
12. False
13. True
14. False
15. True
16. True
17. False
18. True

2.10 FURTHER READINGS

1. Yu-Cheng Lin, Genn. A. Gibson, “Microcomputer System the 8086/8088
Family” 2nd Edition, PHI.

2. Peter Abel, “IBM PC Assembly Language and Programming”, 5th Edition, PHI.
3. Douglas, V. Hall, “Microprocessors and Interfacing”, 2nd edition, Tata

McGraw-Hill Edition.
4. Richard Tropper, “Assembly Programming 8086”, Tata McGraw-Hill Edition.
5. M. Rafiquzzaman, “Microprocessors, Theory and Applications: Intel and

Motorala”, PHI.

 57

Assembly Language
Programming

(Part I)

UNIT 3 ASSEMBLY LANGUAGE

PROGRAMMING (PART – I)

Structure Page No.

3.0 Introduction 57
3.1 Objectives 57
3.2 Simple Assembly Programs 57

3.2.1 Data Transfer
3.2.2 Simple Arithmetic Application
3.2.3 Application Using Shift Operations
3.2.4 Larger of the Two Numbers

3.3 Programming With Loops and Comparisons 63
3.3.1 Simple Program Loops
3.3.2 Find the Largest and the Smallest Array Values
3.3.3 Character Coded Data
3.3.4 Code Conversion

3.4 Programming for Arithmetic and String Operations 69
3.4.1 String Processing
3.4.2 Some More Arithmetic Problems

3.5 Summary 75
3.6 Solutions/ Answers 75

3.0 INTRODUCTION

After discussing a few essential directives, program developmental tools and simple
programs, let us discuss more about assembly language programs. In this unit, we will
start our discussions with simple assembly programs, which fulfil simple tasks such as
data transfer, arithmetic operations, and shift operations. A key example here will be
about finding the larger of two numbers. Thereafter, we will discuss more complex
programs showing how loops and various comparisons are used to implement tasks
like code conversion, coding characters, finding largest in array etc. Finally, we will
discuss more complex arithmetic and string operations. You must refer to further
readings for more discussions on these programming concepts.

3.1 OBJECTIVES

After going through this unit, you should be able to:

• write assembly programs with simple arithmetic logical and shift operations;
• implement loops;
• use comparisons for implementing various comparison functions;
• write simple assembly programs for code conversion; and
• write simple assembly programs for implementing arrays.

3.2 SIMPLE ASSEMBLY PROGRAMS

As part of this unit, we will discuss writing assembly language programs. We shall
start with very simple programs, and later graduate to more complex ones.

3.2.1 Data Transfer

Two most basic data transfer instructions in the 8086 microprocessor are MOV and
XCHG. Let us give examples of the use of these instructions.

 58

Assembly Language
Programming ; Program 1: This program shows the difference of MOV and XCHG instructions:

DATA SEGMENT
 VAL DB 5678H ; initialize variable VAL
DATA ENDS

CODE SEGMENT
 ASSUME CS: CODE, DS: DATA
MAINP: MOV AX, 1234H ; AH=12 & AL=34
 XCHG AH, AL ; AH=34 & AL=12
 MOV AX, 1234H ; AH=12 & AL=34
 MOV BX, VAL ; BH=56 & BL=78
 XCHG AX, BX ; AX=5678 & BX=1234
 XCHG AH, BL ; AH=34, AL=78, BH=12, & BL=56
 MOV AX, 4C00H ; Halt using INT 21h
 INT 21H
CODE ENDS
END MAINP

Discussion:

Just keep on changing values as desired in the program.

; Program 2: Program for interchanging the values of two Memory locations
; input: Two memory variables of same size: 8-bit for this program

DATA SEGMENT
 VALUE1 DB 0Ah ; Variables
 VALUE2 DB 14h
DATA ENDS
CODE SEGMENT
 ASSUME CS:CODE, DS:DATA
 MOV AX, DATA ; Initialise data segments
 MOV DS, AX ; using AX
 MOV AL, VALUE1 ; Load Value1 into AL
 XCHG VALUE2,AL ; exchange AL with Value2.
 MOV VALUE1,AL ; Store A1 in Value1

INT 21h ; Return to Operating system
 CODE ENDS
END

Discussion:

The question is why cannot we simply use XCHG instruction with two memory
variables as operand? To answer the question let us look into some of constraints for
the MOV & XCHG instructions:

The MOV instruction has the following constraints and operands:

• CS and IP may never be destination operands in MOV;
• Immediate data value and memory variables may not be moved to segment

registers;
• The source and the destination operands should be of the same size;
• Both the operands cannot be memory locations;
• If the source is immediate data, it must not exceed 255 (FFh) for an 8-bit

destination or 65,535 (FFFFh) for a 16-bit destination.

The statement MOV AL, VALUE1, copies the VALUE1 that is 0Ah in the AL
register:

 59

Assembly Language
Programming

(Part I)

AX : 00 0A 0A (VALUE1)
 AH AL 14 (VALUE2)

The instruction, XCHG AL, VALUE2 ; exchanges the value of AL with VALUE2

Now AL and VALUE2 contains and values as under:

AX : 00 14 0A (VALUE1)
 0A (VALUE2)

The statement, MOV VALUE1, AL ;, now puts the value of AL to VALUE1.

Thus the desired exchange is complete

AX : 00 14 14 (VALUE1)
 0A (VALUE2)

Other statements in the above program have already been discussed in the preceding
units.

3.2.2 Simple Arithmetic Application

Let us discuss an example that uses simple arithmetic:

; Program 3: Find the average of two values stored in
; memory locations named FIRST and SECOND
; and puts the result in the memory location AVGE.

; Input : Two memory variables stored in memory locations FIRST and SECOND
; REGISTERS ; Uses DS, CS, AX, BL
; PORTS ; None used
DATA SEGMENT

FIRST DB 90h ; FIRST number, 90h is a sample value
 SECOND DB 78h ; SECOND number, 78h is a sample value
 AVGE DB ? ; Store average here
DATA ENDS
CODE SEGMENT
 ASSUME CS:CODE, DS:DATA
START: MOV AX, DATA ; Initialise data segment, i.e. set
 MOV DS, AX ; Register DS to point to Data Segment
 MOV AL, FIRST ; Get first number
 ADD AL, SECOND ; Add second to it
 MOV AH, 00h ; Clear all of AH register
 ADC AH, 00h ; Put carry in LSB of AH
 MOV BL, 02h ; Load divisor in BL register
 DIV BL ; Divide AX by BL. Quotient in AL,
 ; and remainder in AH
 MOV AVGE, AL ; Copy result to memory
CODE ENDS
 END START

Discussion:

An add instruction cannot add two memory locations directly, so we moved a single
value in AL first and added the second value to it.

Please note, on adding the two values, there is a possibility of carry bit. (The values
here are being treated as unsigned binary numbers). Now the problem is how to put

 60

Assembly Language
Programming the carry bit into the AH register such that the AX(AH:AL) reflects the added value.

This is done using ADC instruction.

The ADC AH,00h instruction will add the immediate number 00h to the contents of
the carry flag and the contents of the AH register. The result will be left in the AH
register. Since we had cleared AH to all zeros, before the add, we really are adding
00h + 00h + CF. The result of all this is that the carry flag bit is put in the AH register,
which was desired by us.

Finally, to get the average, we divide the sum given in AX by 2. A more general
program would require positive and negative numbers. After the division, the 8-bit
quotient will be left in the AL register, which can then be copied into the memory
location named AVGE.

3.2.3 Application Using Shift Operations

Shift and rotate instructions are useful even for multiplication and division. These
operations are not generally available in high-level languages, so assembly language
may be an absolute necessity in certain types of applications.

; Program 4: Convert the ASCII code to its BCD equivalent. This can be done by
simply replacing the bits in the upper four bits of the byte by four zeros. For example,
the ASCII ‘1’ is 32h = 0011 0010B. By making the upper four bits as 0 we get 0000
0010 which is 2 in BCD. The number obtained is called unpacked BCD number. The
upper four bits of this byte is zero. So the upper four bits can be used to store another
BCD digit. The byte thus obtained is called packed BCD number. For example, an
unpacked BCD number 59 is 00000101 00001001, that is, 05 09. The packed BCD
will be 0101 1001, that is 59.

The algorithm to convert two ASCII digits to packed BCD can be stated as:

Convert first ASCII digit to unpacked BCD.
Convert the second ASCII digit to unpacked BCD.

Decimal ASCII BCD
5
9

00110101
00111001

00000101
00001001

Move first BCD to upper four positions in byte.

0101 0000 Using Rotate Instructions

Pack two BCD bits in one byte.

 0101 0000
0000 1001

 Pack 0101 1001 Using OR

;The assembly language program for the above can be written in the following
manner.

; ABSTRACT Program produces a packed BCD byte from 2 ASCII
 ; encoded digits. Assume the number as 59.

 ; The first ASCII digit (5) is loaded in BL.
 ; The second ASCII digit (9) is loaded in AL.
 ; The result (packed BCD) is left in AL.

 61

Assembly Language
Programming

(Part I)

; REGISTERS ; Uses CS, AL, BL, CL
; PORTS ; None used
CODE SEGMENT
 ASSUME CS:CODE
START: MOV BL, '5' ; Load first ASCII digit in BL
 MOV AL, '9' ; Load second ASCII digit in AL
 AND BL, 0Fh ; Mask upper 4 bits of first digit
 AND AL, 0Fh ; Mask upper 4 bits of second digit
 MOV CL, 04h ; Load CL for 4 rotates
 ROL BL, CL ; Rotate BL 4 bit positions
 OR AL, BL ; Combine nibbles, result in AL contains 59
 ; as packed BCD
CODE ENDS
 END START
Discussion:

8086 does not have any instruction to swap upper and lower four bits in a byte,
therefore we need to use the rotate instructions that too by 4 times. Out of the two
rotate instructions, ROL and RCL, we have chosen ROL, as it rotates the byte left by
one or more positions, on the other hand RCL moves the MSB into the carry flag and
brings the original carry flag into the LSB position, which is not what we want.

Let us now look at a program that uses RCL instructions. This will make the
difference between the instructions clear.

; Program 5: Add a byte number from one memory location to a byte from the next
memory location and put the sum in the third memory location. Also, save the carry
flag in the least significant bit of the fourth memory location.

; ABSTRACT : This program adds 2-8-bit words in the memory locations
; : NUM1 and NUM2. The result is stored in the memory
; : location RESULT. The carry bit, if any will be stored as
; : 0000 0001 in the location CARRY

; ALGORITHM:
; get NUM1
; add NUM2 in it
; put sum into memory location RESULT
; rotate carry in LSB of byte
; mask off upper seven bits of byte
; store the result in the CARRY location.
;
; PORTS : None used
; PROCEDURES : None used
; REGISTERS : Uses CS, DS, AX
;
DATA SEGMENT
 NUM1 DB 25h ; First number
 NUM2 DB 80h ; Second number
 RESULT DB ? ; Put sum here
 CARRY DB
DATA ENDS
CODE SEGMENT
 ASSUME CS:CODE, DS:DATA
START:MOV AX, DATA ; Initialise data segment
 MOV DS, AX ; register using AX
 MOV AL, NUM1 ; Load the first number in AL
 ADD AL, NUM2 ; Add 2nd number in AL

 62

Assembly Language
Programming MOV RESULT, AL ; Store the result

 RCL AL, 01 ; Rotate carry into LSB
 AND AL, 00000001B ; Mask out all but LSB
 MOV CARRY, AL ; Store the carry result
 MOV AH, 4CH
 INT 21H
CODE ENDS
END START

Discussion:

RCL instruction brings the carry into the least significant bit position of the AL
register. The AND instruction is used for masking higher order bits, of the carry, now
in AL.

In a similar manner we can also write applications using other shift instructions.

