

Thinking about Learning
 Indira Gandhi
 National Open University
 School of Computer and
 Information Sciences

 MCS - 012
 COMPUTER

ORGANISATION
& ASSEMBLY

LANGUAGE
PROGRAMMING

Block

3
THE CENTRAL PROCESSING UNIT

UNIT 1

Instruction Set Architecture 5

UNIT 2
Registers, Micro-operations and Instruction Execution 31

UNIT 3
ALU Organisation 53

UNIT 4
The Control Unit 65

UNIT 5
Reduced Instruction Set Computer Architecture 83

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur
Prof. M. Balakrishnan, IIT , Delhi
Prof Harish Karnick, IIT, Kanpur
Prof. C. Pandurangan, IIT, Madras
Dr. Om Vikas, Sr. Director, MIT
Prof. P. S. Grover, Sr. Consultant,
SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences
Shri Shashi Bhushan
Shri Akshay Kumar
Prof. Manohar Lal
Shri V.V. Subrahmanyam
Shri P.Venkata Suresh

Print Preparation Team

Block Writers: Mrs. Usha
Dept. of Computer Sciences
New Era Institute of IT & Professional
Studies
New Delhi

Mr. Akshay Kumar
SOCIS, IGNOU

Prof. MPS Bhatia (Content Editor)
(NSIT), New Delhi

Prof. A.K. Verma (Language Editor)

Course Coordinator: Shri Akshay Kumar

Block Production Team

Shri H.K Som, SOCIS

Acknowledgements

To all the faculty members and Director of SOCIS, IGNOU for their comments on the course
material.

August, 2004

©Indira Gandhi National Open University, 2004

ISBN – 81 – 266 – 1384 - X

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means, without
permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the University’s
office at Maidan Garhi, New Delhi-110 068.

Printed and published on behalf of the Indira Gandhi National Open University, New Delhi by The Director, SOCIS.

BLOCK INTRODUCTION

We have already discussed the von Neumann architecture and the basic components
of the computer system along with an interconnection structure in the previous blocks
of this course. In this block we will be discussing the CPU organization. However, as
the main function of CPU is “to execute an instruction”, the discussion about CPU
must revolve around the term instruction. Hence we have started the discussion with
the instruction set in the first unit. We have presented details about the characteristics,
addressing schemes and formats of the instructions. In Unit 2, we have tried to break
down the instruction execution cycle into several sub-cycles, which in turn consist of
micro-operations. In addition to this we will discuss register organization in this unit.
The third unit will focus on the functionality of the two main components of CPU, the
ALU. The fourth unit discuss about the control unit, with the detailed discussion of
the programmed control unit. Unit 5 covers RISC architecture.

FURTHER READINGS FOR THE BLOCK

1. William Stallings, Computer Organization and Architecture, Sixth Edition, PHI.
2. M. Morris Mano, Computer System Architecture, Third Edition, PHI.
3. D. Patterson and J. Hennessy, Computer Organization and Design: The

Hardware/ Software Interface. San Mateo, CA:Morgan Kaufmann.
4. A. Tanenbaum, Structured Computer Organization, PHI.

Instruction Set

Architecture

UNIT 1 INSTRUCTION SET
ARCHITECTURE

Structure Page No.

1.0 Introduction 5
1.1 Objectives 5
1.2 Instruction Set Characteristics 6
1.3 Instruction Set Design Considerations 9
 1.3.1 Operand Data Types
 1.3.2 Types of Instructions
 1.3.3 Number of Addresses in an Instruction
1.4 Addressing Schemes 18
 1.4.1 Immediate Addressing
 1.4.2 Direct Addressing
 1.4.3 Indirect Addressing
 1.4.4 Register Addressing
 1.4.5 Register Indirect Addressing
 1.4.6 Indexed Addressing Scheme
 1.4.7 Base Register Addressing
 1.4.8 Relative Addressing Scheme
 1.4.9 Stack Addressing
1.5 Instruction Set and Format Design Issues 26
 1.5.1 Instruction Length
 1.5.2 Allocation of Bits Among Opcode and Operand
 1.5.3 Variable Length of Instructions
1.6 Example of Instruction Format 28
1.7 Summary 29
1.8 Solutions/ Answers 30

1.0 INTRODUCTION

The Instruction Set Architecture (ISA) is the part of the processor that is visible to the
programmer or compiler designer. They are the parts of a processor design that need
to be understood in order to write assembly language, such as the machine language
instructions and registers. Parts of the architecture that are left to the implementation
are not part of ISA. The ISA serves as the boundary between software and hardware.

The term instruction will be used in this unit more often. What is an instruction?
What are its components? What are different types of instructions? What are the
various addressing schemes and their importance? This unit is an attempt to answer
these questions. In addition, the unit also discusses the design issues relating to
instruction format. We have presented here the instruction set of MIPS
(Microprocessor without Interlocked Pipeline Stages) processor (very briefly) as an
example.

Other related microprocessors instruction set can be studied from further readings. We
will also discuss about the complete instruction set of 8086 micro-processor in unit 1,
Block 4 of this course.

1.1 OBJECTIVES

After going through this unit you should be able to:

• describe the characteristics of instruction set;
• discuss various elements of an instruction;
• differentiate various types of operands;

5

The Central
Processing Unit • distinguish various types of instructions and various operations performed by the

instructions;
• identify different types of ISAs on the basis of addresses in instruction sets;
• identify various addressing schemes; and
• discuss the instruction format design issues.

1.2 INSTRUCTION SET CHARACTERISTICS

The key role of the Central Processing Unit (CPU) is to perform the calculations, to
issue the commands, to coordinate all other hardware components, and executing
programs including operating system, application programs etc. on your computer.
But CPU is primarily the core hardware component; you must speak to it in the core
binary machine language. The words of a machine language are known as
instructions, and its syntax is known as an instruction set.

The Instruction Set Viewpoints

Instruction set is the boundary where the computer designer and the computer
programmer see the same computer from different viewpoints. From the designer’s
point of view, the computer instruction set provides a functional description of a
processor, that is:

(i) A detailed list of the instructions that a processor is capable of processing.
(ii) A description of the types/ locations/ access methods for operands.

The common goal of computer designers is to build the hardware for implementing
the machine’s instructions for CPU. From the programmer’s point of view, the user
must understand machine or assembly language for low-level programming.
Moreover, the user must be aware of the register set, instruction types and the function
that each instruction performs.

This unit covers both the viewpoints. However, our prime focus is the programmer’s
viewpoint with the design of instruction set. Now, let us define the instructions, parts
of instruction and so on.

What is an Instruction Set?

Instruction set is the collection of machine language instructions that a particular
processor understands and executes. In other words, a set of assembly language
mnemonics represents the machine code of a particular computer. Therefore, if we
define all the instructions of a computer, we can say we have defined the instruction
set. It should be noted here that the instructions available in a computer are machine
dependent, that is, a different processors have different instruction sets. However, a
newer processor that may belong to some family may have a compatible but extended
instruction set of an old processor of that family. Instructions can take different
formats. The instruction format involves:

• the instruction length;

 6

Instruction Set

Architecture • the type;
• length and position of operation codes in an instruction; and
• the number and length of operand addresses etc.

An interesting question for instruction format may be to have uniform length or
variable length instructions.

What are the elements of an instruction?

As the purpose of instruction is to communicate to CPU what to do, it requires a
minimum set of communication as:

• What operation to perform?
• On what operands?

Thus, each instruction consists of several fields. The most common fields found in
instruction formats are:

Opcode: (What operation to perform?)

• An operation code field termed as opcode that specifies the operation to be

performed.

Operands: (Where are the operands?)

• An address field of operand on which data processing is to be performed.
• An operand can reside in the memory or a processor register or can be

incorporated within the operand field of instruction as an immediate constant.
Therefore a mode field is needed that specifies the way the operand or its address
is to be determined.

A sample instruction format is given in figure 1.

 0 5 6 7 8 31

Opcode

Addressing Mode

Operand or address of operand

 Instruction Length

Figure 1: A Hypothetical Instruction Format of 32 bits

Please note the following points in Figure 1:

• The opcode size is 6 bits. So, in general it will have 26 = 32 operations.
(However, when you will study more architectures from further readings, you
will find even through these bits using special combinations. Instruction set
designers have developed much more operations).

• There is only one operand address machine. What is the significance of this? You
will find an answer of this question in section 1.3.3 of this unit.

• There are two bits for addressing modes. Therefore, there are 22 = 4 different
addressing modes possible for this machine.

• The last field (8 – 31 bits = 24 bits) here is the operand or the address of operand
field.

In case of immediate operand the maximum size of the unsigned operand would be
224.

In case it is an address of operand in memory, then the maximum physical memory
size supported by this machine is 224 = 16 MB.

7

The Central
Processing Unit For this machine there may be two more possible addressing modes in addition to the

immediate and direct. However, let us not discuss addressing modes right now. They
will be discussed in general, details in section 1.4 of this unit.

The opcode field of an instruction is a group of bits that define various processor
operations such as LOAD, STORE, ADD, and SHIFT to be performed on some data
stored in registers or memory.

The operand address field can be data, or can refer to data – that is address of data, or
can be labels, which may be the address of an instruction you want to execute next,
such labels are commonly used in Subroutine call instructions. An operand address
can be:

• The memory address
• CPU register address
• I/O device address

The mode field of an instruction specifies a variety of alternatives for referring to
operands using the given address. Please note that if the operands are placed in
processor registers then an instruction executes faster than that of operands
placed in memory, as the registers are very high-speed memory used by the CPU.
However, to put the value of a memory operand to a register you will require a
register LOAD instruction.

How is an instruction represented?

Instruction is represented as a sequence of bits. A layout of an instruction is termed as
instruction format. Instruction formats are primarily machine dependent. A CPU
instruction set can use many instruction formats at a time. Even the length of opcode
varies in the same processor. However, we will not discuss such details in this block.
You can refer to further readings for such details.

How many instructions in a Computer?

A computer can have a large number of instructions and addressing modes. The older
computers with the growth of Integrated circuit technology have a very large and
complex set of instructions. These are called “complex instruction set computers”
(CISC). Examples of CISC architectures are the Digital Equipment Corporation VAX
computer and the IBM 370 computer.

However, later it was found in the studies of program style that many complex
instructions found CISC are not used by the program. This lead to the idea of making
a simple but faster computer, which could execute simple instructions much faster.
These computers have simple instructions, registers addressing and move registers.
These are called Reduced Instruction Set Computers (RISC). We will study more
about RISC in Unit 5 of this Block.

Check Your Progress 1

State True or False.

1. An instruction set is a collection of all the instructions a CPU can execute.

2. Instructions can take different formats.

3. The opcode field of an instruction specifies the address field of operand on w
 data processing is to be performed.

 8

hich

T F

Instruction Set

Architecture 4. The operands placed in processor registers are fetched faster than that of
operands placed in memory.

5. Operands must refer to data and cannot be data.

1.3 INSTRUCTION SET DESIGN
CONSIDERATIONS

Some of the basic considerations for instruction set design include selection of:

• A set of data types (e.g. integers, long integers, doubles, character strings etc.).
• A set of operations on those data types.
• A set of instruction formats. Includes issues like number of addresses,

instruction length etc.
• A set of techniques for addressing data in memory or in registers.
• The number of registers which can be referenced by an instruction and how

they are used.

We will discuss the above concepts in more detail in the subsequent sections.

1.3.1 Operand Data Types

Operand is that part of an instruction that specifies the address of the source or result,
or the data itself on which the processor is to operate. Operand types usually give
operand size implicitly. In general, operand data types can be divided in the following
categories. Refer to figure 2:

Operand Data Types

 Addresses Numbers Characters

Logical
Data (0 or 1
values only)

 (ASCII
 EBCDIC etc.)

 Floating Point

 Fixed Point
(Signed or
Unsigned)

Binary Coded
Decimal (Single or Double

 Precision)

Figure 2: Operand Data Types

• Addresses: Operands residing in memory are specified by their memory address

and operands residing in registers are specified by a register address. Addresses
provided in the instruction are operand references.

• Numbers: All machine languages include numeric data types. Numeric data

usually use one of three representations:

• Floating-point numbers-single precision (1 sign bit, 8 exponent bits, 23
mantissa bits) and double precision (1 sign bit, 11 exponent bits, 52 mantissa
bits).

• Fixed point numbers (signed or unsigned).

9

The Central
Processing Unit • Binary Coded Decimal Numbers.

Most of the machines provide instructions for performing arithmetic operations
on fixed point and floating-point numbers. However, there is a limit in magnitude
of numbers due to underflow and overflow.

• Characters: A common form of data is text or character strings. Characters are

represented in numeric form, mostly in ASCII (American Standard Code for
Information Exchange). Another Code used to encode characters is the Extended
Binary Coded Decimal Interchange Code (EBCDIC).

• Logical data: Each word or byte is treated as a single unit of data. When an n-bit

data unit is considered as consisting of n 1-bit items of data with each item
having the value 0 or 1, then they are viewed as logical data. Such bit-oriented
data can be used to store an array of Boolean or binary data variables where each
variable can take on only the values 1 (true) and 0 (false). One simple application
of such a data may be the cases where we manipulate bits of a data item. For
example, in floating-point addition we need to shift mantissa bits.

1.3.2 Types of Instructions

Computer instructions are the translation of high level language code to machine level
language programs. Thus, from this point of view the machine instructions can be
classified under the following categories. Refer to figure 3:

 Types of Instructions

Figure 3: Types of Instructions

Data Transfer Instructions

These instructions transfer data from one location in the computer to another location
without changing the data content. The most common transfers are between:

• processor registers and memory,
• processor registers and I/O, and
• processor registers themselves.

These instructions need:

• the location of source and destination operands and
• the mode of addressing for each operand. Given below is a table, which lists

eight data transfer instructions with their mnemonic symbols. These symbols are
used for understanding purposes only, the actual instructions are binary. Different
computers may use different mnemonic for the same instruction.