3.2.4 Larger of the Two Numbers

How are the comparisons done in 8086 assembly language? There exists a compare
instruction CMP. However, this instruction only sets the flags on comparing two
operands (both 8 bits or 16 bits). Compare instruction just subtracts the value of
source from destination without storing the result, but setting the flag during the
process. Generally only three comparisons are more important. These are:

Result of comparison Flag(s) affected

Destination < source Carry flag = 1
Destination = source Zero flag = 1
Destination > source Carry = 0, Zero = 0

Let’s look at three examples that show how the flags are set when the numbers are
compared. In example 1 BL is less than 10, so the carry flag is set. In example 2, the
zero flag is set because both operands are equal. In example 3, the destination (BX) is
greater than the source, so both the zero and the carry flags are clear.

Example 1:

 MOV BL, 02h
 CMP BL, 10h ; Carry flag = 1

Example 2:

 MOV AX, F0F0h
 MOV DX, F0F0h
 CMP AX,DX ; Zero flag = 1

Example 3:

 MOV BX, 200H
 CMP BX, 0 ; Zero and Carry flags = 0

In the following section we will discuss an example that uses the flags set by CMP
instruction.

Assembly Language
Programming

(Part I) ☞ Check Your Progress 1

State True or False with respect to 8086/8088 assembly languages.

1. In a MOV instruction, the immediate operand value for 8-bit destination cannot
exceed F0h.

T F

2. XCHG VALUE1, VALUE2 is a valid instruction.

3. In the example given in section 3.2.2 we can change instruction DIV BL

with a shift.

4. A single instruction cannot swap the upper and lower four of a byte
 register.

5. An unpacked BCD number requires 8 bits of storage, however, two
 unpacked BCD numbers can be packed in a single byte register.

6. If AL = 05 and BL = 06 then CMP AL, BL instruction will clear the
 zero and carry flags.

3.3 PROGRAMMING WITH LOOPS AND
COMPARISONS

Let us now discuss a few examples which are slightly more advanced than what we
have been doing till now. This section deals with more practical examples using loo
comparison and shift instructions.

3.3.1 Simple Program Loops

The loops in assembly can be implemented using:

• Unconditional jump instructions such as JMP, or
• Conditional jump instructions such as JC, JNC, JZ, JNZ etc. and
• Loop instructions.

Let us consider some examples, explaining the use of conditional jumps.

Example 4:

 CMP AX,BX ; compare instruction: sets flags
 JE THERE ; if equal then skip the ADD instruction
 ADD AX, 02 ; add 02 to AX

THERE: MOV CL, 07 ; load 07 to CL

In the example above the control of the program will directly transfer to the label
THERE if the value stores in AX register is equal to that of the register BX. The sa
example can be rewritten in the following manner, using different jumps.

Example 5:

CMP AX, BX ; compare instruction: sets flags
JNE FIX ; if not equal do addition
JMP THERE ; if equal skip next instruction

FIX: ADD AX, 02 ; add 02 to AX

63

ps,

me

 64

Assembly Language
Programming THERE: MOV CL, 07

The above code is not efficient, but suggest that there are many ways through which a
conditional jump can be implemented. Select the most optimum way.

Example 6:

CMP DX, 00 ; checks if DX is zero.
JE Label1 ; if yes, jump to Label1 i.e. if ZF=1

Label1:---- ; control comes here if DX=0

Example 7:

MOV AL, 10 ; moves 10 to AL
CMP AL, 20 ; checks if AL < 20 i.e. CF=1
JL Lab1 ; carry flag = 1 then jump to Lab1

Lab1: ------ ; control comes here if condition is satisfied

LOOPING

; Program 6: Assume a constant inflation factor that is added to a series of prices
; stored in the memory. The program copies the new price over the old price. It is
; assumed that price data is available in BCD form.

; The algorithm:

;Repeat
; Read a price from the array
; Add inflation factor
; Adjust result to correct BCD
; Put result back in array
; Until all prices are inflated

; REGISTERS: Uses DS, CS, AX, BX, CX
; PORTS : Not used
ARRAYS SEGMENT
 PRICE DB 36h, 55h, 27h, 42h, 38h, 41h, 29h, 39h
ARRAYS ENDS
CODE SEGMENT
 ASSUME CS:CODE, DS:ARRAYS
START: MOV AX, ARRAYS ; Initialize data segment
 MOV DS, AX ; register using AX
 LEA BX, PRICES ; initialize pointer to base of array
 MOV CX, 0008h ; Initialise counter to 8 as array have 8

; values.
DO_NEXT: MOV AL, [BX] ; Copy a price to AL. BX is addressed in

; indirect mode.
 ADD AL, 0Ah ; Add inflation factor
 DAA ; Make sure that result is BCD
 MOV [BX], AL ; Copy result back to the memory
 INC BX ; increment BX to make it point to next price
 DEC CX ; Decrement counter register
 JNZ DO_NEXT : If not last, (last would be when CX will

; become 0) Loop back to DO_NEXT
 MOV AH, 4CH ; Return to DOS
 INT 21H
CODE ENDS

END START

 65

Assembly Language
Programming

(Part I)

Discussion:

Please note the use of instruction: LEA BX,PRICES: It will load the BX register with
the offset of the array PRICES in the data segment. [BX] is an indirection through BX
and contains the value stored at that element of array. PRICES. BX is incremented to
point to the next element of the array. CX register acts as a loop counter and is
decremented by one to keep a check of the bounds of the array. Once the CX register
becomes zero, zero flag is set to 1. The JNZ instruction keeps track of the value of
CX, and the loop terminates when zero flag is 1 because JNZ does not loop back.
The same program can be written using the LOOP instruction, in such case, DEC CX
and JNZ DO_NEXT instructions are replaced by LOOP DO_NEXT instruction.
LOOP decrements the value of CX and jumps to the given label, only if CX is not
equal to zero.

Let us demonstrate the use of LOOP instruction, with the help of following program:

; Program 7: This following program prints the alphabets (A-Z)

; Register used : AX, CX, DX

CODE SEGMENT
 ASSUME : CS:CODE.
MAINP: MOV CX, 1AH ; 26 in decimal = 1A in hexadecimal Counter.
 MOV DL, 41H ; Loading DL with ASCII hexadecimal of A.
NEXTC: MOV AH, 02H ; display result character in DL
 INT 21H ; DOS interrupt
 INC DL ; Increment DL for next char
 LOOP NEXTC ; Repeat until CX=0.(loop automatically decrements
 ; CS and checks whether it is zero or not)
 MOV AX, 4C00H ; Exit DOS
 INT 21H ; DOS Call
CODE ENDS
END MAINP

Let us now discuss a slightly more complex looping program.

; Program 8: This program compares a pair of characters entered through keyboard.
; Registers used: AX, BX, CX, DX

DATA SEGMENT
 XX DB ?
 YY DB ?
DATA ENDS

CODE SEGMENT
 ASSUME CS: CODE, DS: DATA
MAINP: MOV AX, DATA ; initialize data
 MOV DS, AX ; segment using AX
 MOV CX, 03H ; set counter to 3.
NEXTP: MOV AH, 01H ; Waiting for user to enter a char.
 INT 21H
 MOV XX, AL ; store the 1st input character in XX
 MOV AH, 01H ; waiting for user to enter second
 INT 21H ; character.
 MOV YY, AL ; store the character to YY
 MOV BH, XX ; load first character in BH
 MOV BL, YY ; load second character in BL
 CMP BH, BL ; compare the characters
 JNE NOT_EQUAL ;

 66

Assembly Language
Programming EQUAL: MOV AH, 02H ; if characters are equal then control

 MOV DL, ‘Y’ ; will execute this block and
 INT 21H ; display ‘Y’
 JMP CONTINUE ; Jump to continue loop.

NOT_EQUAL: MOV AH, 02H ; if characters are not equal then

control
 MOV DL, ‘N’’ ; will execute this block and
 INT 21 H ; display ‘N’

CONTINUE : LOOP NEXT P ; Get the next character
 MOV AH, 4C H ; Exit to DOS
 INT 21 H
CODE ENDS
END MAINP

Discussion:

This program will be executed, at least 3 times.

3.3.2 Find the Largest and the Smallest Array Values

Let us now put together whatever we have done in the preceding sections and write
down a program to find the largest and the smallest numbers from a given array. This
program uses the JGE (jump greater than or equal to) instruction, because we have
assumed the array values as signed. We have not used the JAE instruction, which
works correctly for unsigned numbers.

; Program 9: Initialise the smallest and the largest variables as the first number in
; the array. They are then compared with the other array values one by one. If the
; value happens to be smaller than the assumed smallest number or larger than the
; assumed largest value, the smallest and the largest variables are changed with the
; new values respectively. Let us use register DI to point the current array value and
; LOOP instruction for looping.

DATA SEGMENT
 ARRAY DW -1, 2000, -4000, 32767, 500,0
 LARGE DW ?
 SMALL DW ?
DATA ENDS
END.

CODE SEGMENT
 MOV AX,DATA
 MOV DS,AX ; Initialize DS
 MOV DI, OFFSET ARRAY ; DI points to the array
 MOV AX, [DI] ; AX contains the first element
 MOV DX, AX ; initialize large in DX register
 MOV BX, AX ; initialize small in BX register
 MOV CX, 6 ; initialize loop counter
A1: MOV AX, [DI] ; get next array value
 CMP AX, BX ; Is the new value smaller?
 JGE A2 ; If greater then (not smaller) jump to

; A2, to check larger than large in DX
MOV BX, AX ; Otherwise it is smaller so move it to

; the smallest value (BX register)
 JMP A3 ; as it is small, thus no need
 ; to compare it with the large so jump

; to A3 to continue or terminate loop.

 67

Assembly Language
Programming

(Part I)

A2: CMP AX, DX ; [DI] = large
 JLE A3 ; if less than it implies not large so

; jump to A3
; to continue or terminate

 MOV DX, AX ; otherwise it is larger value, so move
; it to DX that store the large value

A3: ADD DI, 2 ; DI now points to next number
 LOOP A1 ; repeat the loop until CX = 0
 MOV LARGE, DX
 MOV SMALL, BX ; move the large and small in the

; memory locations
 MOV AX, 4C00h
 INT 21h ; halt, return to DOS
CODE ENDS

Discussion:

Since the data is word type that is equal to 2 bytes and memory organisation is byte
wise, to point to next array value DI is incremented by 2.

3.3.3 Character Coded Data

The input output takes place in the form of ASCII data. These ASCII characters are
entered as a string of data. For example, to get two numbers from console, we may
enter the numbers as:

Enter first number 1234

Enter second number 3210

The sum is 4444

As each digit is input, we would store its ASCII code in a memory byte. After the
first number was input the number would be stored as follows:

The number is entered as:

31 32 33 34 hexadecimal storage
 1 2 3 4 ASCII digits

Each of these numbers will be input as equivalent ASCII digits and need to be
converted either to digit string to a 16-bit binary value that can be used for
computation or the ASCII digits themselves can be added which can be followed by
instruction that adjust the sum to binary. Let us use the conversion operation to
perform these calculations here.

Another important data format is packed decimal numbers (packed BCD). A packed
BCD contains two decimal digits per byte. Packed BCD format has the following
advantages:

• The BCD numbers allow accurate calculations for almost any number of
significant digits.

• Conversion of packed BCD numbers to ASCII (and vice versa) is relatively fast.
• An implicit decimal point may be used for keeping track of its position in a

separate variable.

The instructions DAA (decimal adjust after addition) and DAS (decimal adjust after
subtraction) are used for adjusting the result of an addition of subtraction operation on

 68

Assembly Language
Programming packed decimal numbers. However, no such instruction exists for multiplication and

division. For the cases of multiplication and division the number must be unpacked.
First, multiplied or divided and packed again. The instruction DAA and DAS has
already been explained in unit 1.

3.3.4 Code Conversion

The conversion of data from one form to another is needed. Therefore, in this section
we will discuss an example, for converting a hexadecimal digit obtained in ASCII
form to binary form. Many ASCII to BCD and other conversion examples have been
given earlier in unit 2.

Program 10:

; This program converts an ASCII input to equivalent hex digit that it represents.
; Thus, valid ASCII digits are 0 to 9, A to F and the program assumes that the
; ASCII digit is read from a location in memory called ASCII. The hex result is
; left in the AL. Since the program converts only one digit number the AL is
; sufficient for the results. The result in AL is made FF if the character in ASCII
; is not the proper hex digit.
; ALGORITHM
; IF number <30h THEN error
; ELSE
; IF number <3Ah THEN Subtract 30h (it’s a number 0-9)
; ELSE (number is >39h)
; IF number <41h THEN error (number in range 3Ah-40h which is not a valid
; A-F character range)
; ELSE
; IF number <47h THEN Subtract 37h for letter A-F 41-46 (Please note
; that 41h – 37h = Ah)
; ELSE ERROR
;
; PORTS : None used
; PROCEDURES : None
; REGISTERS : Uses CS, DS, AX,
;
DATA SEGMENT
 ASCII DB 39h ; Any experimental data
DATA ENDS
CODE SEGMENT
 ASSUME CS:CODE, DS:DATA
START: MOV AX, DATA ; initialise data segment
 MOV DS, AX ; Register using AX
 MOV AL, ASCII ; Get the ASCII digits of the number
 ; start the conversion
 CMP AL, 30h ; If the ASCII digit is below 30h then it is not

JB ERROR ; a proper Hex digit
 CMP AL, 3Ah ; compare it to 3Ah
 JB NUMBER ; If greater then possibly a letter between A-F
 CMP AL, 41h ; This step will be done if equal to or above

; 3Ah
 JB ERROR ; Between 3Ah and 40h is error
 CMP AL, 46h
 JA ERROR ; The ASCII is out of 0-9 and A-F range
 SUB AL, 37h ; It’s a letter in the range A-F so convert
 JMP CONVERTED
NUMBER: SUB AL, 30h ; it is a number in the range 0-9 so convert

JMP CONVERTED

 69

Assembly Language
Programming

(Part I)

ERROR: MOV AL, 0FFh ; You can also display some message here
CONVERTED: MOV AX, 4C00h
 INT 21h ; the hex result is in AL
CODE ENDS
 END START

Discussions:

The above program demonstrates a single hex digit represented by an ASCII
character. The above programs can be extended to take more ASCII values and
convert them into a 16-bit binary number.

☞ Check Your Progress 2

1. Write the code sequence in assembly for performing following operation:

Z = ((A – B) / 10 * C) * * 2

……………………………………………………………………………………

……………………………………………………………………………………

2. Write an assembly code sequence for adding an array of binary numbers.
……………………………………………………………………………………

……………………………………………………………………………………

3. An assembly program is to be written for inputting two 4 digits decimal
numbers from console, adding them up and putting back the results. Will you
prefer packed BCD addition for such numbers? Why?
……………………………………………………………………………………

……………………………………………………………………………………

4. How can we implement nested loops, for example,
For (i = 1 to 10, step 1)
 { for (j = 1 to, step 1)
 add 1 to AX}

 in assembly language?
……………………………………………………………………………………

……………………………………………………………………………………

3.4 PROGRAMMING FOR ARITHMETIC AND
STRING OPERATIONS

Let us discuss some more advanced features of assembly language programming in
this section. Some of these features give assembly an edge over the high level
language programming as far as efficiency is concerned. One such instruction is for
string processing. The object code generated after compiling the HLL program
containing string instruction is much longer than the same program written in
assembly language. Let us discuss this in more detail in the next subsection:

3.4.1 String Processing

Let us write a program for comparing two strings. Consider the following piece of
code, which has been written in C to compare two strings. Let us assume that ‘str1’
and ‘str2’ are two strings, initialised by some values and ‘ind’ is the index for these
character strings:

 for (ind = 0; ((ind <9) and (str1[ind] = = str2[ind])), ind + +)

 70

Assembly Language
Programming The intermediate code in assembly language generated by a non-optimising compiler

for the above piece may look like:

 MOV IND, 00 ; ind : = 0
L3: CMP IND, 08 ; ind < 9
 JG L1 ; not so; skip
 LEA AX, STR1 ; offset of str1 in AX register
 MOV BX, IND ; it uses a register for indexing into
 ; the array
 LEA CX, STR2 ; str2 in CX
 MOV DL, BYTE PTR CX[BX]
 CMP DL, BYTE PTR AX[BX] ; str1[ind] = str2[ind]
 JNE L1 ; no, skip
 MOV IND, BX
 ADD IND, 01
L2: JMP L3 ; loop back
L1:

What we find in the above code: a large code that could have been improved further,
if the 8086 string instructions would have been used.

; Program 11: Matching two strings of same length stored in memory locations.
; REGISTERS : Uses CS, DS, ES, AX, DX, CX, SI, DI

DATA SEGMENT
 PASSWORD DB 'FAILSAFE' ; source string
 DESTSTR DB 'FEELSAFE' ; destination string
 MESSAGE DB 'String are equal $'
DATA ENDS
CODE SEGMENT
 ASSUME CS:CODE, DS:DATA, ES:DATA
 MOV AX, DATA
 MOV DS, AX ; Initialise data segment register
 MOV ES, AX ; Initialise extra segment register
; as destination string is considered to be in extra segment. Please note that ES is also
; initialised to the same segment as of DS.
 LEA SI, PASSWORD ; Load source pointer
 LEA DI, DESTSTR ; Load destination pointer
 MOV CX, 08 ; Load counter with string length
 CLD ; Clear direction flag so that comparison is
 ; done in forward direction.

 REPE CMPSB ; Compare the two string byte by byte
 JNE NOTEQUAL ; If not equal, jump to NOTEQUAL
 MOV AH, 09 ; else display message
 MOV DX, OFFSET MESSAGE ;
 INT 21h ; display the message
NOTEQUAL:MOV AX, 4C00h ; interrupt function to halt
 INT 21h
CODE ENDS
 END

Discussion:

In the above program the instruction CMPSB compares the two strings, pointed by SI
in Data Segment and DI register in extra data segment. The strings are compared byte
by byte and then the pointers SI and DI are incremented to next byte. Please note the
last letter B in the instruction indicates a byte. If it is W, that is if instruction is
CMPSW, then comparison is done word by word and SI and DI are incremented by 2,

 71

Assembly Language
Programming

(Part I)

that is to next word. The REPE prefix in front of the instruction tells the 8086 to
decrement the CX register by one, and continue to execute the CMPSB instruction,
until the counter (CX) becomes zero. Thus, the code size is substantially reduced.

Similarly, you can write efficient programs for moving one string to another, using
MOVS, and scanning a string for a character using SCAS.

3.4.2 Some More Arithmetic Problems

Let us now take up some more practical arithmetic problems.

Use of delay loops

A very useful application of assembly is to produce delay loops. Such loops are used
for waiting for some time prior to execution of next instruction.

But how to find the time for the delay? The rate at which the instructions are executed
is determined by the clock frequency. Each instruction takes a certain number of clock
cycles to execute. This, multiplied by the clock frequency of the microprocessor, gives
the actual time of execution of a instruction. For example, MOV instruction takes four
clock cycles. This instruction when run on a microprocessor with a 4Mhz clock takes
4/4, i.e. 1 microsecond. NOP is an instruction that is used to produce the delay,
without affecting the actual running of the program.

Time delay of 1 ms on a microprocessor having a clock frequency of 5 MHz would
require:

1 clock cycle =
MHz5

1

 = 6105
1
×

Seconds

Thus, a 1-millisecond delay will require:

 =








×

× −

6

3

105
1
101

 clock cycles

 = 5000 clock cycles.

The following program segment can be used to produce the delay, with the counter
value correctly initialised.

 MOV CX, N ; 4 clock cycles N will vary depending on
 ; the amount of delay required

DELAY: NOP ; 3 cycles
 NOP ; 3 cycles
 LOOP DELAY ; 17 or 5

LOOP instruction takes 17 clock cycles when the condition is true and 5 clock cycles
otherwise. The condition will be true, ‘N’ number of times and false only once, when
the control comes out of the loop.

To calculate ‘N’:

 Total clock cycles = clock cycles for MOV + N(2*NOP clock
 cycles + 17) – 12 (when CX = 0)

 72

Assembly Language
Programming 5000 = 4 + N(6 + 17) – 12

 N = 5000/23 = 218 = 0DAh

Therefore, the counter, CX, should be initialized by 0DAh, in order to get the delay of
1 millisecond.

Use of array in assembly

Let us write a program to add two 5-byte numbers stored in an array. For example,
two numbers in hex can be:

 20 11 01 10 FF
 FF 40 30 20 10

1 1F 51 31 31 1F
 Carry

Let us also assume that the numbers are represented as the lowest significant byte first
and put in memory in two arrays. The result is stored in the third array SUM. The
SUM also contains the carry out information, thus would be 1 byte longer than
number arrays.

; Program 12: Add two five-byte numbers using arrays
; ALGORITHM:
; Make count = LEN
; Clear the carry flag
; Load address of NUM1
; REPEAT
; Put byte from NUM1 in accumulator
; Add byte from NUM2 to accumulator + carry
; Store result in SUM
; Decrement count
; Increment to next address
; UNTIL count = 0
; Rotate carry into LSB of accumulator
; Mask all but LSB of accumulator
; Store carry result, address pointer in correct position.
; PORTS : None used
; PROCEDURES : None used
; REGISTERS : Uses CS, DS, AX, CX, BX, DX

DATA SEGMENT
 NUM1 DB 0FFh, 10h ,01h ,11h ,20h
 NUM2 DB 10h, 20h, 30h, 40h ,0FFh
 SUM DB 6DUP(0)
DATA ENDS
 LEN EQU 05h ; constant for length of the array

CODE SEGMENT
 ASSUME CS:CODE, DS:DATA
START: MOV AX, DATA ; initialise data segment
 MOV DS, AX ; using AX register
 MOV SI, 00 ; load displacement of 1st number.
 ; SI is being used as index register
 MOV CX, 0000 ; clear counter
 MOV CL, LEN ; set up count to designed length
 CLC ; clear carry. Ready for addition
AGAIN: MOV AL, NUM1[SI] ; get a byte from NUM1
 ADC AL, NUM2[SI] ; add to byte from NUM2 with carry

 73

Assembly Language
Programming

(Part I)

 MOV SUM[SI], AL ; store in SUM array
 INC SI
 LOOP AGAIN ; continue until no more bytes
 RCL AL, 01h ; move carry into bit 0 of AL
 AND AL, 01h ; mask all but the 0th bit of AL
 MOV SUM[SI], AL ; put carry into 6th byte
FINISH: MOV AX, 4C00h
 INT 21h
CODE ENDS
 END START

;Program 13: A good example of code conversion: Write a program to convert a
; 4-digit BCD number into its binary equivalent. The BCD number is stored as a
; word in memory location called BCD. The result is to be stored in location HEX.
; ALGORITHM:
; Let us assume the BCD number as 4567
; Put the BCD number into 4, 16bit registers
; Extract the first digit (4 in this case)
; by masking out the other three digits. Since, its place value is 1000.
; So Multiply by 3E8h (that is 1000 in hexadecimal) to get 4000 = 0FA0h
; Extract the second digit (5)
; by masking out the other three digits.
; Multiply by 64h (100)
; Add to first digit and get 4500 = 1194h
; Extract the third digit (6)
; by masking out the other three digits (0060)
; Multiply by 0Ah (10)
; Add to first and second digit to get 4560 = 11D0h
; Extract the last digit (7)
; by masking out the other three digits (0007)
; Add the first, second, and third digit to get 4567 = 11D7h
; PORTS : None used
; REGISTERS: Uses CS, DS, AX, CX, BX, DX

THOU EQU 3E8h ; 1000 = 3E8h
DATA SEGMENT
 BCD DW 4567h
 HEX DW ? ; storage reserved for result
DATA ENDS

CODE SEGMENT
 ASSUME CS:CODE, DS:DATA
START: MOV AX, DATA ; initialise data segment
 MOV DS, AX ; using AX register
 MOV AX, BCD ; get the BCD number AX = 4567
 MOV BX, AX ; copy number into BX; BX = 4567
 MOV AL, AH ; place for upper 2 digits in AX = 4545
 MOV BH, BL ; place for lower 2 digits in BX = 6767
 ; split up numbers so that we have one digit
 ; in each register
 MOV CL, 04 ; bit count for rotate
 ROR AH, CL ; digit 1 (MSB) in lower four bits of AH.
 ; AX = 54 45
 ROR BH, CL ; digit 3 in lower four bits of BH.