 10

Operation
Name

Mnemonic Description

Load LD Loads the contents from memory to register.
Store ST Store information from register to memory location.
Move MOV Data Transfer from one register to another or

between CPU registers and memory.

Data
Transfer
Instructions

Data
Processing
Instructions

Program
Control
Instruction

Miscellaneous
Privileged

Instruction Set

Architecture Exchange XCH Swaps information between two registers or a
register and a memory word.

Clear CLEAR Causes the specified operand to be replaced by 0’s.
Set SET Causes the specified operand to be replaced by 1’s.
Push PUSH Transfers data from a processor register to top of

memory stack.
Pop POP Transfers data from top of stack to processor

register.

Data Processing Instructions

These instructions perform arithmetic and logical operations on data. Data
Manipulation Instructions can be divided into three basic types:

Arithmetic: The four basic operations are ADD, SUB, MUL and DIV. An arithmetic
instruction may operate on fixed-point data, binary or decimal data etc. The other
possible operations include a variety of single-operand instructions, for example
ABSOLUTE, NEGATE, INCREMENT, DECREMENT.

The execution of arithmetic instructions requires bringing in the operands in the
operational registers so that the data can be processed by ALU. Such functionality is
implemented generally within instruction execution steps.

Logical: AND, OR, NOT, XOR operate on binary data stored in registers. For
example, if two registers contain the data:

 R1 = 1011 0111
 R2 = 1111 0000

Then,

R1 AND R2 = 1011 0000. Thus, the AND operation can be used as a mask that selects
certain bits in a word and zeros out the remaining bits. With one register is set to all
1’s, the XOR operation inverts those bits in R1 register where R2 contains 1.

 R1 XOR R2 = 0100 0111

Shift: Shift operation is used for transfer of bits either to the left or to the right. It can
be used to realize simple arithmetic operation or data communication/recognition etc.
Shift operation is of three types:

1. Logical shifts LOGICAL SHIFT LEFT and LOGICAL SHIFT RIGHT insert
zeros to the end bit position and the other bits of a word are shifted left or right
respectively. The end bit position is the leftmost bit for shift right and the
rightmost bit position for the shift left. The bit shifted out is lost.

 0

Logical Shift Right

 0

Logical Shift Left

Figure 4: Logical Shift

2. Arithmetic shifts ARITHMETIC SHIFT LEFT and ARITHMETIC SHIFT

RIGHT are the same as LOGICAL SHIFT LEFT and LOGICAL SHIFT RIGHT
11

The Central
Processing Unit except that the sign bit it remains unchanged. On an arithmetic shift right, the

sign bit is replicated into the bit position to its right. On an arithmetic shift left, a
logical shift left is performed on all bits but the sign bit, which is retained.

The arithmetic left shift and a logical left shift when performed on numbers
represented in two’s complement notation cause multiplication by 2 when there is
no overflow. Arithmetic shift right corresponds to a division by 2 provided there
is no underflow.

3. Circular shifts ROTATE LEFT and ROTATE RIGHT. Bits shifted out at one

end of the word are not lost as in a logical shift but are circulated back into
the other end.

Character and String Processing Instructions: String manipulation typically is
done in memory. Possible instructions include COMPARE STRING, COMPARE
CHARACTER, MOVE STRING and MOVE CHARACTER. While compare
character usually is a byte-comparison operation, compare string always involves
memory address.

Stack and register manipulation: If we build stacks, stack instructions prove to be
useful. LOAD IMMEDIATE is a good example of register manipulation (the value
being loaded is part of the instruction). Each CPU has multiple registers, when
instruction set is designed; one has to specify which register the instruction is referring
to.

No operation (or idle) is needed when there is nothing to run on a computer.

Program Control Instructions

These instructions specify conditions for altering the sequence of program execution
or in other words the content of PC (program counter) register. PC points to memory
location that holds the next instruction to be executed. The change in value of PC as a
result of execution of control instruction like BRANCH or JUMP causes a break in
the sequential execution of instructions. The most common control instructions are:

BRANCH and JUMP may be conditional or unconditional. JUMP is an
unconditional branch used to implement simple loops. JNE jump not equal is a
conditional branch instruction. The conditional branch instructions such as BRP X
and BRN X causes a branch to memory location X if the result of most recent
operation is positive or negative respectively. If the condition is true, PC is loaded
with the branch address X and the next instruction is taken from X, otherwise, PC is
not altered and the next instruction is taken from the location pointed by PC. Figure 5
shows an unconditional branch instruction, and a conditional branch instruction if the
content of AC is zero.

MBR 0 ; Assign 0 to MBR register
X 2001 ; Assume X to be an address location 2001
READ X ; Read a value from memory location 2001 into AC
BRZ 1007 ; Branch to location 1007 if AC is zero (Conditional branch
 on zero)
ADD MBR ; Add the content of MBR to AC and store result to AC
TRAS MBR ; Transfer the contents of AC to MBR
INC X ; Increment X to point to next location
JUMP 1001 ; Loop back for further processing.

(a) A program on hypothetical machine

 12

Instruction Set

Architecture

0FFF MBR 0
1000 X 2001
1001 READ X
1002 BRZ 1007
1003 ADD MBR
1004 TRAS MBR
1005 INC X
1006 JUMP 1001
1007 :
 :

 :
 :

2001 10
2002 20
2003 30
2004 0

Unconditional Conditional Branch
Branch

(b) The Memory of the hypothetical machine

Figure 5: BRANCH & JUMP Instructions

The program given in figure 5 is a hypothetical program that performs addition of
numbers stored from locations 2001 onwards till a zero is encountered. Therefore, X
is initialized to 2001, while MBR that stores the result is initialized to zero. We have
assumed that in this machine all the operations are performed using CPU. The
programs will execute instructions as:

1st Cycle:

1001 (with location X = 2001 which is value 10) 1002 1003
1004 1005 (X is incremented to 2002) 1006

2nd Cycle

1001 (with X = 2002 which is 20) 1002 1003 1004 1005 (X

is 2003) 1006
3rd Cycle

1001 (with X = 2003 which is 30) 1002 1003 1004 1005 (X is

2004) 1006
4th Cycle

 1001 (with X = 2004 which is 0) 1002 [AC contains zero so take a

branch to 1007]

 1007………… (MBR contains the added value)

The SKIP instruction is a zero-address instruction and skips the next instruction
to be executed in sequence. In other words, it increments the value of PC by one
instruction length. The SKIP can also be conditional. For example, the instruction
ISZ skips the next instruction only if the result of the most recent operation is
zero.

CALL and RETN are used for CALLing subprograms and RETurning from
them. Assume that a memory stack has been built such that stack pointer points to
a non-empty location stack and expand towards zero address.

13

The Central
Processing Unit CALL:

 CALL X Procedure Call to function /procedure named X
 CALL instruction causes the following to happen:

1. Decrement the stack pointer so that we will not overwrite last thing put on
stack,

(SP SP – 1)

(a) Program in the Memory (b) Flow of Control

 PC = 102 PC = 200
(address of X)

 PC = 102

500 500 500
501 : 501 501
502 : 502 502
503 : 503 503
504 : 504 102 SP 504
505 Stack top

prior to
call

SP

 505 Stack top
prior to
call

 505 Stack top
prior to
call

 SP

 :
(Initial
state)

 (procedure
call)

 (on
return)

(c) Memory Stack Values for first call
Figure 6: Call and Return Statements

2. The contents of PC, which is pointing to NEXT instruction, the one just after the

CALL is pushed onto the stack, and, M [SP] PC.
3. JMP to X, the address of the start of the subprogram is put in the PC register; this

is all a jump does. Thus, we go off to the subprogram, but we have to remember
where we were in the calling program, i.e. we must remember where we came
from, so that we can get back there again.

 PC X

RETN :

 14

Instruction Set

Architecture RETN Return from procedure.
 RETN instruction causes the following to happen:

1. Pops the stack, to yield an address/label; if correctly used, the top of the
stack will contain the address of the next instruction after the call from
which we are returning; it is this instruction with which we want to resume
in the calling program;

2. Jump to the popped address, i.e., put the address into the PC register.
 PC top of stack value; Increment SP.

Miscellaneous and Privileged Instructions: These instructions do not fit in any of
the above categories. I/O instructions: start I/O, stop I/O, and test I/O. Typically, I/O
destination is specified as an address. Interrupts and state-swapping operations: There
are two kinds of exceptions, interrupts that are generated by hardware and traps,
which are generated by programs. Upon receiving interrupts, the state of current
processes will be saved so that they can be restarted after the interrupt has been taken
care of.

Most computer instructions are divided into two categories, privileged and non-
privileged. A process running in privileged mode can execute all instructions from the
instruction set while a process running in user mode can only execute a sub-set of the
instructions. I/O instructions are one example of privileged instruction, clock
interrupts are another one.

1.3.3 Number of Addresses in an Instruction

In general, the Instruction Set Architecture (ISA) of a processor can be differentiated
using five categories:

• Operand Storage in the CPU - Where are the operands kept other than the
memory?

• Number of explicitly named operands - How many operands are named in an
instruction?

• Operand location - Can any ALU instruction operand be located in memory? Or
must all operands be kept internally in the CPU registers?

• Operations - What operations are provided in the ISA?
• Type and size of operands - What is the type and size of each operand and how

is it specified?

As far as operations and type of operands are concerned, we have already discussed
about these in the previous subsection. In this section let us look into some of the
architectures that are common in contemporary computer. But before we discuss the
architectures, let us look into some basic instruction set characteristics:

• The operands can be addressed in memory, registers or I/O device address.
• Instruction having less number of operand addresses in an instruction may

require lesser bits in the instruction; however, it also restricts the range of
functionality that can be performed by the instructions. This implies that a CPU
instruction set having less number of addresses has longer programs, which
means longer instruction execution time. On the other hand, having more
addresses may lead to more complex decoding and processing circuits.

• Most of the instructions do not require more than three operand addresses.
Instructions having fewer addresses than three, use registers implicitly for
operand locations because using registers for operand references can result in
smaller instructions as only few bits are needed for register addresses as against
memory addresses.

• The type of internal storage of operands in the CPU is the most basic
differentiation.

15

The Central
Processing Unit The three most common types of ISAs are:

1. Evaluation Stack: The operands are implicitly on top of the stack.
2. Accumulator: One operand is implicitly the accumulator.
3. General Purpose Register (GPR): All operands are explicit, either registers or

memory locations.

Evaluation Stack Architecture: A stack is a data structure that implements Last-In-
First-Out (LIFO) access policy. You could add an entry to the stack with a
PUSH(value) and remove an entry from the stack with a POP(). No explicit operands
are there in ALU instructions, but one in PUSH/POP. Examples of such computers are
Burroughs B5500/6500, HP 3000/70 etc.

On a stack machine "C = A + B" might be implemented as:

 PUSH A
 PUSH B

ADD // operator POP operand(s) and PUSH result(s) (implicit on top of stack)

POP C

Stack Architecture: Pros and Cons

• Small instructions (do not need many bits to specify the operation).
• Compiler is easy to write.
• Lots of memory accesses required - everything that is not on the stack is in

memory. Thus, the machine performance is poor.

Accumulator Architecture: An accumulator is a specially designated register that
supplies one instruction operand and receives the result. The instructions in such
machines are normally one-address instructions. The most popular early architectures
were IBM 7090, DEC PDP-8 etc.

On an Accumulator machine "C = A + B" might be implemented as:

 LOAD A // Load memory location A into accumulator
 ADD B // Add memory location B to accumulator
 STORE C // Store accumulator value into memory location C

Accumulator Architecture: Pros and Cons

• Implicit use of accumulator saves instruction bits.
• Result is ready for immediate reuse, but has to be saved in memory if next

computation does not use it right away.
• More memory accesses required than stack. Consider a program to do the

expression:
 A = B * C + D * E.

Evaluation of Stack Machine Accumulator Machine
Program Comments Programs Comments

PUSH B Push the value B LOAD B Load B in AC
PUSH C Push C MULT C Multiply AC with

C in AC
MULT Multiply (B×C)

and store result on
stack top

STORE T Store B×C into
Temporary T

PUSH D Push D LOAD D Load D in AC
PUSH E Push E MULT E Multiply E in AC

 16

Instruction Set

Architecture MULT Multiply D×E and
store result on
stack top

ADD T B×C + D×E

ADD Add the top two
values on the stack

STORE A Store Result in A

POP A Store the value in
A

General Purpose Register (GPR) Architecture: A register is a word of internal
memory like the accumulator. GPR architecture is an extension of the accumulator
idea, i.e., use a set of general-purpose registers, which must be explicitly named by the
instruction. Registers can be used for anything either holding operands for operations
or temporary intermediate values. The dominant architectures are IBM 370, PDP-11
and all Reduced Instant Set Computer (RISC) machines etc. The major instruction set
characteristic whether an ALU instruction has two or more operands divides GPR
architectures:

"C = A + B" might be implemented on both the architectures as:

 Register - Memory Load/Store through Registers
 LOAD R1, A LOAD R1, A
 ADD R1, B LOAD R2, B
 STORE C, R1 ADD R3, R1, R2
 STORE C, R3

General Purpose Register Architecture: Pros and Cons

• Registers can be used to store variables as it reduces memory traffic and speeds
up execution. It also improves code density, as register names are shorter than
memory addresses.

• Instructions must include bits to specify which register to operate on, hence
large instruction size than accumulator type machines.

• Memory access can be minimized (registers can hold lots of intermediate
values).

• Implementation is complicated, as compiler writer has to attempt to maximize
register usage.

While most early machines used stack or accumulator architectures, in the last 15
years all CPUs made are GPR processors. The three major reasons are that registers
are faster than memory; the more data that can be kept internally in the CPU the faster
the program will run. The third reason is that registers are easier for a compiler to use.