; BX = 76 67
 AND AX, 0F0FH ; mask upper four bits of each digit.
 ; AX = 04 05

 74

Assembly Language
Programming AND BX, 0F0FH ; BX = 06 07

 MOV CX, AX ; copy AX into CX so that can use AX for
 ; multiplication CX = 04 05

 ; CH contains digit 4 having place value 1000, CL contains digit 5
 ; having place value 100, BH contains digit 6 having place value 10 and
 ; BL contains digit 7 having unit place value.
 ; so obtain the number as CH × 1000 + CL × 100 + BH × 10 + BL

 MOV AX, 0000H ; zero AH and AL
 ; now multiply each number by its place
 ; value
 MOV AL, CH ; digit 1 to AL for multiply
 MOV DI, THOU ; no immediate multiplication is allowed so
 ; move thousand to DI
 MUL DI ; digit 1 (4)*1000
 ; result in DX and AX. Because BCD digit
 ; will not be greater than 9999, the result will
 ; be in AX only. AX = 4000
 MOV DH, 00H ; zero DH
 MOV DL, BL ; move BL to DL, so DL = 7
 ADD DX, AX ; add AX; so DX = 4007
 MOV AX, 0064h ; load value for 100 into AL
 MUL CL ; multiply by digit 2 from CL
 ADD DX, AX ; add to total in DX. DX now contains
 ; (7 + 4000 + 500)
 MOV AX, 000Ah ; load value of 10 into AL
 MUL BH ; multiply by digit 3 in BH
 ADD DX, AX ; add to total in DX; DX contains
 ; (7 + 4000 + 500 +60)
 MOV HEX, DX ; put result in HEX for return
 MOV AX, 4C00h
 INT 21h
CODE ENDS
 END START

☞ Check Your Progress 3

1. Why should we perform string processing in assembly language in 8086 and not
in high-level language?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2. What is the function of direction flag?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3. What is the function of NOP statement?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

 75

Assembly Language
Programming

(Part I) 3.5 SUMMARY

In this unit, we have covered some basic aspects of assembly language programming.
We started with some elementary arithmetic problems, code conversion problems,
various types of loops and graduated on to do string processing and slightly complex
arithmetic. As part of good programming practice, we also noted some points that
should be kept in mind while coding. Some of them are:

• An algorithm should always precede your program. It is a good programming
practice. This not only increases the readability of the program, but also makes
your program less prone to logical errors.

• Use comments liberally. You will appreciate them later.
• Study the instructions, assembler directives and addressing modes carefully,

before starting to code your program. You can even use a debugger to get a
clear understanding of the instructions and addressing modes.

• Some instructions are very specific to the type of operand they are being used
with, example signed numbers and unsigned numbers, byte operands and word
operands, so be careful !!

• Certain instructions except some registers to be initialised by some values
before being executed, example, LOOP expects the counter value to be
contained in CX register, string instructions expect DS:SI to be initialised by the
segment and the offset of the string instructions, and ES:DI to be with the
destination strings, INT 21h expects AH register to contain the function number
of the operation to be carried out, and depending on them some of the additional
registers also to be initialised. So study them carefully and do the needful. In
case you miss out on something, in most of the cases, you will not get an error
message, instead the 8086 will proceed to execute the instruction, with whatever
junk is lying in those registers.

In spite of all these complications, assembly languages is still an indispensable part of
programming, as it gives you an access to most of the hardware features of the
machine, which might not be possible with high level language. Secondly, as we have
also seen some kind of applications can be written and efficiently executed in
assembly language. We justified this with string processing instructions; you will
appreciate it more when you actually start doing the assembly language programming.
You can now perform some simple exercises from the further readings.

In the next block, we take up more advanced assembly language programming, which
also includes accessing interrupts of the machine.

3.6 SOLUTIONS/ ANSWERS

Check Your Progress 1

1. False 2. False 3. True 4. True 5. True 6. False

Check Your Progress 2

1. MOV AX, A ; bring A in AX
 SUB AX, B ; subtract B
 MOV DX, 0000h ; move 0 to DX as it will be used for word division
 MOV BX, 10 ; move dividend to BX
 IDIV BX ; divide
 IMUL C ; ((A-B) / 10 * C) in AX
 IMUL AX ; square AX to get (A-B/10 * C) * * 2

 76

Assembly Language
Programming 2. Assuming that each array element is a word variable.

 MOV CX, COUNT ; put the number of elements of the array in
 ; CX register
 MOV AX, 0000h ; zero SI and AX
 MOV SI, AX
; add the elements of array in AX again and again
AGAIN: ADD AX, ARRAY[SI] ; another way of handling array
 ADD SI, 2 ; select the next element of the array
 LOOP AGAIN ; add all the elements of the array. It will
 terminate when CX becomes zero.
 MOV TOTAL, AX ; store the results in TOTAL.

3. Yes, because the conversion efforts are less.
4. We may use two nested loop instructions in assembly also. However, as both the

loop instructions use CX, therefore every time before we are entering inner loop
we must push CX of outer loop in the stack and reinitialize CX to the inner loop
requirements.

Check Your Progress 3

1. The object code generated on compiling high level languages for string processing
commands is, in general, found to be long and contains several redundant
instructions. However, we can perform string processing very efficiently in 8086
assembly language.

2. Direction flag if clear will cause REPE statement to perform in forward direction.

That is, in the given example the strings will be compared from first element to
last.

3. It produces a delay of a desired clock time in the execution. This instruction is

useful while development of program. A collection of these instructions can be
used to fill up some space in the code segment, which can be changed with new
code lines without disturbing the position of existing code. This is particularly
used when a label is specified.

Assembly Language

Programming
(Part II)

UNIT 4 ASSEMBLY LANGUAGE
PROGRAMMING (PART-II)

Structure Page No.

4.0 Introduction 77
4.1 Objectives 77
4.2 Use of Arrays in Assembly 77
4.3 Modular Programming 80

4.3.1 The stack
4.3.2 FAR and NEAR Procedures
4.3.3 Parameter Passing in Procedures
4.3.4 External Procedures

4.4 Interfacing Assembly Language Routines to High Level Language
Programs 93
4.4.1 Simple Interfacing
4.4.2 Interfacing Subroutines With Parameter Passing

4.5 Interrupts 97
4.6 Device Drivers in Assembly 99
4.7 Summary 101
4.8 Solutions/ Answers 102

4.0 INTRODUCTION

In the previous units, we have discussed the instruction set, addressing modes, and
other tools, which are needed to develop assembly language programs. We shall now
use this knowledge in developing more advanced tools. We have divided this unit
broadly into four sections. In the first section, we discuss the design of some simple
data structures using the basic data types. Once the programs become lengthier, it is
advisable to divide them into small modules, which can be easily written, tested and
debugged. This leads to the concept of modular programming, and that is the topic of
our second section in this unit. In the third section, we will discuss some techniques to
interface assembly language programs to high level languages. We have explained the
concepts using C and C ++ as they are two of the most popular high-level languages.
In the fourth section we have designed some tools necessary for interfacing the
microprocessor with external hardware modules.

4.1 OBJECTIVES

After going through this unit, you should be able to:

• implement simple data structures in assembly language;
• write modular programs in assembly language;
• interface assembly program to high level language program; and
• analyse simple interrupt routines.

4.2 USE OF ARRAYS IN ASSEMBLY

An array is referencing using a base array value and an index. To facilitate addressing
in arrays, 8086 has provided two index registers for mathematical computations, viz.
BX and BP. In addition two index registers are also provided for string processing,
viz. SI and DI. In addition to this you can use any general purpose register also for
indexing.

77

Assembly Language
Programming An important application of array is the tables that are used to store related

information. For example, the names of all the students in the class, their CGPA, the
list of all the books in the library, or even the list of people residing in a particular area
can be stored in different tables. An important application of tables would be character
translation. It can be used for data encryption, or translation from one data type to
another. A critical factor for such kind of applications is the speed, which just happens
to be a strength of assembly language. The instruction that is used for such kind of
applications is XLAT.

Let us explain this instruction with the help of an example:

Example 1:

Let us assume a table of hexadecimal characters representing all 16 hexadecimal
digits in table:

HEXA DB ‘0123456789ABCDEF’

The table contains the ASCII code of each hexadecimal digit:

Offset 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
Contents 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

(all value in hexadecimal)

If we place 0Ah in AL with the thought of converting it to ASCII, we need to set BX
to the offset of HEXA, and invoke XLAT. You need not specify the table name with
XLAT because it is implicitly passed by setting BX to the HEXA table offset. This
instruction will do the following operations:

It will first add BX to AL, generating an effective address that points to the eleventh
entry in the HEXA table.

The content of this entry is now moved to the AL register, that is, 41h is moved to AL.

In other words, XLAT sets AL to 41h because this value is located at HEXA table
offset 0Ah. Please note that the 41h is the ASCII code for hex digit A. The following
sequence of instructions would accomplished this:

MOV AL, 0Ah ; index value
MOV BX, OFFSET HEXA ; offset of the table HEXA
XLAT

The above tasks can be done without XLAT instruction but it will require a long series
of instructions such as:

 MOV AL, 0Ah ; index value
MOV BX, OFFSET HEXA ; offset of the table HEXA
PUSH BX ; save the offset
ADD BL, AL ; add index value to table
 ; HEXA offset
MOV AL, [BX] ; retrieve the entry
POP BX ; restore BX

Let us use the instruction XLAT for data encoding. When you want to transfer a
message through a telephone line, then such encoding may be a good way of
preventing other users from reading it. Let us show a sample program for encoding.

 78

Assembly Language

Programming
(Part II)

PROGRAM 1:

; A program for encoding ASCII Alpha numerics.

; ALGORITHM:
 ; create the code table
 ; read an input string character by character
 ; translate it using code table
 ; output the strings

DATA SEGMENT
 CODETABLE DB 48 DUP (0) ; no translation of first
 ; 48 ASCII
 DB ‘4590821367’ ; ASCII codes 48 –
 ; 57 ≡ (30h – 39h)
 DB 7 DUP (0) ; no translation of
 these 7 characters
 DB ‘GVHZUSOBMIKPJCADLFTYEQNWXR’
 DB 6 DUP (0) ; no translation
 DB ‘gvhzusobmikpjcadlftyeqnwxr’
 DB 133 DUP (0) ; no translation of remaining
 ; character
DATA ENDS

CODE SEGMENT
 MOV AX, DATA
 MOV DS, AX ; initialize DS
 MOV BX, OFFSET CODETABLE ; point to lookup table
GETCHAR:
 MOV AH, 06 ; console input no wait
 MOV DL, 0FFh ; specify input request
 INT 21h ; call DOS
 JZ QUIT ; quit if no input is waiting
 MOV DL, AL ; save character in DL
 XLAT CODETABLE ; translate the character
 CMP AL, 0 ; translatable?
 JE PUTCHAR ; no : write it as is.
 MOV DL, AL ; yes : move new character
 ; to DL
PUTCHAR:
 MOV AH, 02 ; write DL to output
 INT 21h
 JMP GETCHAR ; get another character
QUIT: MOV AX, 4C00h
 INT 21h
CODE ENDS
END

Discussion:

The program above will code the data. For example, a line from an input file will be
encoded:

A SECRET Message (Read from an input file)
G TUHFUY Juttgou (Encoded output)

The program above can be run using the following command line. If the program file
name is coding.asm

coding infile > outfile

79

 80

Assembly Language
Programming The infile is the input data file, and outfile is the output data file.

You can write more such applications using 8086 assembly tables.

☞ Check Your Progress 1

1. Write a program to convert all upper case letters to lower case.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2. State True or False

a. Table handling cannot be done without using XLAT instruction.

b. In XLAT instruction AX register contains the address of the first e

 of the table.

c. In XLAT instruction the desired element value is returned in AL
 register.

4.3 MODULAR PROGRAMMING

Modular programming refers to the practice of writing a program as a series
independently assembled source files. Each source file is a modular program
to be assembled into a separate object file. Each object file constitutes a mod
linker collects the modules of a program into a coherent whole.

There are several reasons a programmer might choose to modularise a progra

1. Modular programming permits breaking a large program into a numbe
smaller modules each of more manageable size.

2. Modular programming makes it possible to link source code written in
separate languages. A hybrid program written partly in assembly langu
partly in higher level language necessarily involves at least one modul
language involved.

3. Modular programming allows for the creation, maintenance and reuse
library of commonly used modules.

4. Modules are easy to comprehend.
5. Different modules can be assigned to different programs.
6. Debugging and testing can be done in a more orderly fashion.
7. Document action can be easily understood.
8. Modifications may be localised to a module.

A modular program can be represented using hierarchical diagram:

Main Module

Module C Module A Module B

 Module D Module E
T F
ntry

of
 desi
ule. T

m.

r of

 two
age a

e for

of a

g

e

ned
he

nd
ach

Assembly Language

Programming
(Part II)

The advantages of modular programming are:

1. Smaller, easier modules to manage
2. Code repetition may be avoided by reusing modules.

You can divide a program into subroutines or procedures. You need to CALL the
procedure whenever needed. A subroutine call transfers the control to subroutine
instructions and brings the control back to calling program.

4.3.1 The Stack

A procedure call is supported by a stack. So let us discuss stack in assembly.
Stacks are Last In First Out data structures, and are used for storing the return
addresses of the procedures and for parameter passing and saving the return value.

In 8086 microprocessor a stack is created in the stack segment. The SS register stores
the offset of stack segment and SP register stores the top of the stack. A value is
pushed in to top of the stack or taken out (poped) from the top of the stack. The stack
segment can be initialized as follows:

STACK_ SEG SEGMENT STACK
 DW 100 DUP (0)
 TOS LABEL WORD
STACK_SEG ENDS

CODE SEGMENT

ASSUME CS:CODE, SS:STACK_SEG
MOV AX, STACK_SEG
MOV SS,AX ; initialise stack segment
LEA SP,TOP ; initialise stack pointer

CODE ENDS
END

The directive STACK_SEG SEGMENT STACK declares the logical segment for the
stack segment. DW 100 DUP(0) assigns actual size of the stack to 100 words. All
locations of this stack are initialized to zero. The stacks are identified by the stack top
and that is why the Label Top of Stack (TOS) has been selected. Please note that the
stack in 8086 is a WORD stack. Stack facilities involve the use of indirect addressing
through a special register, the stack pointer (SP). SP is automatically decremented as
items are put on the stack and incremented as they are retrieved. Putting something on
to stack is called a PUSH and taking it off is called a POP. The address of the last
element pushed on to the stack is known as the top of the stack (TOS).

Name Mnemonics Description
Push onto the stack PUSH SRC SP SP – 2

SP+1 and SP location are
assign the SRC

Pop from the stack POP DST DST is a assigned values
stored at stack top
SP SP + 2

4.3.2 Far and Near Procedures

Procedure provides the primary means of breaking the code in a program into
modules. Procedures have one major disadvantage, that is, they require extra code to

81

Assembly Language
Programming join them together in such a way that they can communicate with each other. This

extra code is sometimes referred to as linkage overhead.

A procedure call involves:

1. Unlike other branch instructions, a procedure call must save the address of the
next instruction so that the return will be able to branch back to the proper
place in the calling program.

2. The registers used by the procedures need to be stored before their contents
are changed and then restored just before the procedure is finished.

3. A procedure must have a means of communicating or sharing data with the
procedures that call it, that is parameter passing.

Calls, Returns, and Procedures definitions in 8086

The 8086 microprocessor supports CALL and RET instructions for procedure call.

The CALL instruction not only branches to the indicated address, but also pushes the
return address onto the stack. In addition, it also initialized IP with the address of the
procedure. The RET instructions simply pops the return address from the stack. 8086
supports two kinds of procedure call. These are FAR and NEAR calls.

The NEAR procedure call is also known as Intrasegment call as the called procedure
is in the same segment from which call has been made. Thus, only IP is stored as the
return address. The IP can be stored on the stack as:

 Initial stack top .

 IP HIGH
 SP points here after NEAR call IP LOW

 .
 .

 Stack segment base (SS)
 Low address

Please note the growth of stack is towards stack segment base. So stack becomes full
on an offset 0000h. Also for push operation we decrement SP by 2 as stack is a word
stack (word size in 8086 = 16 bits) while memory is byte organised memory.

FAR procedure call, also known as intersegment call, is a call made to separate code
segment. Thus, the control will be transferred outside the current segment. Therefore,
both CS and IP need to be stored as the return address. These values on the stack after
the calls look like:

 Initial stack top .
 CS HIGH

 CS LOW
 IP HIGH

 SP points here after FAR call IP LOW
 .

 Stack segment base (SS) .
 Low address

When the 8086 executes the FAR call, it first stores the contents of the code segment
register followed by the contents of IP on to the stack. A RET from the NEAR
procedure. Pops the two bytes into IP. The RET from the FAR procedure pops four
bytes from the stack.

Procedure is defined within the source code by placing a directive of the form:

 82

Assembly Language

Programming
(Part II)

<Procedure name> PROC <Attribute>

A procedure is terminated using:

<Procedure name> ENDP

The <procedure name> is the identifier used for calling the procedure and the
<attribute> is either NEAR or FAR. A procedure can be defined in:

1. The same code segment as the statement that calls it.
2. A code segment that is different from the one containing the statement that calls

it, but in the same source module as the calling statement.
3. A different source module and segment from the calling statement.

In the first case the <attribute> code NEAR should be used as the procedure and code
are in the same segment. For the latter two cases the <attribute> must be FAR.

Let us describe an example of procedure call using NEAR procedure, which contains
a call to a procedure in the same segment.

PROGRAM 2:

Write a program that collects in data samples from a port at 1 ms interval. The upper 4
bits collected data same as mastered and stored in an array in successive locations.

; REGISTERS :Uses CS, SS, DS, AX, BX, CX, DX, SI, SP
; PROCEDURES : Uses WAIT

DATA_SEG SEGMENT
 PRESSURE DW 100 DUP(0) ; Set up array of 100 words
 NBR_OF_SAMPLES EQU 100
 PRESSURE_PORT EQU 0FFF8h ; hypothetical input port
DATA_SEG ENDS

STACK_SEG SEGMENT STACK
 DW 40 DUP(0) ; set stack of 40 words

STACK_TOP LABEL WORD
STACK_SEG ENDS

CODE_SEG SEGMENT
 ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG
START: MOV AX, DATA_SEG ; Initialise data segment register
 MOV DS, AX
 MOV AX, STACK_SEG ; Initialise stack segment register
 MOV SS, AX
 MOV SP, OFFSET STACK – TOP ; initialise stack pointer top of
 ; stack
 LEA SI, PRESSURE ; SI points to start of array
 ; PRESSURE
 MOV BX, NBR_OF_SAMPLES ; Load BX with number
 ; of samples
 MOV DX, PRESSURE_PORT ; Point DX at input port
 ; it can be any A/D converter or
 ; data port.

READ_NEXT: IN AX, DX ; Read data from port
 ; please note use of IN instruction
 AND AX, 0FFFH ; Mask upper 4 bits of AX
 MOV [SI], AX ; Store data word in array
 CALL WAIT ; call procedures wait for delay

83

Assembly Language
Programming INC SI ; Increment SI by two as dealing with

 INC SI ; 16 bit words and not bytes
 DEC BX ; Decrement sample counter
 JNZ READ_NEXT ; Repeat till 100
 ; samples are collected
STOP: NOP
WAIT PROC NEAR
 MOV CX, 2000H ; Load delay value
 ; into CX
HERE: LOOP HERE ; Loop until CX = 0
 RET
WAIT ENDP
CODE_SEG ENDS
 END

Discussion:

Please note that the CALL to the procedure as above does not indicate whether the
call is to a NEAR procedure or a FAR procedure. This distinction is made at the time
of defining the procedure.

The procedure above can also be made a FAR procedure by changing the definition of
the procedure as:

WAIT PROC FAR
 .
 .
WAIT ENDS

The procedure can now be defined in another segment if the need so be, in the same
assembly language file.

4.3.3 Parameter Passing in Procedures

Parameter passing is a very important concept in assembly language. It makes the
assembly procedures more general. Parameter can be passed to and from to the main
procedures. The parameters can be passed in the following ways to a procedure:

1. Parameters passing through registers
2. Parameters passing through dedicated memory location accessed by name
3. Parameters passing through pointers passed in registers
4. Parameters passing using stack.

Let us discuss a program that uses a procedure for converting a BCD number to binary
number.

PROGRAM 3:

Conversion of BCD number to binary using a procedure.

Algorithm for conversion procedure:

Take a packed BCD digit and separate the two digits of BCD.
Multiply the upper digit by 10 (0Ah)
Add the lower digit to the result of multiplication

The implementation of the procedure will be dependent on the parameter-passing
scheme. Let us demonstrate this with the help of three programs.

 84

Program 3 (a): Use of registers for parameter passing: This program uses AH register
for passing the parameter.

Assembly Language

Programming
(Part II)

We are assuming that data is available in memory location. BCD and the result is
stored in BIN

;REGISTERS : Uses CS, DS, SS, SP, AX
;PROCEDURES : BCD-BINARY

DATA_SEG SEGMENT
 BCD DB 25h ; storage for BCD value
 BIN DB ? ; storage for binary value
DATA_SEG ENDS
STACK_SEG SEGMENT STACK
 DW 200 DUP(0) ; stack of 200 words
 TOP_STACK LABEL WORD
STACK_SEG ENDS

CODE_SEG SEGMENT
 ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG
START: MOV AX, DATA_SEG ; Initialise data segment
 MOV DS, AX ; Using AX register
 MOV AX, STACK_SEG ; Initialise stack
 MOV SS, AX ; Segment register. Why
 ; stack?
 MOV SP, OFFSET TOP_STACK ; Initialise stack pointer
 MOV AH, BCD
 CALL BCD_BINARY ; Do the conversion
 MOV BIN, AH ; Store the result in the
 ; memory
 :
 :
; Remaining program can be put here
;PROCEDURE : BCD_BINARY - Converts BCD numbers to binary.
;INPUT : AH with BCD value
;OUTPUT : AH with binary value
;DESTROYS : AX

BCD_BINARY PROC NEAR

PUSHF ; Save flags
PUSH BX ; and registers used in procedure
PUSH CX ; before starting the conversion
 ; Do the conversion
MOV BH, AH ; Save copy of BCD in BH
AND BH, 0Fh ; and mask the higher bits. The lower digit
 ; is in BH
AND AH, 0F0h ; mask the lower bits. The higher digit is in AH
 ; but in upper 4 bits.
MOV CH, 04 ; so move upper BCD digit to lower
ROR AH, CH ; four bits in AH
MOV AL, AH ; move the digit in AL for multiplication
MOV BH, 0Ah ; put 10 in BH
MUL BH ; Multiply upper BCD digit in AL
 ; by 0Ah in BH, the result is in AL
MOV AH, AL ; the maximum/ minimum number would not
 ; exceed 8 bits so move AL to AH
ADD AH, BH ; Add lower BCD digit to MUL result

; End of conversion, binary result in AH
 POP CX ; Restore registers
 POP BX
 POPF

85

Assembly Language
Programming RET ; and return to calling program

BCD_BINARY ENDP
CODE_SEG ENDS
 END START

Discussion:

The above program is not an optimum program, as it does not use registers minimally.
By now you should be able to understand this module. The program copies the BCD
number from the memory to the AH register. The AH register is used as it is in the
procedure. Thus, the contents of AH register are used in calling program as well as
procedure; or in other words have been passed from main to procedure. The result of
the subroutine is also passed back to AH register as returned value. Thus, the calling
program can find the result in AH register.