But while CPU’s with GPR were clearly better than previous stack and accumulator
based CPU’s yet they were lacking in several areas. The areas being: Instructions
were of varying length from 1 byte to 6-8 bytes. This causes problems with the pre-
fetching and pipelining of instructions. ALU instructions could have operands that
were memory locations because the time to access memory is slower and so does the
whole instruction.

Thus in the early 1980s the idea of RISC was introduced. RISC stands for Reduced
Instruction Set Computer. Unlike CISC, this ISA uses fewer instructions with simple
constructs so they can be executed much faster within the CPU without having to use
memory as often. The first RISC CPU, the MIPS 2000, has 32 GPRs. MIPS is a
load/store architecture, which means that only load and store instructions access
memory. All other computational instructions operate only on values stored in
registers.

17

The Central
Processing Unit Check Your Progress 2

1. Match the following pairs:

 (a) Zero address instruction (i) Accumulator machines
 (b) One address instruction (ii) General Purpose Register machine
 (c) Three address instruction (iii) Evaluation-Stack machine

2. List the advantages and disadvantages of General Purpose Register machines.

3. Categorize the following operations with the respective instruction types:

 (a) MOVE (i) Data Processing Instructions
 (b) DIV (ii) Data Transfer Instructions
 (c) STORE (iii) Privileged Instructions
 (d) XOR (iv) Program Control Instructions
 (e) BRN

(f) COMPARE
(g) TRAP

1.4 ADDRESSING SCHEMES

As discussed earlier, an operation code of an instruction specifies the operation to be
performed. This operation is executed on some data stored in register or memory.
Operands may be specified in one of the three basic forms i.e., immediate, register,
and memory.

But, why addressing schemes? The question of addressing is concerned with how
operands are interpreted. In other words, the term ‘addressing schemes’ refers to the
mechanism employed for specifying operands. There are a multitude of addressing
schemes and instruction formats. Selecting which schemes are available will impact
not only the ease to write the compiler, but will also determine how efficient the
architecture can be?

All computers employ more than one addressing schemes to give programming
flexibility to the user by providing facilities such as pointers to memory, loop control,
indexing of data, program relocation and to reduce the number of bits in the operand
field of the instruction. Offering a variety of addressing modes can help reduce
instruction counts but having more modes also increases the complexity of the
machine and in turn may increase the average Cycles per Instruction (CPI). Before we
discuss the addressing modes let us discuss the notations being used in this section.

In the description that follows the symbols A, A1, A2 etc. denote the content of
an operand field. Thus, Ai may refer to a data or a memory address. In case the
operand field is a register address, then the symbols R, R1, R2,... etc., are used. If C
denotes the contents (either of an operand field or a register or of a memory location),
then (C) denotes the content of the memory location whose address is C.

The symbol EA (Effective Address) refers to a physical address in a non-virtual
memory environment and refers to a register in a virtual memory address
environment. This register address is then mapped to physical memory address.

What is a virtual address? von Neumann had suggested that the execution of a
program is possible only if the program and data are residing in memory. In such a
situation the program length along with data and other space needed for execution
cannot exceed the total memory. However, it was found that at the time of execution,
the complete portion of data and instruction is not needed as most of the time only few
areas of the program are being referenced. Keeping this in mind a new idea was put
 18

Instruction Set

Architecture forward where only a required portion is kept in the memory while the rest of the
program and data reside in secondary storage. The data or program portion which are
stored on secondary storage are brought to memory whenever needed and the portion
of memory which is not needed is returned to the secondary storage. Thus, a program
size bigger than the actual physical memory can be executed on that machine. This is
called virtual memory. Virtual memory has been discussed in greater details as part of
the operating system.

The typicality of virtual addresses is that:

• they are longer than the physical addresses as total addressed memory in virtual
memory is more than the actual physical memory.

• if a virtual addressed operand is not in the memory then the operating system
brings that operand to the memory.

The symbols D, D1, D2,..., etc. refer to actual operands to be used by instructions for
their execution.

Most of the machines employ a set of addressing modes. In this unit, we will describe
some very common addressing modes employed in most of the machines. A specific
addressing mode example, however, is given in Unit 1 of Block 4.

The following tree shows the common addressing modes:

Addressing Modes

 Register Displacement Stack
 Immediate

 Reference Addressing Addressing

But what are the

In general not al
the common are

Addressing M
Immediate
Direct
Register
Register Indirec
Index
Auto-index mod
Base Register

Index
Stack
Memory
Reference
Memory
Indirect

Register Register
Indirect
Memory
Direct
Figure 7: Common Addressing Modes

Relative
Addressing

Base
Addressing

Indexed
Addressing

 uses /applications of these addressing modes?

l of the above modes are used for all applications. However, some of
as where compilers of high-level languages use them are:

ode Possible use
For moving constants and initialization of variables
Used for global variables and less often for local variables
Frequently used for storing local variables of procedures

t For holding pointers to structure in programming languages C
To access members of an array

e For pushing or popping the parameters of procedures
Employed to relocate the programs in memory specially in
multi-programming systems
Accessing iterative local variables such as arrays
 Used for local variables

19

The Central
Processing Unit 1.4.1 Immediate Addressing

When an operand is interpreted as an immediate value, e.g. LOAD IMMEDIATE 7,
it is the actual value 7 that is put in the CPU register. In this mode the operand is the
data in operand address field of the instruction. Since there is no address field at all,
and hence no additional memory accesses are required for executing this instruction.
In other words, in this addressing scheme, the actual operand D is A, the content of
the operand field: i.e. D = A. The effective address in this case is not defined.

 Main Memory

Instruction
LOAD (I) 07

Opcode

Addressing mode Operand value
 (immediate)

Figure 8: Immediate Addressing

Salient points about the addressing mode are:

• This addressing mode is used to initialise the value of a variable.
• The advantage of this mode is that no additional memory accesses are required

for executing the instruction.
• The size of instruction and operand field is limited. Therefore, the type of data

specified under this addressing scheme is also restricted. For example, if an
instruction of 16 bits uses 6 bits for opcode and 2 bits for addressing mode, then
10 bits can be used to specify an operand. Thus, 210 possible values only can be
assigned.

1.4.2 Direct Addressing

In this scheme the operand field of the instruction specifies the direct address of the
intended operand, e.g., if the instruction LOAD 500 uses direct addressing, then it will
result in loading the contents of memory cell 500 into the CPU register. In this mode
the intended operand is the address of the data in operation. For example, if memory
cell 500 contains 7, as in the diagram below, then the value 7 will be loaded to CPU
register.

Addressing mode
 (Direct)

 Opcode Operand Address

200

LOAD D 500

 :

500

……0111

Figure 9: Direct Addressing

Some salient points about this scheme are:

 20

• This scheme provides a limited address space because if the address field has n
bits then memory space would contain 2n memory words or locations. For
example, for the example machine of Figure 1, the direct addresses memory
space would be 210.

Instruction Set

Architecture • The effective address in this scheme is defined as the address of the operand,
that is,

EA A and (EA in the above example will be 500)
D = (EA) (D in the above example will be 7)

The second statement implies that the data is stored in the memory location
specified by effective address.

• In this addressing scheme only one memory reference is required to fetch the
operand.

1.4.3 Indirect Addressing

In this scheme the operand field of the instruction specifies the address of the
address of intended operand, e.g., if the instruction LOAD I 500 uses indirect
addressing scheme, and contains a value 50A, and memory location 50A contains 7,
then the value 7 will get loaded in the CPU register.

 LOAD I 500

500 50 A

50 A …..0111

Figure 10: Indirect Addressing

Some salient points about this scheme are:

• In this addressing scheme the effective address EA and the contents of the
operand field are related as:

 EA = (A) and (Content of location 500 that is 50A above)
 D = (EA) (Contents of location 50A that is 7)

• The drawback of this scheme is that it requires two memory references to fetch

the actual operand. The first memory reference is to fetch the actual address of
the operand from the memory and the second to fetch the actual operand using
that address.

• In this scheme the word length determines the size of addressable space, as the
actual address is stored in a Word. For example, the memory having a word size
of 32 bits can have 232 indirect addresses.

1.4.4 Register Addressing

When operands are taken from register(s), implicitly or explicitly, it is called register
addressing. These operands are called register operands. If operands are from
memory locations, they are called memory operands. In this scheme, a register address
is specified in the instruction. That register contains the operand. It is conceptually
similar to direct addressing scheme except that the register name or number is
substituted for memory address. Sometimes the address of register may be assumed
implicitly, for example, the Accumulator register in old machines.

21

The Central
Processing Unit

Figure 11: Register Addressing

The major advantages of register addressing are:

• Register access is faster than memory access and hence register addressing
results in faster instruction execution. However, register obtains operands only
from memory; therefore, the operands that should be kept in registers are
selected carefully and efficiently. For example, if an operand is moved into a
register and processed only once and then returned to memory, then no saving
occurs. However if an operand is used repeatedly after bringing into register
then we have saved few memory references. Thus, the task of using register
efficiently deals with the task of finding what operand values should be kept in
registers such that memory references are minimised. Normally, this task is
done by a compiler of a high level language while translating the program to
machine language. As a thumb rule the frequently used local variables are kept
in the registers.

• The size of register address is smaller than the memory address. It reduces the
instruction size. For example, for a machine having 32 general purpose registers
only 5 bits are needed to address a register.

In this addressing scheme the effective address is calculated as:

EA = R
D = (EA)

1.4.5 Register Indirect Addressing

In this addressing scheme, the operand is data in the memory pointed to by a register.
In other words, the operand field specifies a register that contains the address of the
operand that is stored in memory. This is almost same as indirect addressing scheme
except it is much faster than indirect addressing that requires two memory accesses.

Figure 12: Register Indirect Addressing

The effective address of the operand in this scheme is calculated as:

EA= (R) and
 22

Instruction Set

Architecture D = (EA)

The address capability of register indirect addressing scheme is determined by the size
of the register.

1.4.6 Indexed Addressing Scheme

In this scheme the operand field of the instruction contains an address and an index
register, which contains an offset. This addressing scheme is generally used to address
the consecutive locations of memory (which may store the elements of an array). The
index register is a special CPU register that contains an index value. The contents of
the operand field A are taken to be the address of the initial or the reference location
(or the first element of array). The index register specifies the distance between the
starting address and the address of the operand.

For example, to address of an element B[i] of an array B[1], B[2],....B[n], with each
element of the array stored in two consecutive locations, and the starting address of
the array is assumed to be 101, the operand field A in the instruction shall contain the
number 101 and the index register R will contain the value of the expression
(i - 1) × 2.

Thus, for the first element of the array the index register will contain 0. For addressing
5th element of the array, the A=101 whereas index register will contain:

 (5- 1) × 2 = 8

Therefore, the address of the 5th element of array B is=101+8=109. In B[5], however,
the element will be stored in location 109 and 110. To address any other element of
the array, changing the content of the index register will suffice.

Thus, the effective address in this scheme is calculated as:

EA = A +(R)
D = (EA)
(DA is Direct address)

As the index register is used for iterative applications, therefore, the value of index
register is incremented or decremented after each reference to it. In several systems
this operation is performed automatically during the course of an instruction cycle.
This feature is known as auto-indexing. Auto indexing can be auto-incrementing or
auto-decrementing. The choice of register to be used as an index register differs from
machine to machine. Some machines employ general-purpose registers for this
purpose while other machines may specify special purpose registers referred to as
index registers.

Figure 13: For Displacement Addressing

1.4.7 Base Register Addressing

An addressing scheme in which the content of an instruction specifies base register is
added to the displacement field or address field of the instruction. (Refer to Figure

23

The Central
Processing Unit 13). The displacement field is taken to be a positive number. For example, if a

displacement field is of 8 bits then a memory region of 256 words beginning at the
address pointed to by the base register can be addressed by this mode. This is similar
to indexed addressing scheme except that the role of Address field and Register is
reversed. In indexing Address field of instruction is fixed and index register value is
changed, whereas in Base Register addressing, the Base Register is common and
Address field of the instruction in various instructions is changed. In this case:

EA = A+ (B)
D = (EA)
(B) Refers to the contents of a base register B.

The contents of the base register may be changed in the privileged mode only. No user
is allowed to change the contents of the base register. The base-addressing scheme
provides protection of users from one another.

This addressing scheme is usually employed to relocate the programs in memory
specially in multiprogramming systems in which only the value of base register
requires updating to reflect the beginning of a new memory segment.

Like index register a base register may be a general-purpose register or a special
register reserved for base addressing.

1.4.8 Relative Addressing Scheme

In this addressing scheme, the register R is the program counter (PC) containing the
address of the current instruction being executed. The operand field A contains the
displacement (positive or negative) of an instruction or data with respect to the current
instruction. This addressing scheme has advantages if the memory references are
nearer to the current instruction being executed. (Please refer to the Figure 13).

Let us give an example of Index, Base and Relative addressing schemes.

Example 1: What would be the effective address and operand value for the following
LOAD instructions:

(i) LOAD IA 56 R1 Where IA indicates index addressing, R1 is index register

and 56 is the displacement in Hexadecimal.
(ii) LOAD BA 46 B1 Where BA indicates base addressing, B1 is base register and

46 is the displacement specified in instruction in
Hexadecimal notation.

(iii) LOAD RA 36 Where RA specifies relative addressing.