The advantage of using the registers for passing the parameters is the ease with which
they can be handled. The disadvantage, however, is the limit of parameters that can be
passed. For example, one cannot pass an array of 100 elements to a procedure using
registers.

Passing Parameters in General Memory

The parameters can also be passed in the memory. In such a scheme, the name of the
memory location is used as a parameter. The results can also be returned in the same
variables. This approach has a severe limitation. It is that you will be forced to use the
same memory variable with that procedure. What are the implications of this bound?
Well in the example above we will be bound that variable BCD must contain the
input. This procedure cannot be used for a value stored in any other location. Thus, it
is a very restrictive method of procedural call.

Passing Parameters Using Pointers

This method overcomes the disadvantage of using variable names directly in the
procedure. It uses registers to pass the procedure pointers to the desired data. Let us
explain it further with the help of a newer version of the last program.

Program 3 (c) version 2:

DATA_SEG SEGMENT
 BCD DB 25h ; Storage for BCD test value
 BIN DB ? ; Storage for binary value
DATA_SEG ENDS

STACK_SEG SEGMENT STACK
 DW 100 DUP(0) ; Stack of 100 words

TOP_STACK LABEL WORD
STACK_SEG ENDS

CODE_SEG SEGMENT
 ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG
START: MOV AX, DATA_SEG ; Initialize data
 MOV DS, AX ; segment using AX register
 MOV AX, STACK_SEG ; initialize stack
 MOV SS, AX ; segment. Why stack?
 MOV SP, OFFSET TOP_STACK ; initialize stack pointer
; Put pointer to BCD storage in SI and DI prior to procedure call.
 MOV SI, OFFSET BCD ; SI now points to BCD_IN
 MOV DI, OFFSET BIN ; DI points BIN_VAL
 ; (returned value)
 CALL BCD_BINARY ; Call the conversion

 86

Assembly Language

Programming
(Part II)

 ; procedure
 NOP ; Continue with program
 ; here

; PROCEDURE : BCD_BINARY Converts BCD numbers to binary.
; INPUT : SI points to location in memory of data
; OUTPUT : DI points to location in memory for result
; DESTROYS : Nothing

BCD_BINARY PROC NEAR
 PUSHF ; Save flag register
 PUSH AX ; and AX registers
 PUSH BX ; BX
 PUSH CX ; and CX
 MOV AL, [SI] ; Get BCD value from memory
 ; for conversion
 MOV BL, AL ; copy it in BL also
 AND BL, 0Fh ; and mask to get lower 4 digits
 AND AL, 0F0h ; Separate upper 4 bits in AL
 MOV CL, 04 ; initialize counter CL so that upper digit
 ROR AL, CL ; in AL can be brought to lower 4 bit
 ; positions in AL
 MOV BH, 0Ah ; Load 10 in BH
 MUL BH ; Multiply upper digit in AL by 10
 ; The result is stored in AL
 ADD AL, BL ; Add lower BCD digit in BL to result of
 ; multiplication
; End of conversion, now restore the original values prior to call. All calls will be in
; reverse order to save above. The result is in AL register.
 MOV [DI], AL ; Store binary value to memory
 POP CX ; Restore flags and
 POP BX ; registers
 POP AX
 POPF
 RET
BCD_BINARY ENDP
CODE_SEG ENDS
 END START

Discussion:

In the program above, SI points to the BCD and the DI points to the BIN. The
instruction MOV AL,[SI] copies the byte pointed by SI to the AL register. Likewise,
MOV [DI], AL transfers the result back to memory location pointed by DI.

This scheme allows you to pass the procedure pointers to data anywhere in memory.
You can pass pointer to individual data element or a group of data elements like arrays
and strings. This approach is used for parameters passing to BIOS procedures.

Passing Parameters Through Stack

The best technique for parameter passing is through stack. It is also a standard
technique for passing parameters when the assembly language is interfaced with any
high level language. Parameters are pushed on the stack and are referenced using BP
register in the called procedure. One important issue for parameter passing through
stack is to keep track of the stack overflow and underflow to keep a check on errors.
Let us revisit the same example, but using stack for parameter passing.

87

Assembly Language
Programming PROGRAM 3: Version 3

DATA_SEG SEGMENT
 BCD DB 25h ; Storage for BCD test value
 BIN DB ? ; Storage for binary value
DATA_SEG ENDS

STACK_SEG SEGMENT STACK
 DW 100 DUP(0) ; Stack of 100 words
 TOP_STACK LABEL WORD
STACK_SEG ENDS

CODE_SEG SEGMENT
 ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG
START: MOV AX, DATA ; Initialise data segment
 MOV DS, AX ; using AX register
 MOV AX, STACK-SEG . ; initialise stack segment
 MOV SS, AX ; using AX register
 MOV SP, OFFSET TOP_STACK ; initialise stack pointer
 MOV AL, BCD ; Move BCD value into AL
 PUSH AX ; and push it onto word stack
 CALL BCD_BINARY ; Do the conversion
 POP AX ; Get the binary value
 MOV BIN, AL ; and save it
 NOP ; Continue with program
; PROCEDURE : BCD_BINARY Converts BCD numbers to binary.
; INPUT : None - BCD value assumed to be on stack before call
; OUTPUT : None - Binary value on top of stack after return
; DESTROYS : Nothing

BCD_BINARY PROC NEAR
 PUSHF ; Save flags
 PUSH AX ; and registers : AX
 PUSH BX ; BX
 PUSH CX ; CX
 PUSH BP ; BP. Why BP?
 MOV BP, SP ; Make a copy of the
 ; stack pointer in BP
 MOV AX, [BP+ 12] ; Get BCD number from
 ; stack. But why it is on
; BP+12 location? Please note 5 PUSH statements + 1 call which is intra-segment (so
; just IP is stored) so total 6 words are pushed after AX has been pushed and since it is
; a word stack so the BCD value is stored on 6 × 2 = 12 locations under stack. Hence
; [BP + 12] (refer to the figure given on next page).
 MOV BL, AL ; Save copy of BCD in BL
 AND BL, 0Fh ; mask lower 4 bits
 AND AL, F0H ; Separate upper 4 bits
 MOV CL, 04 ; Move upper BCD digit to low
 ROR AL, CL ; position BCD digit for multiply location
 MOV BH, 0Ah ; Load 10 in BH
 MUL BH ; Multiply upper BCD digit in AL by 10
 ; the result is in AL
 ADD AL, BL ; Add lower BCD digit to result.
 MOV [BP + 12], AX ; Put binary result on stack
 ; Restore flags and registers
 POP BP
 POP CX
 POP BX
 POP AX

 88

Assembly Language

Programming
(Part II)

 POPF
 RET
BCD_BINARY ENDP
CODE_SEG ENDS
END START

Discussion:

The parameter is pushed on the stack before the procedure call. The procedure call
causes the current instruction pointer to be pushed on to the stack. In the procedure
flags, AX, BX, CX and BP registers are also pushed in that order. Thus, the stack
looks to be:

 Before push AX (SP = 0090h) X
 AH
 After push AX (SP = 008Eh) AL
 IP HIGH
 IP LOW
 FLAG H
 FLAG L
 AH
 AL
 BH
 BL
 CH
 CL
 BP HIGH
 After PUSH BP (SP = 0082h) BP LOW
 :

 :
 Stack segment base (SS = 6000h)

The instruction MOV BP, SP transfers the contents of the SP to the BP register. Now
BP is used to access any location in the stack, by adding appropriate offset to it. For
example, MOV AX, [BP + 12] instruction transfers the word beginning at the 12th
byte from the top of the stack to AX register. It does not change the contents of the BP
register or the top of the stack. It copies the pushed value of AH and AL at offset
008Eh into the AX register. This instruction is not equivalent to POP instruction.

Stacks are useful for writing procedures for multi-user system programs or recurvise
procedures. It is a good practice to make a stack diagram as above while using
procedure call through stacks. This helps in reducing errors in programming.

4.3.4 External Procedures

These procedures are written and assembled in separate assembly modules, and later
are linked together with the main program to form a bigger module. Since the
addresses of the variables are defined in another module, we need segment
combination and global identifier directives. Let us discuss them briefly.

Segment Combinations

In 8086 assembler provides a means for combining the segments declared in different
modules. Some typical combine types are:

1. PUBLIC: This combine directive combines all the segments having the same
names and class (in different modules) as a single combined segment.

2. COMMON: If the segments in different object modules have the same name and
the COMMON combine type then they have the same beginning address. During
execution these segments overlay each other.

89

Assembly Language
Programming 3. STACK: If the segments in different object modules have the same name and the

combine type is STACK, then they become one segment, with the length the sum
of the lengths of individual segments.

These details will be more clear after you go through program 4 and further readings.

Identifiers

a) Access to External Identifiers: An external identifier is one that is referred in
one module but defined in another. You can declare an identifier to be external
by including it on as EXTRN in the modules in which it is to be referred. This
tells the assembler to leave the address of the variable unresolved. The linker
looks for the address of this variable in the module where it is defined to be
PUBLIC.

b) Public Identifiers: A public identifier is one that is defined within one module
of a program but potentially accessible by all of the other modules in that
program. You can declare an identifier to be public by including it on a
PUBLIC directive in the module in which it is defined.

Let us explain all the above with the help of the following example:

PROGRAM 4:

Write a procedure that divides a 32-bit number by a 16-bit number. The procedure
should be general, that is, it is defined in one module, and can be called from another
assembly module.

; REGISTERS :Uses CS, DS, SS, AX, SP, BX, CX
; PROCEDURES : Far Procedure SMART_DIV
DATA_SEG SEGMENT WORD PUBLIC
 DIVIDEND DW 2345h, 89AB ; Dividend =
 ; 89AB2345H
 DIVISOR DW 5678H ; 16-bit divisor
 MESSAGE DB ‘INVALID DIVIDE’, ‘$’
DATA_SEG ENDS

MORE_DATA SEGMENT WORD

QUOTIENT DW 2 DUP(0)
REMAINDER DW 0

MORE_DATA ENDS

STACK_SEG SEGMENT STACK

 DW 100 DUP(0) ; Stack of 100 words
 TOP – STACK LABEL WORD ; top of stack pointer
STACK_SEG ENDS

PUBLIC DIVISOR

PROCEDURES SEGMENT PUBLIC ; SMART_DIVis declared as an
 EXTRN SMART_DIV: FAR ; external label in procedure
 ; segment of type FAR
PROCEDURES ENDS
; declare the code segment as PUBLIC so that it can be merged with other PUBLIC
; segments
CODE_SEG SEGMENT WORD PUBLIC
 ASSUME CS:CODE, DS:DATA_SEG, SS:STACK SEG
START: MOV AX, DATA_SEG ; Initialize data segment
 MOV DS, AX ; using AX register
 MOV AX, STACK_SEG ; Initialize stack segment

 90

Assembly Language

Programming
(Part II)

 MOV SS, AX ; using AX register
 MOV SP, OFFSET TOP_STACK ; Initialize stack pointer
 MOV AX, DIVIDEND ; Load low word of
 ; dividend
 MOV DX DIVIDEND + 2 ; Load high word of
 ; dividend
 MOV CX, DIVISOR ; Load divisor
 CALL SMART_DIV
; This procedure returns Quotient in the DX:AX pair and Remainder in CX register.
; Carry bit is set if result is invalid.
 JNC SAVE_ALL ; IF carry = 0, result valid
 JMP STOP ; ELSE carry set, don’t
 ; save result
 ASSUME DS:MORE_DATA ; Change data segment
SAVE_ALL: PUSH DS ; Save old DS
 MOV BX, MORE_DATA ; Load new data segment
 MOV DS, BX ; register
 MOV QUOTIENT, AX ; Store low word of
 ; quotient
 MOV QUOTIENT + 2, DX ; Store high word of
 ; quotient
 MOV REMAINDER, CX ; Store remainder
 ASSUME DS:DATA_SEG
 POP DS ; Restore initial DS
 JMP ENDING
STOP: MOV DL, OFFSET MESSAGE
 MOV AX, AH 09H
 INT 21H
ENDING: NOP
CODE_SEG ENDS
 END START

Discussion:

The linker appends all the segments having the same name and PUBLIC directive
with segment name into one segment. Their contents are pulled together into
consecutive memory locations.