The values of registers and memory is given below:

 Values of Memory Location

Register Value
PC 2532H 27A8 10H
Index Register (R1) 2752H :

 :
Base Register (B1) 2260H

2568H 70H
 :

 :
 22A6H 25H
 :

 24

Instruction Set

Architecture The values are shown in the following table:

Addressing Mode Formulae for

addressing mode
 EA Data Value

Index Addressing EA = A+(R)
D= (EA)

56 + 2752 = 27A8H 10H

Base Addressing EA = A+ (B) 46 + 2260 = 22A6H 25H
Relative
Addressing

EA = (PC) + A 2532 + 36 = 2568H 70H

1.4.9 Stack Addressing

In this addressing scheme, the operand is implied as top of stack. It is not explicit, but
implied. It uses a CPU Register called Stack Pointer (SP). The SP points to the top of
the stack i.e. to the memory location where the last value was pushed. A stack
provides a sort-of indirect addressing and indexed addressing. This is not a very
common addressing scheme. The operand is found on the top of a stack. In some
machines the top two elements of stack and top of stack pointer is kept in the CPU
registers, while the rest of the elements may reside in the memory. Figure 14 shows
the stack addressing schemes.

Figure 14: Stack Addressing

Check Your Progress 3

1. What are the numbers of memory references required to get the data for the
following addressing schemes:

 (i) Immediate addressing
 (ii) Direct addressing
 (iii) Indirect addressing
 (iv) Register Indirect addressing

(v) Stack addressing.

2. What are the advantages of Base Register addressing scheme?

3. State True or False.

(i) Immediate addressing is best suited for initialization of variables.

(ii) Index addressing is used for accessing global variables.

(iii) Indirect addressing requires fewer memory accesses than that of direc
 addressing.

(iv) In stack addressing, operand is explicitly specified.

t
T F
25

The Central
Processing Unit 1.5 INSTRUCTION SET AND FORMAT DESIGN

ISSUES

Some of the basic issues of concerns for instruction set design are:

Completeness: For an initial design, the primary concern is that the instruction set
should be complete which means there is no missing functionality, that is, it should
include instructions for the basic operations that can be used for creating any possible
execution and control operation.

Orthogonal: The secondary concern is that the instructions be orthogonal, that is, not
unnecessarily redundant. For example, integer operation and floating number
operation usually are not considered as redundant but different addressing modes may
be redundant when there are more instructions than necessary because the CPU takes
longer to decode.

An instruction format is used to define the layout of the bits allocated to these
elements of instructions. In addition, the instruction format explicitly or implicitly
indicates the addressing modes used for each operand in that instruction.

Designing of instruction format it is a complex art. In this section, we will discuss
about the design issues for instruction sets of the machines. We will discuss only point
wise details of these issues.

1.5.1 Instruction Length

Significance: It is the basic issue of the format design. It determines the richness and
flexibility of a machine.

Basic Tardeoff: Smaller instruction (less space) Versus desire for more powerful
instruction repertoire.

Normally programmer desire:

• More op-code and operands: as it results in smaller programs
• More addressing modes: for greater flexibility in implementing functions like

table manipulations, multiple branching.

However, a 32 bit instruction although will occupy double the space and can be
fetched at double the rate of a 16 bit instruction, but can not be doubly useful.

Factors, which must be considered for deciding about instruction length

Memory size : if larger memory range is to be addressed, then
 more bits may be required in address field.

Memory organization : if the addressed memory is virtual memory then
 memory range which is to be addressed by the

 instruction is larger than physical memory size.

Memory transfer length : instruction length should normally be equal to
 data bus length or multiple of it.

Memory transfer : the data transfer rate from the memory ideally
 should be equivalent to the processor speed. It
 can become a bottleneck if processor executes
 instructions faster than the rate of fetching the
 instructions. One solution for such problem is
 to use cache memory or another solution can be
 to keep instruction short.

 26

Instruction Set

Architecture Normally an instruction length is kept as a multiple of length of a character (that is 8
bits), and equal to the length of fixed-point number. The term word is often used in
this context. Usually the word size is equal to the length of fixed point number or
equal to memory-transfer size. In addition, a word should store integral number of
characters. Thus, word size of 16 bit, 32 bit, 64 bit are to be coming very common and
hence the similar length of instructions are normally being used.

1.5.2 Allocation of Bits Among Opcode and Operand

The tradeoff here is between the numbers of bits of opcode versus the addressing
capabilities. An interesting development in this regard is the development of variable
length opcode.

Some of the factors that are considered for selection of addressing bits:

• Number of addressing modes: The more are the explicit addressing modes the
more bits are needed for mode selection. However, some machines have implicit
modes of addressing.

• ` : As far as memory references are concerned, granularity implies whether an
address is referencing a byte or a word at a time. This is more relevant for
machines, which have 16 bits, 32 bits and higher bits words. Byte addressing
although may be better for character manipulation, however, requires more bits in
an address. For example, memory of 4K words (1 word = 16 bit) is to be
addressed directly then it requires:

WORD Addressing = 4K words
 = 212 words
 ⇒ 12 bits are required for word addressing.

Byte Addressing = 212 words
 = 213 bytes
 ⇒ 13 bits are required for byte addressing.

1.5.3 Variable-Length of Instructions

With the better understanding of computer instruction sets, the designers came up with
the idea of having a variety of instruction formats of different length. What could be
the advantages of such a set? The advantages of such a scheme are:

• Large number of operations can be provided which have different lengths of
instructions.

• Flexibility in addressing scheme can be provided efficiently and compactly.

However, the basic disadvantage of such a scheme is to have a complex CPU.

An important aspect about these variables length instructions is: “The CPU is not
aware about the length of next instruction which is to be fetched”. This problem can
be handled if each instruction fetch is made equal to the size of the longest instruction.
Thus, sometimes in a single fetch multiple instructions can be fetched.

1.6 EXAMPLE OF INSTRUCTION FORMAT

Let us provide you a basic example by which you may be able to define the concept of
instruction format.

MIPS 2000

27

The Central
Processing Unit Let’s consider the instruction format of a MIPS computer. MIPS is an acronym for

Microprocessor without Interlocked Pipeline Stages. It is a microprocessor
architecture developed by MIPS Computer Systems Inc. most widely known for
developing the MIPS architecture. The MIPS CPU family was one of the most
successful and flexible CPU designs throughout the 1990s. The MIPS CPU has a five-
stage CPU pipeline to execute multiple instructions at the same time. Now what we
have introduced is a new term Pipelining. What else: the 5 stage pipeline, let us just
introduce it here. It defines the 5 steps of execution of instructions that may be
performed in an overlapped fashion. The following diagram will elaborate this
concept:

 Instruction execution stages

5 4 3 2 1stage
1

Instruction 1

Instruction 2

Instruction 3

5 4 3 2 1

5 4 3 2 1

Figure15: Pipeline

Please note that in the above figure:

• All the stages are independent and distinct, that is, the second stage execution of
Instruction 1 should not hinder Instruction 2.

• The overall efficiency of the system becomes better.

The early MIPS architectures had 32-bit instructions and later versions have 64-bit
implementations.

The first commercial MIPS CPU model, the R2000, whose instruction format is
discussed below, has thirty-two 32-bit registers and its instructions are 32 bits long.

 6 bits 5 bits 5 bits 5 bits 5 bits 5 bits

 op rs rt rd shamt funct

Figure 16: A Sample Instruction Format of MIPS instruction

The meaning of each field in MIPS instruction is given below:

• op : operation code or opcode
• rs : The first register source operand
• rt : The second register source operand
• rd : The destination register operand, stores the result of the operation
• shamt : used in case of shift operations
• funct : This field selects the specific variant of the operation in the opcode field,

and is sometimes referred to as function code.

All MIPS instructions are of the same length, requiring different kinds of instruction
formats for different types of instructions.

Instruction Format

All MIPS instructions are of the same size and are 32 bits long. MIPS designers chose
to keep all instructions of the same length, thereby requiring different kinds of
instruction formats for different kinds of instructions. For example, R-type (register)
or R-format is used for arithmetic instructions (Figure 16). A second type of

 28

Instruction Set

Architecture instruction format is called i-type or i-format and is used by the data transfer
instructions.

Instruction format of I-type instructions is given below:

 6 bits 5 bits 5 bits 16 bits

 op rs rt address

Figure 17: I-format of RISC

The 16-bit address means a load word instruction can load any word within a region
of + 215 of the base register rs. Consider a load word instruction given below:

The rt field specifies the destination register, which receives the result of the load.

MIPS Addressing Modes

MIPS uses various addressing modes:

1. Uses Register and Immediate addressing modes for operations.
2. Immediate and Displacement addressing for Load and Store instructions. In

displacement addressing, the operand is at the memory location whose address
is the sum of a register.

Check Your Progress 4

1. State True or False.

(i) Instruction length should normally be equal to data bus length or multiple
of it.

(ii) A long instruction executes faster than a short instruction.

(iii) Memory access is faster than register access.

(iv) Large number of opcodes and operands result in bigger program.

(v) A machine can use at the most one addressing scheme.

(vi) Large number of operations can be provided in the instruction set, w

have variable-lengths of instructions.

1.7 SUMMARY

In this unit, we have explained various concepts relating to instructions. We have
discussed the significance of instruction set, various elements of an instruction,
instruction set design issues, different types of ISAs, various types of instructions
various operations performed by the instructions, various addressing schemes. W
have also provided you the instruction format of MIPS machine. Block 4 Unit 1
contains a detailed instruction set of 8086 machine. You can refer to further read
for instruction set of various machines.

1.8 SOLUTIONS/ ANSWERS

Check Your Progress 1

1. True
2. True
i

e

hich

n

T F

 and

g

29

 30

The Central
Processing Unit 3. False

4. True
5. False

Check Your Progress 2

1. (a) - (iii) (b) - (i) (c) - (ii)
2.

• Speed up of instruction execution as stores temporary results in registers
• Less code to execute
• Larger instruction set
• Difficult for compiler writing

3. (i) - b), d), f) ; (ii) - a), c) ; (iii) - g) ; (iv) - e)

Check Your Progress 3

1.
a) Immediate addressing - 0 memory access
b) Direct addressing - 1 memory access
c) Indirect addressing - 2 memory accesses
d) Register Indirect addressing - 1 memory access
e) Stack addressing - 1 memory access

2. It allows reallocation of program on reloading. It allows protection of users from

one another memory space.

3. (i) True.
 (ii) False.
 (iii) False.
 (iv) False

Check Your Progress 4

1.
(i) True.
(ii) False.
(iii) False.
(iv) False.
(v) False.
(vi) True.

 Regis

ters, Micro-

operations and
Introduction

Execution

UNIT 2 REGISTERS, MICRO-OPERATIONS
AND INSTRUCTION EXECUTION

Structure Page No.

2.0 Introduction 31
2.1 Objectives 31
2.2 Basic CPU Structure 32
2.3 Register Organization 34

2.3.1 Programmer Visible Registers
2.3.2 Status and Control Registers

2.4 General Registers in a Processor 37
2.5 Micro-operation Concepts 38

2.5.1 Register Transfer Micro-operations
2.5.2 Arithmetic Micro-operations
2.5.3 Logic Micro-operations
2.5.4 Shift Micro-operations

2.6 Instruction Execution and Micro-operations 45
2.7 Instruction Pipelining 49
2.8 Summary 50
2.9 Solutions/ Answers 51

2.0 INTRODUCTION

The main task performed by the CPU is the execution of instructions. In the previous
unit, we have discussed about the instruction set of computer system. But, one thing,
which remained unanswered is: how these instructions will be executed by the CPU?

The above question can be broken down into two simpler questions. These are:

What are the steps required for the execution of an instruction? How are these steps
performed by the CPU?

The answer to the first question lies in the fact that each instruction execution consists
of several steps. Together they constitute an instruction cycle. A micro-operation is
the smallest operation performed by the CPU. These operations put together execute
an instruction.

For answering the second question, we must have an understanding of the basic
structure of a computer. As discussed earlier, the CPU consists of an Arithmetic Logic
Unit, the control unit and operational registers. We will be discussing the register
organisation in this unit, whereas the arithmetic-logic unit and control unit
organisation are discussed in subsequent units.

In this unit we will first discuss the basic CPU structure and the register organisation
in general. This is followed by a discussion on micro-operations and their
implementation. The discussion on micro-operations will gradually lead us towards
the discussion of a very simple ALU structure. The detail of ALU structure is the
topic of the next unit.

2.1 OBJECTIVES

After going through this unit, you should be able to:

• describe the register organisation of the CPU;

 31

The Central
Processing Unit

• define what is a micro-operation;

• differentiate among various micro-operations;

• discuss an instruction execution using the micro-operations; and

• define the concepts of instruction pipelining.

2.2 BASIC CPU STRUCTURE

A computer manipulates data according to the instructions of a stored program.
Stored program means the program and data are stored in the same memory unit.
The central processing unit, also referred to as CPU, performs the bulk of the data
processing operations. It has three main components:

1. A set of registers for holding binary information.

2. An arithmetic and logic unit (ALU) for performing data manipulation, and

3. A control unit that coordinates and controls the various operations and initiates

the appropriate sequence of micro-operations for each task.

Computer instructions are normally stored in consecutive memory locations and are
executed in sequence one by one. The control unit allows reading of an instruction
from a specific address in memory and executes it with the help of ALU and Register.

Instruction Execution and Registers

The basic process of instruction execution is:

1. Instruction is fetched from memory to the CPU registers (called instruction fetch)
under the control unit.

2. It is decoded by the control unit and converted into a set of lower level control

signals, which cause the functions specified by that instruction to be executed.

3. After the completion of execution of the current instruction, the next instruction

fetched is the next instruction in sequence.

This process is repeated for every instruction except for program control instructions,
like branch, jump or exception instructions. In this case the next instruction to be
fetched from memory is taken from the part of memory specified by the instruction,
rather than being the next instruction in sequence.

But why do we need Registers?

If tcpu is the cycle time of CPU that is the time taken by the CPU to execute a well-
defined micro-operation using registers, and tmem is the memory cycle time, that is the
speed at which the memory can be accessed by the CPU, then (tcpu/tmem) is in the range
of 2 to 10, that is CPU is 2 – 10 times faster than memory. Thus, CPU registers are the
fastest temporary storage areas. Thus, the instructions whose operands are stored in
the fast CPU registers can be executed rapidly in comparison to the instructions whose
operands are in the main memory of a computer. Each instruction must designate the
registers it will address. Thus, a machine requires a large number of registers.