The next statement to be noted is PUBLIC DIVISOR. It tells the assembler and the
linker that this variable can be legally accessed by other assembly modules. On the
other hand EXTRN SMART_DIV:FAR tells the assembler that this module will
access a label or a procedure of type FAR in some assembly module. Please also note
that the EXTRN definition is enclosed within the PROCEDURES SEGMENT
PUBLIC and PROCEDURES ENDS, to tell the assembler and linker that the
procedure SMART_DIV is located within the segment PROCEDURES and all such
PROCEDURES segments need to be combined in one. Let us now define the
PROCEDURE module:

; PROGRAM MODULE PROCEDURES

; INPUT : Dividend - low word in AX, high word in DX, Divisor in CX
; OUTPUT : Quotient - low word in AX, high word in DX. Remainder in CX
 ; Carry - carry flag is set if try to divide by zero
; DESTROYS : AX, BX, CX, DX, BP, FLAGS
DATA_SEG SEGMENT PUBLIC ; This block tells the assembler that
EXTRN DIVISOR:WORD ; the divisor is a word variable and is
DATA_SEG ENDS ; external to this procedure. It would be
 ; found in segment named DATA_SEG
PUBLIC SMART_DIV ; SMART_DIV is available to
 ; other modules. It is now being defined

91

Assembly Language
Programming ; in PROCEDURES SEGMENT.

PROCEDURES SEGMENT PUBLIC
SMART_DIV PROC FAR
 ASSUME CS:PROCEDURES, DS:DATA_SEG
 CMP DIVISOR, 0 ; This is just to demonstrate the use of
 ; external variable, otherwise we can
 ; check it through CX register which
 ; contains the divisor.
 JE ERROR_EXIT ; IF divisor = 0, exit procedure
 MOV BX, AX ; Save low order of dividend
 MOV AX, DX ; Position high word for lst divide
 MOV DX, 0000h ; Zero DX
 DIV CX ; DX:AX/CX, quotient in AX,
 ; remainder in DX
 MOV BP, AX ; transfer high order of final result to BP
 MOV AX, BX ; Get back low order of dividend. Note
 ; DX contains remainder so DX : AX is
 ; the actual number
 DIV CX ; DX:AX/CX, quotient in AX,
 ; 2nd remainder that is final remainder
 ; in DX
 MOV CX, DX ; Pass final remainder in CX
 MOV DX, BP ; Pass high order of quotient in DX
 ; AX contains lower word of quotient
 CLC ; Clear carry to indicate valid result
 JMP EXIT ; Finished
ERROR_EXIT: STC ; Set carry to indicate divide by zero
EXIT: RET
SMART_DIV ENDP
PROCEDURES ENDS

 END

Discussion:

The procedure accesses the data item named DIVISOR, which is defined in the main,
therefore the statement EXTRN DIVISOR:WORD is necessary for informing
assembler that this data name is found in some other segment. The data type is defined
to be of word type. Please not that the DIVISOR is enclosed in the same segment
name as that of main that is DATA_SEG and the procedure is in a PUBLIC segment.

☞ Check Your Progress 2
1. State True or False

(a) A NEAR procedure can be called only in the segment it is defined.

(b) A FAR call uses one word in the stack for storing the return address.

(c) While making a call to a procedure, the nature of procedure that is NEAR
 or FAR must be specified.

(d) Parameter passing through register is not suitable when large numbers of

parameters are to be passed.

(e) Parameter passing in general memory is a flexible way of passing
 parameters.
(f) Parameter passing through pointers can be used to pass a group of data

elements.

 92
T F

Assembly Language

Programming
(Part II)

(f) Parameter passing through stack is used whenever assembly language
 programs are interfaced with any high level language programs.

(h) In multiuser systems parameters should be passed using pointers.

(i) A variable say USAGE is declared in a PROCEDURE segment, however
 it is used in a separate module. In such a case the declaration of USAGE
 should contain EXTRN verb.

(i) A segment if declared PUBLIC informs the linker to append all the
 segments with same name into one.

2. Show the stack if the following statements are encountered in sequence.

a) Call to a NEAR procedure FIRST at 20A2h:0050h
b) Call to a FAR procedure SECOND at location 3000h:5055h
c) RETURN from Procedure FIRST.

4.4 INTERFACING ASSEMBLY LANGUAGE
ROUTINES TO HIGH LEVEL LANGUAGE
PROGRAMS

By now you can write procedures, both external and internal, and pass parameters,
especially through stack, let us use these concepts, to see how assembly language can
be interfaced to some high level language programs. It is very important to learn this
concept, because then you can combine the advantages of both the types of languages,
that is, the ease of programming of high level languages and the speed and the scope
of assembly language. Assembly language can be interfaced with most of the high
level languages like C, C + + and database management systems.

What are the main considerations for interfacing assembly to HLL? To answer that we
need to answer the following questions:

• How is the subroutine invoked?
• How are parameters passed?
• How are the values returned?
• How do you declare various segments so that they are consistent across calling

program?

The answer to the above questions are dependent on the high level language (HLL).
Let us take C Language as the language for interfacing. The C Language is very
useful for writing user interface programs, but the code produced by a C compiler
does not execute fast enough for telecommunications or graphics applications.
Therefore, system programs are often written with a combination of C and assembly
language functions. The main user interface may be written in C and specialized high
speed functions written in assembly language.

The guidelines for calling assembly subroutines from C are:

(i) Memory model: The calling program and called assembly programs must be
defined with the same memory model. One of the most common convention
that makes NEAR calls is .MODEL SMALL, C

(ii) The naming convention normally involve an underscore (_) character preceding
the segment or function name. Please note, however, this underscore is not used
while making a call from C function. Please be careful about case sensitivity.

93

Assembly Language
Programming You must give a specific segment name to the code segment of your assembly

language subroutine. The name varies from compiler to compiler. Microsoft C,
and Turbo C require the code segment name to be_TEXT or a segment name
with suffix_TEXT. Also, it requires the segment name _DATA for the data
segment.

(iii) The arguments from C to the assembly language are passed through the stack.

For example, a function call in C:

function_name (arg1, arg2, ..., argn) ;

would push the value of each argument on the stack in the reverse order. That
is, the argument argn is pushed first and arg1 is pushed last on the stack. A
value or a pointer to a variable can also be passed on the stack. Since the stack
in 8086 is a word stack, therefore, values and pointers are stored as words on
stack or multiples of the word size in case the value exceeds 16 bits.

(iv) You should remember to save any special purpose registers (such as CS, DS,

SS, ES, BP, SI or DI) that may be modified by the assembly language routine. If
you fail to save them, then you may have undesirable/ unexplainable
consequences, when control is returned to the C program. However, there is no
need to save AX, BX, CX or DX registers as they are considered volatile.

(v) Please note the compatibility of data types:

char Byte (DB)
int Word (DW)
long Double Word (DD)

(vi) Returned value: The called assembly routine uses the followed registers for
returned values:

 char AL
 Near/ int AX
 Far/ long DX : AX

Let us now look into some of the examples for interfacing.

4.4.1 Simple Interfacing

The following is a sample of the coding, used for procedure interfacing:

PUBLIC CUROFF
_TEXT SEGMENT WORD PUBLIC 'CODE'

ASSUME CS:_TEXT
_CUROFF PROC NEAR ; for small model

:
:

The same thing can be written using the newer simplified directives in the following
manner:

PUBLIC CUROFF
.MODEL small,C
.CODE
CUROFF PROC

:
:

This second source code is much cleaner and easier to read. The directives .MODEL
and .CODE instruct the assembler to make the necessary assumptions and
adjustments so that the routine will work with a small model of C program. (Please

 94

Assembly Language

Programming
(Part II)

refer to Assembler manuals on details on models of C program. The models primarily
differ in number of segments).

PROGRAM 5:

Write an assembly function that hides the cursor. Call it from a C program.

. PUBLIC CUROFF

. MODEL small,C

. CODE
CUROFF PROC

MOV AH,3 ; get the current cursor position
XOR BX,BX ; empty BX register
INT 10h ; use int 10hto do above
OR CH,20h ; force to OFF condition
MOV AH,01 ; set the new cursor values
INT 10h
RET

CUROFF ENDP
 END

For details on various interrupt functions used in this program refer to further
readings.

The C program to test this routine is as follows:

include < stdio.h
void curoff(void);
void main()

{

printf("%s\n, "The cursor is now turning off);
curoff();

}

You can write another procedure in assembly language program to put the cursor on.
This can be done by replacing OR CH,20h instruction by AND CH,1Fh. You can call
this new function from C program to put the cursor on after the curoff.

4.4.2 Interfacing Subroutines With Parameter Passing

Let us now write a C program that calls the assembly program for parameter passing.
Let us extend the previous two programs such that if on function call 0 is passed then
cursor is turned off and if 1 is passed then cursor is turned on. The calling C program
for such may look like:

include < stdio.h
void cursw(int);
void main()
{

printf("%s\n", "the cursor is now turning off");
cursw(0); /* call to assembly routine with 0 as parameter
getchar();
printf("%s\n","the cursor is now turning on");
cursw(l); /* call to assembly routine with parameter as1.

 }

The variables in C or C + + are passed on the stack.

Let us now write the assembly routine:

95

Assembly Language
Programming PROGRAM 6:

Write a subroutine in C for toggling the cursor using old directives.

;
; use small memory model for C – near code segment

_DATA SEGMENT WORD ‘DATA’
 CURVAL EQU [BP+4] ; parameters
_DATA ENDS

_TEXT SEGMENT BYTE PUBLIC ‘CODE’
DGROUP GROUP _DATA
 ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP
 PUBLIC _CURSW
_CURSW PROC NEAR
 PUSH BP ; BP register of caller is saved
 MOV BP, SP ; BP is pointing to stack now
 MOV AX, CURVAL
 CMP AX, 0H
 JZ CUROFF ; Execute code for cursor off
 CMP AX, 01H
 JZ CURON ; Execute code for cursor on
 JMP OVER ; Error in parameter, do nothing
CUROFF: ; write code for curoff
 :
 :
 JMP OVER
CURON: ; write code for curon

:
 :
OVER: POP BP
 RET
_CURSW ENDP
_TEXT ENDS
 END

Why the parameter is found in [BP+4]? Please look into the following stack for the
answer.

Parameter (0 or 1) BP + 4
Return Address BP + 2
Old value BP + 0

PROGRAM 7:

Write a subroutine in C that toggles the cursor. It takes one argument that toggles the
value between on (1) and off (0) using simplified directives:

PUBLIC CURSW
.MODEL small, C
.CODE

CURSW PROC switch:word

MOV AX,SWITCH ; get flag value
XOR AX,AX ; test zero / nonzero
 :
 :
 // routine to test the switch and accordingly

 96

Assembly Language

Programming
(Part II)

switch off or switch on the cursor //
 :
 :
CURSW ENDP
 END

In a similar manner the variables can be passed in C as pointers also. Values can be
returned to C either by changing the variable values in the C data segment or by
returning the value in the registers as given earlier.

4.5 INTERRUPTS

Interrupts are signals that cause the central processing unit to suspend the currently
executing program and transfer to a special program called an interrupt handler. The
interrupt handler determines the cause of the interrupt, services the interrupt, and
finally returns the control to the point of interrupt. Interrupts are caused by events
external or internal to the CPU that require immediate attention. Some external events
that cause interrupts are:

- Completion of an I/O process
- Detection of a hardware failure

An 8086 interrupt can occur because of the following reasons:

1. Hardware interrupts, caused by some external hardware device.
2. Software interrupts, which can be invoked with the help of INT instruction.
3. Conditional interrupts, which are mainly caused due to some error condition

generated in 8086 by the execution of an instruction.

When an interrupt can be serviced by a procedure, it is called as the Interrupt Service
Routine (ISR). The starting addresses of the interrupt service routines are present in
the first 1K addresses of the memory (Please refer to Unit 2 of this block). This table
is called the interrupt vector table.