 32

 Registers, Micro-

operations and
Introduction

Execution

Figure 1: CPU with general register organisation

But how do the registers help in instruction execution? We will discuss this with the
help of Figure 1.

Step 1:

The first step of instruction execution is to fetch the instruction that is to be executed.
To do so we require:

• Address of the “instruction to be fetched”. Normally Program counter (PC)
register stores this information.

• Now this address is converted to physical machine address and put on address
bus with the help of a buffer register sometimes called Memory Address Register
(MAR).

• This, coupled with a request from control unit for reading, fetches the instruction
on the data bus, and transfers the instruction to Instruction Register (IR).

• On completion of fetch PC is incremented to point to the next instruction.

In Step 2:

• The IR is decoded; let us assume that Instruction Register contains an instruction.
ADD Memory location B with general purpose register R1 and store result in R1,
then control unit will first instruct to:

• Get the data of memory location B to buffer register for data (DR) using
buffer address register (MAR) by issuing Memory read operation.

• This data may be stored in a general purpose register, if so needed let us say
R2

 33

The Central
Processing Unit • Now, ALU will perform addition of R1 & R2 under the command of control

unit and the result will be put back in R1. The status of ALU operation for
example result in zero/non zero, overflow/no overflow etc. is recorded in the
status register.

• Similarly, the other instructions are fetched and executed using ALU and register

under the control of the Control Unit.

Thus, for describing instruction execution, we must describe the registers layout,
micro-operations, ALU design and finally the control unit organization. We will
discuss registers and micro- operation in this unit. ALU and Control Unit are
described in Unit 3 and Unit 4 of this Block.

2.3 REGISTER ORGANISATION

The number and the nature of registers is a key factor that differentiates among
computers. For example, Intel Pentium has about 32 registers. Some of these registers
are special registers and others are general-purpose registers. Some of the basic
registers in a machine are:

• All von-Neumann machines have a program counter (PC) (or instruction counter
IC), which is a register that contains the address of the next instruction to be
executed.

• Most computers use special registers to hold the instruction(s) currently being
executed. They are called instruction register (IR).

• There are a number of general-purpose registers. With these three kinds of
registers, a computer would be able to execute programs.

• Other types of registers:

• Memory-address register (MAR) holds the address of next memory
operation (load or store).

• Memory-buffer register (MBR) holds the content of memory operation (load
or store).

• Processor status bits indicate the current status of the processor. Sometimes
it is combined with the other processor status bits and is called the program
status word (PSW).

A few factors to consider when choosing the number of registers in a CPU are:

• CPU can access registers faster then it can access main memory.
• For addressing a register, depending on the number of addressable registers a few

bit addresses is needed in an instruction. These address bits are definetly quite
less in comparison to a memory address. For example, for addressing 256
registers you just need 8 bits, whereas, the common memory size of 1MB
requires 20 address bits, a difference of 60%.

• Compilers tend to use a small number of registers because large numbers of
registers are very difficult to use effectively. A general good number of registers
is 32 in a general machine.

• Registers are more expensive than memory but far less in number.

From a user’s point of view the register set can be classified under two basic
categories.

Programmer Visible Registers: These registers can be used by machine or assembly
language programmers to minimize the references to main memory.

 34

 Registers, Micro-

operations and
Introduction

Execution

Status Control and Registers: These registers cannot be used by the programmers
but are used to control the CPU or the execution of a program.

Different vendors have used some of these registers interchangeably; therefore, you
should not stick to these definitions rigidly. Yet this categorization will help in better
understanding of register sets of machine. Therefore, let us discuss more about these
categories.

2.3.1 Programmer Visible Registers

These registers can be accessed using machine language. In general we encounter four
types of programmer visible registers.

• General Purpose Registers
• Data Registers
• Address Registers
• Condition Codes Registers.

A comprehensive example of registers of 8086 is given in Unit 1 Block 4.

The general-purpose registers as the name suggests can be used for various functions.
For example, they may contain operands or can be used for calculation of address of
operand etc. However, in order to simplify the task of programmers and computers
dedicated registers can be used. For example, registers may be dedicated to floating
point operations. One such common dedication may be the data and address registers.

The data registers are used only for storing intermediate results or data and not for
operand address calculation.

Some dedicated address registers are:

Segment Pointer : Used to point out a segment of memory.
Index Register : These are used for index addressing scheme.
Stack Pointer : Points to top of the stack when programmer visible stack

addressing is used.

One of the basic issues with register design is the number of general-purpose registers
or data and address registers to be provided in a microprocessor. The number of
registers also affects the instruction design as the number of registers determines the
number of bits needed in an instruction to specify a register reference. In general, it
has been found that the optimum number of registers in a CPU is in the range 16 to
32. In case registers fall below the range then more memory reference per instruction
on an average will be needed, as some of the intermediate results then have to be
stored in the memory. On the other hand, if the number of registers goes above 32,
then there is no appreciable reduction in memory references. However, in some
computers hundreds of registers are used. These systems have special characteristics.
These are called Reduced Instruction Set Computers (RISC) and they exhibit this
property. RISC computers are discussed later in this unit.

What is the importance of having less memory references? As the time required for
memory reference is more than that of a register reference, therefore the increased
number of memory references results in slower execution of a program.

 35

Register Length: An important characteristic related to registers is the length of a
register. Normally, the length of a register is dependent on its use. For example, a
register, which is used to calculate address, must be long enough to hold the
maximum possible addresses. If the size of memory is 1 MB than a minimum of 20
bits are required to store an instruction address. Please note how this requirement can
be optimized in 8086 in the block 4. Similarly, the length of data register should be

The Central
Processing Unit long enough to hold the data type it is supposed to hold. In certain cases two

consecutive registers may be used to hold data whose length is double of the register
length.

2.3.2 Status and Control Registers

For control of various operations several registers are used. These registers cannot be
used in data manipulation; however, the content of some of these registers can be used
by the programmer. One of the control registers for a von-Neumann machine is the
Program Counter (PC).

Almost all the CPUs, as discussed earlier, have a status register, a part of which may
be programmer visible. A register which may be formed by condition codes is called
condition code register. Some of the commonly used flags or condition codes in such
a register may be:

Flag Comments

Sign flag This indicates whether the sign of previous arithmetic operation
was positive (0) or negative (1).

Zero flag This flag bit will be set if the result of the last arithmetic
operation was zero.

Carry flag This flag is set, if a carry results from the addition of the highest
order bits or borrow is taken on subtraction of highest order bit.

Equal flag This bit flag will be set if a logic comparison operation finds
out that both of its operands are equal.

Overflow flag This flag is used to indicate the condition of arithmetic overflow.
Interrupt This flag is used for enabling or disabling interrupts. Enable/

disable flag.
Supervisor flag This flag is used in certain computers to determine whether

the CPU is executing in supervisor or user mode. In case the CPU
is in supervisor mode it will be allowed to execute certain
privileged instructions.

These flags are set by the CPU hardware while performing an operation. For example,
an addition operation may set the overflow flag or on a division by 0 the overflow flag
can be set etc. These codes may be tested by a program for a typical conditional
branch operation. The condition codes are collected in one or more registers. RISC
machines have several sets of conditional code bits. In these machines an instruction
specifies the set of condition codes which is to be used. Independent sets of condition
code enable the provisions of having parallelism within the instruction execution unit.

The flag register is often known as Program Status Word (PSW). It contains condition
code plus other status information. There can be several other status and control
registers such as interrupt vector register in the machines using vectored interrupt,
stack pointer if a stack is used to implement subroutine calls, etc.

Check Your Progress 1

1. What is an address register?

 ……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

 36

 Registers, Micro-

operations and
Introduction

Execution

2. A machine has 20 general-purpose registers. How many bits will be needed for
register address of this machine?
..

..

..

3. What is the advantage of having independent set of conditional codes?

 ..

 ..

 ..

3. Can we store status and control information in the memory?
..

..

..
Let us now look into an example register set of MIPS processor.

2.4 GENERAL REGISTERS IN A PROCESSOR

In Block 4 Unit 1, you would be exposed to 8086 registers. In this section we will
provide very brief details of registers of a RISC system called MIPS.

MIPS is a register-to-register or load/store architecture and uses three address
instructions for data manipulation. It is because of register-register operands that you
can have more operands in an instruction of 32 bits, as register address are smaller.
The MIPS have 32 addressable registers = 25 ⇒ 5 bits register address. The table
given below displays the MIPS general purpose registers.

MIPS register names begin with a $. There are two naming conventions:

• By number:

 $0 $1 $2 … $31

• By (mostly) two-letter names, such as:

 $a0 - $a3 $t0 - $t7 $s0 - $s7 $gp $fp $sp $ra

Not all of these are general-purpose registers. The following table describes how each
general register is treated, and the actions you can take with each register.

Name

Register
number

Description

Specify in Expression

ZERO

0

Always has the value 0.

$zero

AT 1

Reserved for the assembler to handle
large constants.

$at

V0 - V1

2-3

Function value registers. Values for
results and expression evaluation.

$v0 - $v1

A0 - A3

4-7 Argument registers.

$a0 - $a3

 37

The Central
Processing Unit T0 - T7 8-15 Temporary registers $t0 - $t7

S0 - S7

16-23

Saved registers

$s0 - $s7

T8 - T9

 24-25

Temporary registers

$t8 - $t9

K0 - K1

26-27

Reserved for the operating system

$k1 - $k2

GP

28

Global pointer register

$gp

SP

29

Stack pointer register

$sp

FP

30

Frame pointer register

$fp

RA

31

Return address register

$ra

You will also study another 8086 based register organization in Block 4 of this course.
So, all the computers have a number of registers. But, how exactly is the instruction
execution related to registers? To explore this concept, let us first discuss the concept
of Micro-operations.

2.5 MICRO-OPERATION CONCEPTS

We have discussed the general architecture and register set of MIPS microprocessor.
Our next task is to look at the functionality of ALU, the control unit and how an
instruction is executed. In this section, we will define a micro-operation concept,
which is the key concept to describe instruction execution.

A micro-operation is an elementary operation performed normally during one clock
pulse. On the information stored in one or more registers. The result of the operation
may replace the previous content of a register or is transferred to a new register or a
memory location.

A digital system performs a sequence of micro-operations on data stored in registers
or memory. The specific sequence of micro-operations performed is predetermined for
an instruction. Thus, an instruction is a binary code specifying a definite sequence of
micro-operations to perform a specific function.

For example, a C program instruction sum = sum + 7, will first be converted to
equivalent assembly program:

• Move data from memory location “sum” to register R1 (LOAD R1, sum)
• Add an immediate operand to register (R1) and store the results in R1

(ADD R1, 7)
• Store data from register R1 to memory location “sum” (STORE sum, R1).

Thus, several machine instructions may be needed (this will vary from machine to
machine) to execute a simple C statement. But, how will each of these machine
statements be executed with the help of micro-operations? Let us try to elaborate the
execution steps:

• Fetch the instructions.

• Pass the address of Program Counter (PC) to Memory Address Register
(MAR).

• Issue the memory read operation to fetch instruction in the Buffer Register
for data, such as M(BR).

 38

 Registers, Micro-

operations and
Introduction

Execution

• Increment Program Counter to refer to next instruction in sequence and
bring instruction to Instruction Register (IR).

• Execute the instruction

• Decode the instruction to ascertain operation.
• As one of the operands is already available in R1 register and the second

operand is an immediate operand so fetch operand step is not required. The
immediate operand is available in the address part of the instruction.

• Perform the ALU based addition with R1 and buffer register, store the result
in R1.

Thus, we may have to execute the instruction in several steps. For the subsequent
discussion, for simplicity, let us assume that each micro-operation can be completed
in one clock period, although some micro-operations require memory read/write that
may take more time.

Let us first discuss the type of micro-operations. The most common micro-operations
performed in a digital computer can be classified into four categories:

1) Register transfer micro-operations: simply transfer binary information from one
register to another.

2) Arithmetic micro-operations: perform simple arithmetic operations on numeric
data stored in registers.

3) Logic micro-operations: perform bit manipulation (logic) operations on non-
numeric data stored in registers.

4) Shift micro-operations registers: perform shift operations on data stored in
registers.

2.5.1 Register Transfer Micro-operations

These micro-operations, as the name suggests transfer information from one register
to another. The information does not change during these micro-operations. A register
transfer micro-operation may be designed as: R1 R2. The symbol implies that
the contents of register R2 are transferred to register R1. R2 here is a source register
while R1 is a destination register. We will use this notation throughout this section.
Please note the following important points about register transfer micro-operations.

• For a register transfer micro-operation there must be a path for data transfer from
the output of the source register to the input of destination register.

• In addition, the destination register should have a parallel load capability, as we
expect the register transfer to occur in a predetermined control condition. We will
discuss more about the control unit in Unit 4 of this block.

• A common path for connecting various registers is through a common internal
data bus of the processor. In general the size of this data bus should be equal to
the number of bits in a general register.

The convention used to represent the micro-operations is:

1. Computer register names are designated by capital letters (sometimes followed
by numerals) to denote its function. For example, R1, R2 (General Purpose
Registers), AR (Address Register), IR (Instruction Register) etc.

 39

2. The individual bits within a register are numbered from 0 (rightmost bit) to n-1
(leftmost bit) as shown in Figure 2b). Common ways of drawing the block
diagram of a computer register are shown below. The name of the 16-bit register
is IR (Instruction Register) which is partitioned into two subfields in Figure 2d).
Bits 0 through 7 are assigned the symbol L (for Low byte) and bits 8 through 15
are assigned the symbol H (for high byte). The symbol IR (L) refers to the low-
order byte and IR (H) refers to high-order byte.