How can we write an Interrupt Servicing Routine? The following are the basic but
rigid sequence of steps:

1. Save the system context (registers, flags etc. that will be modified by the ISR).
2. Disable the interrupts that may cause interference if allowed to occur during this

ISR's processing
3. Enable those interrupts that may still be allowed to occur during this ISR

processing.
4. Determine the cause of the interrupt.
5. Take the appropriate action for the interrupt such as – receive and store data

from the serial port, set a flag to indicate the completion of the disk sector
transfer, etc.

6. Restore the system context.
7. Re-enable any interrupt levels that were blocked during this ISR execution.
8. Resume the execution of the process that was interrupted on occurrence of the

interrupt.

MS-DOS provides you facilities that enable you to install well-behaved interrupt
handlers such that they will not interfere with the operating system function or other
interrupt handlers. These functions are:

Function Action
Int 21h function 25h Set interrupt vector
Int 21h function 35h Get interrupt vector
Int 21h function 31h Terminate and stay residents

97

Assembly Language
Programming Here are a few rules that must be kept in mind while writing down your own Interrupt

Service Routines:

1. Use Int 21h, function 35h to get the required IVT entry from the IVT. Save this
entry, for later use.

2. Use Int 21h, function 25h to modify the IVT.
3. If your program is not going to stay resident, save the contents of the IVT, and

later restore them when your program exits.
4. If your program is going to stay resident, use one of the terminate and stay

resident functions, to reserve proper amount of memory for your handler.

Let us now write an interrupt routine to handle “division by zero”. This file can be
loaded like a COM file, but makes itself permanently resident, till the system is
running.

This ISR is divided into two major sections: the initialisation and the interrupt
handler. The initialisation procedure (INIT) is executed only once, when the program
is executed from the DOS level. INIT takes over the type zero interrupt vector, it also
prints a sign-on message, and then performs a terminate and “stay resident exit” to
MS-DOS. This special exit reserves the memory occupied by the program, so that it is
not overwritten by subsequent application programs. The interrupt handler (ZDIV)
receives control when a divide-by-zero interrupt occurs.

CR EQU ODH ; ASCII carriage return
LF EQU 0Ah ; ASCII line feed
BEEP EQU 07h ; ASCII beep code
BACKSP EQU 08h ; ASCII backspace code

CSEG SEGMENT PARA PUBLIC 'CODE'
 ORG 100h
 ASSUME CS:CSEG,DS:CSEG,ES:CSEG,SS:CSEG

INIT PROC NEAR

MOV DX,OFFSET ZDIV ; reset interrupt 0 vector
 ; to address of new
 ; handler using function 25h, interrupt
 MOV AX, 2500h ; 0 handles divide-by-zero
 INT 21h
 MOV AH,09 ; print identification message
 INT 21h
 ; DX assigns paragraphs of memory
 ; to reserve
 MOV DX,((OFFSET PGM_LEN + 15)/16) + 10h
 MOV AX,3100h ; exit and stay resident
 INT 21h ; with a return code = 0
 INIT ENDP

 ZDIV PROC FAR ; this is the zero-divide
 ; hardware interrupt handler.
 STI ; enable interrupts.
 PUSH AX ; save general registers
 PUSH BX
 PUSH CX
 PUSH DX
 PUSH SI
 PUSH DI
 PUSH BP
 PUSH DS
 PUSH ES

 98

Assembly Language

Programming
(Part II)

 MOV AX,CS
 MOV DS,AX
 MOV DX,OFFSET WARN ; Print warning "divide by
 MOV AH, 9 ; zero "and" continue or
 INT 21h ; quit?"

ZDIV1: MOV AH,1 ; read keyboard
 INT 21h
 CMP AL, 'C' ; is it 'C' or 'Q'?
 JE ZDIV3 ; jump it is a 'C'.
 CMP AL, 'Q'

 JE ZDIV2 ; jump it's a'Q'
 MOV DX, OFFSET BAD ; illegal entry, send a
 MOV AH,9 ; beep, erase the bad char
 INT 21h ; and try again
 JMP ZDIV1

ZDIV2: MOV AX, 4CFFh ; user wants to abort the
 INT 21h ; program, return with
 ; return code = 255
ZDIV3: MOV DX,OFFSET CRLF ; user wishes to continue
 MOV AH,9 ; send CRLF
 INT 21h
 POP ES ; restore general registers
 POP DS ; and resume execution
 POP BP
 POP DI
 POP SI
 POP DX
 POP CX
 POP BX
 POP AX
 IRET
 ZDIV ENDP

SIGNON DB CR, LF, 'Divide by zero interrupt'
 DB 'Handler Installed’
 DB CRLF,'$'
WARN DB CR, LF, 'Divide by zero detected:'
 DB CR, LF 'Quit or Continue (C/Q) ?'
 DB '$'
BAD DB BEEP, BACKSP, ",BACKSP,'$'
CRLF DB CR,LF,$'
PGM_LEN EQU $-INIT
CSEG ENDS

 END

4.6 DEVICE DRIVERS IN ASSEMBLY

Device drivers are special programs installed by the config.sys file to control
installable devices. Thus, personal computers can be expanded at some future time by
the installation of new devices.

The device driver is .com file organized in 3 parts.

1) The leader
2) The strategy procedure

99

Assembly Language
Programming 3) The interrupt procedure

The driver has either .sys or .exe extension and is originated at offset address 0000h.

The Header

The header contains information that allows DOS to identify the driver. It also
contains pointers that allow it to chain to other drivers loaded into the system.

The header section of a device driver is 18 bytes in length and contains pointers and
the name of the driver.

Following structure of the header:

CHAIN DD -1 : link to next driver
ATTR DW 0 : driver attribute
STRT DW START : address of strategy
INTER DW INT : address if interrupt
DNAME DB ‘MYDRIVER’ : driver name.

The first double word contains a –1 that informs DOS this is the last driver in the
chain. If additional drivers are added DOS inserts a chain address in this double word
as the segment and offset address. The chain address points to the next driver in the
chain. This allows additional drivers installed at any time.

The attribute word indicates the type of headers included for the driver and the type of
device the driver installs. It also indicates whether the driver control a character driver
or a block device.

The Strategy Procedure

The strategy procedure is called when loaded into memory by DOS or whenever the
controlled device request service. The main purpose of the strategy is to save the
request header and its address for use by the interrupt procedure.

The request header is used by DOS to communicate commands and other
informations to the interrupt procedure in the device driver

The request header contains the length of the request header as its first byte. This is
necessary because the length of the request header varies from command to command.
The return status word communicate information back to DOS from the device driver.

The initialise driver command (00H) is always executed when DOS initialises the
device driver. The initialisation commands pass message to the video display
indicating that the driver is loaded into the system and returns to DOS the amount of
memory needed by the driver. You may only use DOS INT 21H functions 00H. You
can get more details on strategy from the further readings.

The Interrupt Procedure

The interrupt procedure uses the request header to determine the function requested by
DOS. It also performs all functions for the device driver. The interrupt procedures
must respond to at least the initialised driver command (00H) and any other
commands required to control the device operated by the device driver. You must
refer to the further readings for more details and examples of device drivers.

 100

Assembly Language

Programming
(Part II) ☞ Check Your Progress 3

T FState True or False

(a) Assembly language routines cannot be interfaced with BASIC
 programs.

(b) The key issue in interfacing is the selection of proper parameter

passing method.

(c) The value of arguments to be passed are pushed in the stack in
 reverse order.

(d) AX, BX, CX or DX registers need not be saved in interfacing of
 assembly programs with high level language programs.

(e) Hardware interrupts can be invoked with the help of INT function.

2. What are the sequences of steps in an interrupt service routine?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

4.7 SUMMARY

In the above module, we studied some programming techniques, starting from arra
to interrupts.

Arrays can be of byte type or word type, but the addressing of the arrays is always
done with respect to bytes. For a word array, the address will be incremented by tw
for the next access.

As the programs become larger and larger, it becomes necessary to divide them int
smaller modules called procedures. The procedures can be NEAR or FAR dependi
upon where they are being defined and from where they are being called. The
parameters to the procedures can be passed through registers, or through memory o
stack. Passing parameters in registers is easier, but limits the total number of variab
that can be passed. In memory locations it is straight forward, but limits the use of
procedure. Passing parameters through stack is most complex out of all, but is a
standard way to do it. Even when the assembly language programs are interfaced t
high level languages, the parameters are passed on stack.

Interrupt Service Routines are used to service the interrupts that could have arisen
because of some exceptional condition. The interrupt service routines can be
modified- by rewriting them, and overwriting their entry in the interrupt vector tab

This completes the discussion on microprocessors and assembly language
programming. The above programming was done for 8086 microprocessor, but can
tried on 80286 or 80386 processors also, with some modification in the assembler
directives. The assembler used here is MASM, Microsoft assembler. The assembly
language instructions remain the same for all assemblers, though the directives var
from one assembler to another. For further details on the assembler, you can refer
their respective manuals. You must refer to further readings for topics such as
Interrupts, device drivers, procedures etc.

…

…

…

ys,

o

o
ng

r
les
the

o

le.

 be

y
to

101

 102

Assembly Language
Programming 4.8 SOLUTIONS/ ANSWERS

Check Your Progress 1

1. We will give you an algorithm using XLAT instruction. Please code and run the
program yourself.

• Take a sentence in upper case for example 'TO BE CONVERTED TO

LOWER CASE' create a table for lower case elements.
• Check that the present ASCII character is an alphabet in upper case. It

implies that ASCII character should be greater than 40h and less than 58h.
• If it is upper case then subtract 41h from the ASCII value of the character.

Put the resultant in AL register.
• Set BX register to the offset of lower case table.
• Use XLAT instruction to get the required lower case value.
• Store the results in another string.

2. (a) False (b) False (c) True

Check Your Progress 2

1. (a) True (b) False (c) False (d) True (e) False (f) True (g) True (h) False
(i) False (j) True.

2.

SP . .

 SP 00 00
 50 50
 30
 00
 50
 55

Low address
 Original after (a) after (b)

(c) The return for FIRST can occur only after return of SECOND. Therefore, the

stack will be back in original state.

Check Your Progress 3

1. (a) False (b) False (c) True (d) True (e) False

2.

• Save the system context
• Block any interrupt, which may cause interference
• Enable allowable interrupts
• Determine the cause of interrupt
• Take appropriate action
• Restore system context
• Enable interrupts which were blocked in Step 2

	MCS-012 Assembly Language Programming
	Index
	Credit Page
	Block Introduction
	UNIT 1 Microporcessor Architecture
	1.0 Introduction
	1.1 Objectives
	1.2 Microcomputer Architecture
	1.3 Structure of 8086 CPU
	1.4 Register Set of 8086
	1.5 Instruction Set of 8086
	1.6 Addressing Modes
	1.7 Summary
	1.8 Solutions

	UNIT 2 Introduction to Assembly Language Programming
	2.0 Introduction
	2.1 Objectives
	2.2 The Need And Use Of The Assembly Language
	2.3 Assembly Program Execution
	2.4 An Assembly Program And Its Components
	2.5 Input Output In Assembly Program
	2.6 The Types Of Assembly Programs
	2.7 How to Write Good Assembly Programs
	2.8 Summary
	2.9 Solutions
	2.10 Further Readings

	UNIT 3 Assembly Language Programming (Part – I)
	3.0 Introduction
	3.1 Objectives
	3.2 Simple Assembly Programs
	3.3 Programming with Loops and Comparisons
	3.4 Programming for Arithmetic and string Oper
	3.5 Summary
	3.6 Solutions

	UNIT 4 Assembly Language Programming (Part-II)
	4.0 Introduction
	4.1 Objectives
	4.2 Use of Arrays in Assembly
	4.3 Modular Programming
	4.4 Interfacing Assembly Language Routines To High Level Language Programs
	4.5 Interrupts
	4.6 Device Drives in Assembly
	4.7 Summary
	4.8 Solutions