The Central
Processing Unit

 a) Register b) Individual bits

15 14 13 ……………2 1 0 R0

 15 0 15 8 7 0

 c) Numbering of bits d) Subfields

 IR (H) IR (L) R1

Figure 2: Register Formats

3. Information transfer from one register to another is designated in symbolic

notation by a replacement operator. For example, the statement R2 R1 denotes
a transfer of all bits from the source register R1 to the destination register R2
during one clock pulse and the destination register has a parallel load capacity.
However, the contents of register R1 remain unchanged after the register transfer
micro-operation. More than one transfer can be shown using a comma operator.

4. If the transfer is to occur only under a predetermined control condition, then this

condition can be specified as a control function. For example, if P is a control
function then P is a Boolean variable that can have a value of 0 or 1. It is
terminated by a colon (:) and placed in front of the actual transfer statement. The
operation specified in the statement takes place only when P = 1. Consider the
statements:

 If (P =1) then (R2 R1)
 or,
 P: R2 R1,

 Where P is a control function that can be either 0 or 1.

5. All micro-operations written on a single line are to be executed at the same time

provided the statements or a group of statements to be implemented together are
free of conflict. A conflict occurs if two different contents are being transferred
to a single register at the same time. For example, the statement: new line X:
R1 R2, R1 R3 represents a conflict because both R2 and R3 are trying to
transfer their contents to R1 at the same time.

6. A clock is not included explicitly in any statements discussed above. However, it

is assumed that all transfers occur during the clock edge transition immediately
following the period when the control function is 1. All statements imply a
hardware construction for implementing the micro-operation statement as shown
below:

 Implementation of controlled data transfer from R2 to R1 only when T = 1
 T : R1 R2
 T = Load
Block Diagram
 Clock

 Bits

Timing Diagram

Clock t ^ t+1 ^

R1

R2

Control
Circuit

40

 Load

 Transfer occurs here

Figure 3: The Register Transfer Time

 Registers, Micro-

operations and
Introduction

Execution

It is assumed that the control variable is synchronized with the same clock as the one
applied to the register. The control function T is activated by the rising edge of the
clock pulse at time t. Even though the control variable T becomes active just after
time t, the actual transfer does not occur until the register is triggered by the next
positive transition of the clock at time t+1. At time t+1, load input is again active and
the data inputs of R2 are then loaded into the register R1 in parallel. The transfer
occurs with every clock pulse transition while T remains active.

Bus and Memory Transfers

A digital computer has many registers, and rather than connecting wires between all
registers to transfer information between them, a common bus is used. Bus is a path
(consists of a group of wires) one for each bit of a register, over which information is
transferred, from any of several sources to any of several destinations.

From a register to Bus: BUS R. The implementation of bus is explained in Unit 3
of this block.

 The transfer from bus to register can be expressed symbolically as:

R1 ← BUS,

The content of the selected register is placed on the BUS, and the content of the bus is
loaded into register R1 by activating its load control input.

Memory Transfer

The transfer of information from memory to outside world i.e., I/O Interface is called
a read operation. The transfer of new information to be stored in memory is called a
write operation. These kinds of transfers are achieved via a system bus. It is necessary
to supply the address of the memory location for memory transfer operations.

Memory Read

The memory unit receives the address from a register, called the memory address
register designated by MAR. The data is transferred to another register, called the data
register designated by DR. The read operation can be stated as:

Read: DR [MAR]

Memory Write

The memory write operation transfers the content of a data register to a memory word
M selected by the address. Assume that the data of register R1 is to be written to the
memory at the address provided in MAR. The write operation can be stated as:

Write: [MAR] R1

Please note, it means that the location pointed by MAR will be written and not MAR.

 Read

 Write

DR

MEMORY MAR

Figure 4: Memory Transfer

 41

The Central
Processing Unit 2.5.2 Arithmetic Micro-operations

These micro-operations perform simple arithmetic operations on numeric data
stored in registers. The basic arithmetic micro-operations are addition, subtraction,
increment, decrement, and shift.

Addition micro-operation is specified as:

 R3 R1 +R2

It means that the contents of register R1 are added to the contents of register R2 and
the sum is transferred to register R3. This operation requires three registers to hold
data along with the Binary Adder circuit in the ALU. Binary adder is a digital circuit
that generates the arithmetic sum of two binary numbers of any lengths and is
constructed with full-adder circuits connected in cascade. An n-bit binary adder
requires n full-adders. Add micro-operation, in accumulator machine, can be
performed as:

AC AC + DR

Subtraction is most often implemented in machines through complement and adds
operations. It is specified as:

 R3 R1 − R2
 R3 R1 + (2’s complement of R2)
 R3 R1 + (1’s complement of R2 + 1)
 R3 R1 + R2 + 1 (The bar on top of R2 implies 1’s complement of R2 which

is bitwise complement)

Adding 1 to the 1’s complement produces the 2’s complement. Adding the contents of
R1 to the 2’s complement of R2 is equivalent to subtracting the contents of R2 from
R1 and storing the result in R3. We will describe the basic circuit required for these
micro-operations in the next unit.

The increment micro-operation adds one to a number in a register. This operation is
designated as:

 R1 R1 + 1

This can be implemented in hardware by using a binary-up counter.

The decrement micro-operation subtracts one from a number in a register. This
operation is designated as:

 R1 R1 – 1

This can be implemented using binary-down counter.

What about the multiply and division operations? Are not they micro-operations? In
most of the older computers multiply and divisions were implemented using
add/subtract and shift micro-operations. If a digital system has implemented division
and multiplication by means of combinational circuits, then we can call these as the
micro-operations for that system.

2.5.3 Logic Micro-operations

Logic operations are basically binary operations, which are performed on the string of
bits stored in the registers. For a logic micro-operation each bit of a register is treated
as a variable. A logic micro-operation:

 42

 Registers, Micro-

operations and
Introduction

Execution

R1 R1.R2 specifies AND operation to be performed on the contents of R1 and R2
and store the results in R1. For example, if R1 and R2 are 8 bits registers and:

R1 contains 10010011 and
R2 contains 01010101

 Then R1 will contain 00010001 after AND operation.

Some of the common logic micro-operations are AND, OR, NOT or Complement,
Exclusive OR, NOR, and NAND. In many computers only four: AND, OR, XOR
(exclusive OR) and complement micro-operations are implemented.

Let us now discuss how these four micro-operations can be used in implementing
some of the important applications of manipulation of bits of a word, such as,
changing some bit values or deleting a group of bits. We are assuming that the result
of logic micro-operations go back to Register R1 and R2 contains the second operand.

We will play a trick with the manipulations we are performing. Let us select 1010 as 4
bit data for register R1, and 1100 data for register R2. Why? Because if you see the bit
combinations of R2, and R1, they represent the truth table entries (read from right to
left and bottom to top) 00, 01, 10 and 11. Thus, the resultant of the logical operation
on them will indicate which logic micro-operation is needed to be performed for that
data manipulation. The following table gives details on some of these operations:

 R1 1 0 1 0
 R2 1 1 0 0

Operation
name

What is the
operation?

Example and Explanation

Selective Set Sets those bits in
Register R1 for
which the
corresponding R2 bit
is 1.

 R1 = 1010
 R2 = 1100

 1110
The value 1110 suggests that selective set
can be done using logic OR micro-operation.
Please note that all those bits of R1, for
which we have 0 bit in R2, have remained
unchanged. The bits in R1 which need to be
set selectively must have the corresponding
R2 bits as 1.

Selective Clear Clear those bits in
register R1 for
which corresponding
R2 bits are 1.

 R1 = 1010
 R2 = 1100

 0010
The R1 value after the operation is 0010
which suggests that Corresponding micro-
operation is R1 AND 2R

Selective
Complement

Complement those
bits in register R1
for which the
corresponding R2
bits are 1.

 R1 = 1010
 R2 = 1100

 0110
The R1, value 0110 after the operation
suggests that the selective complement can
be done using exclusive - OR micro-
operation. The bits in R1 which need to be
complemented selectively must have the
corresponding R2 bits as 1.

Mask
Operations

Clears those bits in
Register R1 for
which the
corresponding R2

 R1 = 1010
 R2 = 1100

 1000
The R1 value after the operation is 1000

 43

The Central
Processing Unit bits are 0. which suggests that the mask operation can

be performed using AND micro-operation.
However, the bits in R1 which are cleared or
masked correspond to the bits on R2 having
a 0 value. The mask operation is preferred
over selective clear as most of the computers
provide AND micro-operation while the
micro-operation required for implementing
selective clear is normally not provided in
computers

Insert For inserting a new
value in a bit. It is a
two-step process:
Step 1: Mask out the
existing bit value
Step 2: Insert the bit
using OR micro-
operation with the
bits which are to be
inserted.

This is a two-step process.
Example:
 Say contents of R1 = 0011 1011
 Suppose, we want to insert 0110 in place of
left
 most 0011 then:
 0011 1011 (R1 before)
 0000 1111 (R2 for masking)
 Perform AND operation
(mask)
 0000 1011 (R1 after)
 Now insert: 01100000 (R2 for insertion)
 Perform OR operation
 0110 1011 R1 after insert

Clear Clear all the bits R1 = 1101
 R2 = 1101

 0000
Implemented by taking exclusive OR with
the same number. The exclusive OR, thus,
can also be used for checking whether two
numbers are equal or not.

2.5.4 Shift Micro-operations

Shift is a useful operation, which can be used for serial transfer of data. Shift
operations can also be used along with other (arithmetic, logic, etc.) operations. For
example, for implementing a multiply operation arithmetic micro-operation (addition)
can be used along with shift operation. The shift operation may result in shifting the
contents of a register to the left or right. In a shift left operation a bit of data is input at
the right most flip-flop while in shift right a bit of data is input at the left most flip-
flop. In both the cases a bit of data enters the shift register. Depending on what bit
enters the register and where the shift out bit goes, the shifts are classified in three
types. These are:

• logical
• arithmetic and
• circular.

In logical shift the data entering by serial input to left most or right most flip-flop
(depending on right or left shift operations respectively) is a 0.

If we connect the serial output of a shift register to its serial input then we encounter a
circular shift. In circular shift left or circular shift right information is not lost, but is
circulated.

In arithmetic shift a signed binary number is shifted to the left or to the right. Thus, an
arithmetic shift-left causes a number to be multiplied by 2, on the other hand a shift-
right causes a division by 2. But as in division or multiplication by 2 the sign of a

 44

 Registers, Micro-

operations and
Introduction

Execution

number should not be changed, therefore, arithmetic shift must leave the sign bit
unchanged. We have already discussed about shift operations in the Unit 1.

Let us summarize micro-operations using the following table:

Sl. No. Micro-operations Examples

1. Register transfer R1 R2 (register transfer)
[MAR] R1 (Register to memory)

2. Arithmetic micro-
operations

ADD R1 R1 + R2
SUBTRACT R1 R1 + (2R +1)
INCREMENT R1 R1 +1
DECREMENT R1 R1 – 1

3. Logical micro operations AND
OR
COMPLEMENT
XOR

4. Shift Left or right shift
• Logical
• Arithmetic
• Circular

Check Your Progress 2

1. How does the memory read / operation carried out using system bus?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

4. Are multiplication and division arithmetic operations micro-operations?
………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3. What will be the value for R2 operand if:

(i) Mask operation clears register R1
(ii) Bits 1011 0001 is to be inserted in an 8 bit R1 register.

4. What are the differences between circular and logical shift micro-operations?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2.6 INSTRUCTION EXECUTIONS AND MICRO -
OPERATIONS

Let us now discuss instruction execution using the micro-operations. A simple
instruction may require:

• Instruction fetch: fetching the instruction from the memory.
• Instruction decode: decode the instruction.
• Operand address calculation: find out the effective address of the operands.
• Execution: execute the instruction.
• Interrupt Acknowledge: perform an interrupt acknowledge cycle if an interrupt

request is pending.

 45

The Central
Processing Unit Let us explain how these steps of instruction execution can be broken down to micro-

operations. For simplifying the discussion, let us assume that the machine has the
structure as shown in Figure 1. In addition, let us also assume that the instruction set
of the machine has only two addressing modes direct and indirect memory addresses
and a memory access take same time as that of a register access that is one clock
cycle.

Instruction fetch: In this phase the instruction is brought from the address pointed by
PC to instruction register. The steps required are:

Transfer the address of PC to MAR. (Register Transfer) MAR PC
MAR puts its contents on the address bus for main
memory location selection, the control unit instructs the
MAR to do so and also uses a memory read signal. The
word so read is placed on the data bus where it is
accepted by the Data register (Memory-read using bus.
It may take more than one clock pulses depending on
the tcpu and tmem) The PC is incremented by one memory
word length to point to the next instruction in sequence.
This micro-operation can be carried out in parallel to the
micro-operation above.

DR (MAR), PC
PC +1

The instruction so obtained is transferred from data
register to the Instruction register for further processing.
(Register Transfer)

IR DR

Instruction Decode: This phase is performed under the control of the Control Unit of
the computer. The Control Unit determines the operation that is to be performed and
the addressing mode of the data. In our example, the addressing modes can be direct
or indirect.

Operand Address Calculation: In actual machines the effective address may be a
memory address, register or I/O port address. The register reference instructions such
as complement R1, clear R2 etc. normally do not require any memory reference
(assuming register indirect addressing is not being used) and can directly go to the
execute cycle. However, the memory reference instruction can use several addressing
modes. Depending on the type of addressing the effective address (EA) of operands in
the memory is calculated. The calculation of effective address may require more
memory fetches (for example in the case of indirect addressing), thus in this step we
may calculate the effective address as:

For Direct Address:

• Transfer the address portion of instruction is the
direct address so no further calculation is
needed.

IR (Address) and DR
(Address) contain the
Effective address.

For Indirect Address:
• Transfer the address bits of instruction to the

MAR. This transfer can be achieved using DR,
as DR and IR at this point of time contain the
same value. (Register Transfer)

• Perform a memory read operation as done in
fetch cycle and the desired address of the
operand is obtained in the DR. (Memory Read)

• Transfer the address part so obtained in DR as
the address part of instruction. (Register
Transfer) Thus, the indirect address is now
converted to direct address or effective address.

MAR ← DR (Address)

 DR← (MAR)

IR (Address) ← DR
(Address)

 46

 Registers, Micro-

operations and
Introduction

Execution

Thus, the address portion of IR now contains the effective address, which is the direct
address of the operand.

Execution: Now the instruction is ready for execution. A different opcode will require
different sequence of steps for the execution. Therefore, let us discuss a few examples
of execution of some simple instructions for the purpose of identifying some of the
steps needed during instruction execution. Let us start the discussions with a simple
case of addition instruction. Suppose, we have an instruction: Add R1, A which adds
the content of memory location A to R1 register storing the result in R1. This
instruction will be executed in the following steps:

Transfer the address portion of the instruction to the
MAR. (Register transfer)

MAR IR (Address)

Read the memory location A and bring the operand
in the DR. (Memory read)

DR (MAR)

Add the DR with R1 using ALU and bring the results
back to R1. (Add micro-operations)

R1 R1 + DR

Now, let us try a complex instruction - a conditional jump instruction. Suppose an
instruction:

 INCSKIP A

increments A and skips the next instruction if the content of A has become zero. This
is a complex instruction and requires intermediate decision-making. The micro
operations required for this instruction execution are:

Transfer the address portion of IR to the MAR.
(Register transfer)

MAR IR (Address)

Read memory. DR on reading will contain the
operand A. (Memory read)

DR (MAR)

Transfer the contents of DR to R1. We are
assuming that DR, although it can be used in
computation, it cannot be used as destination of
an ALU operation. Thus, we need to transfer its
content to a general purpose register R1 where
the operation can be performed. (Register
transfer)

R1 DR

Increment the R1. (Increment micro-operation) R1 R1 +1
Transfer the content of R1 to DR. (Register
transfer)

DR R1

Store the contents of DR- into the location A
using MAR. This operation proceeds through
as: Address bits are applied on address bus by
MAR. The data is put into the data bus. The
control unit providing control signal for
memory write, thus resulting in a memory write
at a location specified by MAR. (Memory
write)

(MAR) DR

If the content of R1 is zero then increment PC
by one, thus skipping the next instruction. This
operation can be performed in parallel to the
memory write. Please note in the last step a
comparison and an action is taken as a single
step. This is possible as it is a simple
comparison based on status flags. (Increment
on a condition)

If R1 = 0 then PC PC + 1

 47

The Central
Processing Unit Let us now take an example of branching operation. Suppose we are using the first

location of subroutine to store the return address, then the steps involved in this
subroutine call (CALL A) can be:

Transfer the contents of address portion of
IR to MAR. (Register Transfer)

 Transfer the return address, that is, the
contents of PC to DR. This micro-operation
can be performed in parallel to the previous
micro-operation. (Register transfer)

MAR IR (Address),

 DR PC

Transfer the branch address that is stored in
Address part of the instruction to program
counter. (Register transfer)

PC IR (Address)

Store the DR using MAR. Thus, the return
address is stored at the first location of the
subroutine. (This operation normally is done
in stack, but in this example we are storing
the return address in the first location of the
subroutine). This micro-operation can be
performed in parallel to previous micro-
operation. (Memory write)

(MAR) DR

Increment the PC as it contains the first
location of subroutine, which is used to store
the return address. The first instruction of
subroutine starts from the next location.
(Increment)

PC PC + 1

Thus, the number of steps required in execution may differ from instruction to
instruction.

Interrupt Processing: On completion of the execution of an instruction, the machine
checks whether there is any pending interrupt request for the interrupts that are
enabled. If an enabled interrupt has occurred then that Interrupt may be processed.
The nature of interrupt varies from machine to machine. However, let us discuss one
simple illustration of interrupt processing events. A simple sequence of steps followed
in interrupt phase is:

Transfer the contents of PC to DR, as this is the
return address after the interrupt service program
has been executed. This address must be saved.

DR PC

Place the address of location, where the return
address is to be saved, into MAR. Please note that
this address is normally predetermined in
computers.

MAR Address of
location for saving return
address.

Store the contents of PC in the memory using DR
and MAR. (Memory write)

 Transfer the address of the first instruction of
interrupt servicing routine to the PC. This micro-
operation can be performed in parallel to the above
micro-operation.

(MAR) DR
 PC address of the first
instruction interrupt service
programs

After completing the above interrupt processing, CPU will fetch the next instruction
that may be interrupt service program instruction. Thus, during this time CPU might
be doing the interrupt processing or executing the user program. Please note each
instruction of interrupt service program is executed as an instruction in an instruction
cycle.

 48

 Registers, Micro-

operations and
Introduction

Execution

Please note for a complex machine the instruction cycle will not be as easy as this.
You can refer to further readings for more complex instruction cycles.

2.7 INSTRUCTION PIPELINING

After discussing instruction execution, let us now define a concept that is very popular
in any CPU implementation. This concept is instruction pipeline.

To extract better performance, as defined earlier, instruction execution can be done
through instruction pipeline. The instruction pipelining involves decomposing of an
instruction execution to a number of pipeline stages. Some of the common pipeline
stages can be instruction fetch (IF), instruction decode (ID), operand fetch (OF),
execute (EX), store results (SR). An instruction pipe may involve any combination of
such stages. A major design decision here is that the instruction stages should be of
equal execution time. Why?

A pipeline allows overlapped execution of instructions. Thus, during the course of
execution of an instruction the following may be a scenario of execution.

Time Slot -

>
1 2 3 4 5 6 7 8 9 10 11

Instruction
1

IF ID OF EX SR

Instruction
2

 IF ID OF EX SR

Instruction
3

 IF ID OF EX SR

Instruction
4

 IF ID OF EX SR

Instruction
5

 IF ID OF EX SR

Instruction
6

 IF ID OF EX SR

Instruction
7

 IF ID OF EX SR

Figure 5: Instruction Pipeline

Please note the following observations about the above figure:

• The pipeline stages are like steps. Thus, a step of the pipeline is to be complete in
a time slot. The size of the time slot will be governed by the stage taking
maximum time. Thus, if the time taken in various stages is almost similar, we
get the best results.

• The first instruction execution is completed on completion of 5th time slot, but
afterwards, in each time slot the next instruction gets executed. So, in ideal
conditions one instruction is executed in the pipeline in each time slot.

• Please note that after the 5th time slot and afterwards the pipe is full. In the 5th
time slot the stages of execution of five instructions are:

SR (instruction 1) (Requires memory reference)
EX (instruction 2) (No memory reference)
OF (instruction 3) (Requires memory reference)
ID (instruction 4) (No memory reference)
IF (instruction 5) (Requires memory reference)

 49

The Central
Processing Unit The Pipelining Problems:

• On the 5th time slot and later, there may be a register or memory conflict in the
instructions that are performing memory and register references that is various
stages may refer to same registers/memory location. This will result in slower
execution instruction pipeline that is one of the higher number instruction has to
wait till the lower number instructions completed, effectively pushing the whole
pipelining by one time slot.

• Another important situation in Instruction Pipeline may be the branch instruction.

Suppose that instruction 2 is a conditional branch instruction, then by the time the
decision to take the branch is taken (at time interval 5) three more instructions
have already been fetched. Thus, if the branch is to be taken then the whole
pipeline is to be emptied first. Thus, in such cases, pipeline cannot run at full
load.

How can we minimize the problems occurring due to the branch instructions?

We can use many mechanisms that may minimize the effect of branch penalty.

• To keep multiple streams in pipeline in case of branch
• Pre-fetching the next as well as instruction to which branch is to take place
• A loop buffer may be used to store the instructions of a loop instruction
• Predicting whether the branch will take place or not and acting accordingly
• Delaying the pipeline fill up till the branch decision is taken.

Check Your Progress 3

State True or False

1) An instruction cycle does not include indirect cycle if the operands are
the register.

2) Register transfer micro-operations are not needed for instruction execut

3) Interrupt cycle results only in jumping to an interrupt service routine. T

processing of the instructions of this routine is performed in instruction

2.8 SUMMARY

In this unit, we have discussed in detail the register organisation and a simpl
of the CPU. After this we have discussed in details the micro-operations and
implementation in hardware using simple logical circuits. While discussing
operations our main emphasis was on simple arithmetic, logic and shift micr
operations, in addition to register transfer and memory transfer. The knowle
have acquired about register sets and conditional codes, helps us in giving u
that conditional micro-operations can be implemented by simply checking fl
conditional codes. This idea will be clearer after we go through Unit 3 and U
have completed the discussions on this unit, with providing a simple approac
instruction execution with micro-operations. We have also defined the conce
Instruction Pipeline. We will be using this approach for discussing control u
in Unit 3 and Unit 4. The following table gives the details of various terms
this unit.

 50
T F
stored i

ion.

he actu
 cycle.

e struct
 their
micro-
o-
dge you
s an ide
ags and
nit 4. W
h of
pts of

nit deta
used in
n
al
ure

a

e

ils

 Registers, Micro-

operations and
Introduction

Execution

General purpose registers These registers are used for any address
or data computation / storage

Status and control register Stores the various condition codes

Programmer visible registers Used by programmers during
programming

Micro-operations Involves register transfer micro
operations arithmetic micro-operations
like add, subtract, logic micro-operations
like AND, OR, NOT, XOR and shift
micro-operations left or right shift

Micro-operations and instruction
execution

An instruction is executed through a
sequence of micro-operations. Thus, a
program is executed as a sequence of
instruction is executed when a sequence
of microinstructions are executed.

Instruction pipeline Allows overlapped execution of
instructions. A good pipe can produce
one instruction per clock cycle.

You will also get the details on 8086 microprocessor register sets, conditional codes,
instructions etc. in Unit 1 of Block 4.

You can refer to further readings for more register organisation examples and for
more details on micro-operations and instruction execution.

2.9 SOLUTIONS /ANSWERS

Check Your Progress 1

1. Registers, which are used only for the calculation of operand addresses, are

called address registers.
2. 5 bits
3. It helps in implementing parallelism in the instruction execution unit.
4. Yes. Normally, the first few hundreds of words of memory are allocated for

storing control information.

Check Your Progress 2

1. Read operation involves reading of location pointed to by MAR. The address bus

is loaded with the contents of MAR
address BUS MAR

In addition a read signal is issued by control unit, and data is stored to MBR
register or data register.

 DR data BUS
 The combined operation can be shown as
 DR [MAR]

2. Yes, if implemented through circuits.

No, if implemented through algorithms involving add/ subtract and shift micro-
operations.

 51

 52

The Central
Processing Unit 3. (i) 0000 0000

(ii) Initially AND with 0000 0000 followed by OR with 1011 0001

4. The bits circulate and after a complete cycle the data is still intact in circular

shift. Not so in logical shift.

Check Your Progress 3

1. True
2. False
3. True

 53

ALU Organisation

UNIT 3 ALU ORGANISATION

Structure Page No.

3.0 Introduction 53
3.1 Objectives 53
3.2 ALU Organisation 53

3.2.1 A Simple ALU Organization
3.2.2 A Sample ALU Design

3.3 Arithmetic Processors 62
3.4 Summary 63
3.5 Solutions/ Answers 64

3.0 INTRODUCTION

By now we have discussed the instruction sets and register organisation followed by a
discussion on micro-operations and instruction execution. In this unit, we will first
discuss the ALU organisation. Then we will discuss the floating point ALU and
arithmetic co-processors, which are commonly used for floating point computations.

This unit provides a detailed view on implementation of simple micro-operations that
include register–transfer, arithmetic, logic and shift micro-operation. Finally, the
construction of a simple ALU is given. Thus, this unit provides you the basic insight
into the computer system. The next unit covers details of the control unit. Together
these units describe the two most important components of CPU: the ALU and the
CU.

3.1 OBJECTIVES

After going through this unit, you will be able to:

• describe the basic organisation of ALU;
• discuss the requirements of a floating point ALU;
• define the term arithmetic coprocessor; and
• create simple arithmetic logic circuits.

3.2 ALU ORGANISATION

As discussed earlier, an ALU performs simple arithmetic-logic and shift operations.
The complexity of an ALU depends on the type of instruction set which has been
realized for it. The simple ALUs can be constructed for fixed-point numbers. On the
other hand the floating-point arithmetic implementation requires more complex
control logic and data processing capabilities, i.e., the hardware. Several micro-
processor families utilize only fixed-point arithmetic capabilities in the ALUs. For
floating point arithmetic or other complex functions they may utilize an auxiliary
special purpose unit. This unit is called arithmetic co-processor. Let us discuss all
these issues in greater detail in this section.

3.2.1 A Simple ALU Organisation

An ALU consists of circuits that perform data processing micro-operations. But how
are these ALU circuits used in conjunction of other registers and control unit? The

 54

The Central
Processing Unit simplest organisation in this respect for fixed point ALU was suggested by John von

Neumann in his IAS computer design (Please refer to Figure 1).

Bus

 :
 :
Control

Signals

Control Unit

Flags

Parallel Adder
and other Logic

Circuits

Data Register
(DR)

Multiplier
Quotient

Register (MQ)

Accumulator
Register (AC)

Figure 1: Structure of a Fixed point Arithmetic logic unit

The above structure has three registers AC, MQ and DR for data storage. Let us
assume that they are equal to one word each. Please note that the Parallel adders and
other logic circuits (these are the arithmetic, logic circuits) have two inputs and only
one output in this diagram. It implies that any ALU operation at most can have two
input values and will generate single output along with the other status bits. In the
present case the two inputs are AC and DR registers, while output is AC register. AC
and MQ registers are generally used as a single AC.MQ register. This register is
capable of left or right shift operations. Some of the micro-operations that can be
defined on this ALU are:

Addition : AC AC + DR

Subtraction : AC AC – DR

AND : AC AC ^ DR

OR : AC AC v DR

Exclusive OR : AC AC (+) DR

NOT : AC AC

In this ALU organisation multiplication and division were implemented using shift-
add/subtract operations. The MQ (Multiplier-Quotient register) is a special register
used for implementation of multiplication and division. We are not giving the details
of how this register can be used for implementing multiplication and division
algorithms. For more details on these algorithms please refer to further readings. One
such algorithm is Booth’s algorithm and you must refer to it in further readings.

For multiplication or division operations DR register stores the multiplicand or divisor
respectively. The result of multiplication or division on applying certain algorithm can

ALU Organisation finally be obtained in AC.MQ register combination. These operations can be
represented as:

Multiplication : AC.MQ DR × MQ

Division : AC.MQ MQ ÷ DR

DR is another important register, which is used for storing second operand. In fact it
acts as a buffer register, which stores the data brought from the memory for an
instruction. In machines where we have general purpose registers any of the registers
can be utilized as AC, MQ and DR.

Bit Slice ALUs

It was feasible to manufacture smaller such as 4 or 8 bits fixed point ALUs on a single
IC chip. If these chips are designed as expendable types then using these 4 or 8 bit
ALU chips we can make 16, 32, 64 bit array like circuits. These are called bit- slice
ALUs.

The basic advantage of such ALUs is that these ALUs can be constructed for a desired
word size. More details on bit-slice ALUs can be obtained from further readings.

Check Your Progress 1

State True or False

1. A multiplication operation can be implemented as a logical operation.

2. The multiplier-quotient register stores the remainder for a division opera

3. A word is processed sequentially on a bit slice ALU.

3.2.2 A Sample ALU Design

The basis of ALU design starts with the micro-operation implementation. So
first explain how the bus can be used for Data transfer micro-operations.

A digital computer has many registers, and rather than connecting wires be
registers to transfer information between them, a common bus is used. Bus
(consists of a group of wires) one for each bit of a register, over which infor
transferred, from any of several sources to any of several destinations. In g
size of this data bus should be equal to the number of bits in a genera
register.

A register is selected for the transfer of data through bus with the help of con
signals. The common data transfer path, that is the bus, is made using the
multiplexers. The select lines are connected to the control inputs of the multi
and the bits of one register are chosen thus allowing multiplexers to select a s
source register for data transfer.

The construction of a bus system for four registers using 4×1 multiplexers
below. Each register has four bits, numbered 0 through 3. Each multiplexer h
inputs, numbered 0 through 3, and two control or selection lines, C0 and C1.
inputs of 0th MUX are connected to the corresponding 0th input of every r
form four lines of the bus. The 0th multiplexer multiplexes the four 0th b
registers, and similarly for the three other multiplexers.

Since the same selection lines C0 and C1 are connected to all multiplexers,
they choose the four bits of one register and transfer them into the four-line
bus.
T F
tion.

, let us

tween
 is a pa
mation

eneral t
l purpo

trol

plexers
pecific

 is show
as 4 d

 The d
egister
its of t

 therefo
 comm

a
a

55

all
th
 is
he
se

n
ta
ta
to
he

re
on

 56

The Central
Processing Unit

Register A Register B Register C Register D

 0 1 2 3

4 × 1
MUX 0

 0 1 2 3
4 × 1

MUX 1

 0 1 2 3
4 × 1

MUX 2

C0

C1

0 1 2 3
4 × 1

MUX 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

4-line common bus

Figure 2: Implementation of BUS

When C1 C0 = 00, the 0th data input of all multiplexers are selected and this causes the
bus lines to receive the content of register A since the outputs of register A are
connected to the 0th data inputs of the multiplexers which is then applied to the output
that forms the bus. Similarly, when C1 C0 = 01, register B is selected, and so on. The
following table shows the register that is selected for each of the four possible values
of the selection lines:

C1 C0 Register Selected

0 0 A

0 1 B

1 0 C

1 1 D

Figure 3: Bus Line Selection

To construct a bus for 8 registers of 16 bits each, you would require 16 multiplexers,
one for each line in the bus. The number of multiplexers needed to construct the bus is
equal to the number of bits in each register. Each multiplexer must have eight data
input lines and three selection lines (2 3 = 8) to multiplex one bit in the eight registers.

Implementation of Arithmetic Circuits for Arithmetic Micro-operation

An arithmetic circuit can be implemented using a number of full adder circuits or
parallel adder circuits. Figure 4 shows a logical implementation of a 4-bit arithmetic
circuit. The circuit is constructed by using 4 full adders and 4 multiplexers.

 57

ALU Organisation

Figure 4: A Four-bit arithmetic circuit

The diagram of a 4-bit arithmetic circuit has four 4×1 multiplexers and four full
adders (FA). Please note that the FULL ADDER is a circuit that can add two input
bits and a carry-in bit to produce one sum-bit and a carry-out-bit.

So what does the adder do? It just adds three bits. What does the multiplexer do? It
controls one of the input bits. Thus, such combination produces a series of micro-
operations.

Let us find out how the multiplexer control lines will change one of the Inputs for
Adder circuit. Please refer to the following table. (Please note the convention VALID
ONLY FOR THE TABLE are that an uppercase alphabet indicates a Data Word,
whereas the lowercase alphabet indicates a bit.)

 58

The Central
Processing Unit Control

Input
Output of 4 × 1 Multiplexers

S1 S0 MUX(a) MUX(b) MUX(c) MUX(d)

Y input
to

Adder

Comments

0 0 b0 b1 b2 b3 B
The data word B
is input to Full
Adders

0 1 0b 1b 2b 3b B
1’s complement
of B is input to
Full Adders

1 0 0 0 0 0 0
Data word 0 is
input to Full
Adders

1 1 1 1 1 1 FH

Data word 1111
= FH is input to
Full Adders

Figure 5: Multiplexer Inputs and Output of the Arithmetic Circuit of Figure 4

Now let us discuss how by coupling carry bit (Cin) with these input bits we can obtain
various micro-operations.

Input to Circuits

• Register A bits as a0, a1, a2 and a3 in the corresponding X bits of the Full Adder

(FA).

• Register B bits as given in the Figure 5 above as in the corresponding Y bits of
the FA.

• Please note each bit of register A and register B is fed to different full adder
unit.

• Please also note that each of the four inputs from A are applied to the X inputs
of the binary adder and each of the four inputs from B are connected to the data
inputs of the multiplexers. It means that the A input directly goes to adder but B
input can be manipulated through the Multiplexer to create a number of
different input values as given in the figure above. The B inputs through
multiplexers are controlled by two selection lines S1 and S0. Thus, using various
combinations of S1 and S0 we can select data bits of B, complement of B, 0
word, or word having All 1’s.

• The input carry Cin, which can be equal to 0 or 1, goes to the carry input of the
full adder in the least significant position. The other carries are cascaded from
one stage to the next. Logically it is the same as that of addition performed by
us. We do pass the carry of lower digits addition to higher digits. The output of
the binary adder is determined from the following arithmetic sum:

 D = X + Y + Cin

 OR

 D = A + Y + Cin

By controlling the value of Y with the two selection lines S1 and S0 and making Cin
equal to 0 or 1, it is possible to implement the eight arithmetic micro-operations listed
in the truth table.

 59

ALU Organisation S1 S0 Cin Y
val

D = A+Y +Cin Equivalent
Micro-Operation

Micro-Operation
Name

0 0 0 B D = A + B R R1 + R2 Add

0 0
1

B D = A + B + 1 R R1 + R2 + 1 Add with carry

0 1 0 B D =A+B R R1 + 2R

Subtract with borrow

0 1 1 B D = A + B+ 1
R R1 + 2's
complement of R2

Subtract

1 0 0 0 D = A R R1 Transfer
1 0 1 0 D = A + 1 R R1 + 1 Increment

1 1 0
1 D = A – 1 R R1 + (All 1s) Decrement

1 1 1
1 D = A R R1 Transfer

Figure 6: Arithmetic Circuit Function Table

Let us refer to some of the cases in the table above.

When S1S0 = 00, input line B is enabled and its value is applied to the Y inputs of the
full adder. Now,

 If input carry Cin = 0, the output will be D = A + B
 If input carry Cin = 1, the output will be D = A + B + 1.

When S1S0 = 01, the complement of B is applied to the Y inputs of the full adder. So
If Cin = 1, then output D = A +B + 1. This is called subtract micro-operation. (Why?)

Reason: Please observe the following example, where A = 0111 and B=0110, then
B =1001. The sum will be calculated as:

 0111 (Value of A)
 1001 (Complement of B)
1 0000 + (Carry in =1) = 0001

Ignore the carry out bit. Thus, we get simple subtract operation.

If Cin = 0, then D = A +B. This is called subtract with borrow micro-operation.
(Why?). Let us look into the same addition as above:

 0111 (Value of A)
 1001 (Complement of B)
1 0000 + (Carry in =0) = 0000

This operation, thus, can be considered as equivalent to:

 D = A + B
=> D = (A – 1) + (B + 1)
=> D = (A – 1) + 2’s complement of B
=> D = (A – 1) – B Thus, is the name complement with Borrow

When S1S2 = 10, input value 0 is applied to Y inputs of the full adder.

 If Cin = 0, then output D = A + 0 + Cin => D = A
 If Cin = 1, then D = A + 0 +1 => D = A + 1

The first is a simple data transfer micro-operation; while the second is an increment
micro-operation.

 60

The Central
Processing Unit When S1S2 = 11, input word all 1’s is applied to Y inputs of the full adder.

 If Cin = 0, then output D = A + All (1s) + Cin => D = A – 1 (How? Let us
explain with the help of the following example).

Example: Let us assume that the Register A is of 4 bits and contains the value 0101
and it is added to an all (1) value as:

 0101
 1111
1 0100

The 1 is carry out and is discarded. Thus, on addition with all (1’s) the number has
actually got decremented by one.

 If Cin = 1, then D = A + All(1s) +1 => D = A

The first is the decrement micro-operation; while the second is a data transfer micro-
operation.

Please note that the micro-operation D = A is generated twice, so there are only seven
distinct micro-operations possible through the proposed arithmetic circuit.

Implementation of Logic Micro-operations

For implementation, let us first ask the questions how many logic operations can be
performed with two binary variables. We can have four possible combinations of
input of two variables. These are 00, 01, 10, and 11. Now, for all these 4 input
combinations we can have 24 = 16 output combinations of truth-values for a function.
This implies that for two variables we can have 16 logical operations. The above
stated fact will be clearer by going through the following figure.

I3 I2 I1 I0 Function Operation Comments
0 0 0 0 F0 = 0 R 0 Clear
0 0 0 1 F1 = x. y R R1∧R2 AND
0 0 1 0 F2 = x. y R R1∧ 2R R1 AND with

complement R2
0 0 1 1 F3 = x R R1 Transfer of R1
0 1 0 0 F4 = x . y R 1R ∧R2 R2 AND with

complement R1
0 1 0 1 F5 = y R R2 Transfer of R2
0 1 1 0 F6 = x ⊕ y R R1⊕ R2 Exclusive OR
0 1 1 1 F7 = x + y R R1 ∨ R2 OR
1 0 0 0 F8 = ()yx + R ()21 RR ∨ NOR

1 0 0 1 F9 = ()yx⊕ R ()21 RR ⊕ Exclusive NOR

1 0 1 0 F10 = y R 2R Complement of R2

1 0 1 1 F11 = x + y R R1∨ 2R R1 OR with
complement R2

1 1 0 0 F12 = x R 1R Complement of R1

1 1 0 1 F13 = x + y R 1R ∨ R2 R2 OR with
complement R1

1 1 1 0 F14 =)y.x(R ()21 RR ∧ NAND

1 1 1 1 F15 = 1 R All 1’s Set all the Bits to 1

Figure 7: Logic micro-operations on two inputs

 61

ALU Organisation Please note that in the figure above the micro-operations are derived by replacing the
x and y of Boolean function with registers R1 and R2 on each corresponding bit of the
registers R1 and R2. Each of these bits will be treated as binary variables.

In many computers only four: AND, OR, XOR (exclusive OR) and complement
micro-operations are implemented. The other 12 micro-operations can be derived
from these four micro-operations. Figure 8 shows one bit, which is the ith bit stage of
the four logic operations. Please note that the circuit consists of 4 gates and a 4 × 1
MUX. The ith bits of Register R1 and R2 are passed through the circuit. On the basis
of selection inputs S0 and S1 the desired micro-operation is obtained.

(a) Logic Diagram (b) Functional representation

Figure 8: Logic diagram of one stage of logic circuit

Implementation of a Simple Arithmetic, Logic and Shift Unit

So, by now we have discussed how the arithmetic and logic micro-operations can be
implemented individually. If we combine these two circuits along with shifting logic
then we can have a possible simple structure of ALU. In effect ALU is a
combinational circuit whose inputs are contents of specific registers. The ALU
performs the desired micro-operation as determined by control signals on the input
and places the results in an output or destination register. The whole operation of ALU
can be performed in a single clock pulse, as it is a combinational circuit. The shift
operation can be performed in a separate unit but sometimes it can be made as a part
of overall ALU. The following figure gives a simple structure of one stage of an ALU.

Figure 9: One stage of ALU with shift capability

Please note that in this figure we have given reference to two previous figures for
arithmetic and logic circuits. This stage of ALU has two data inputs; the ith bits of the
registers to be manipulated. However, the (i – 1)th or (i+1)th bit is also fed for the case
of shift micro-operation of only one register. There are four selection lines, which

 62

The Central
Processing Unit determine what micro-operation (arithmetic, logic or shift) on the input. The Fi is the

resultant bit after desired micro-operation. Let us see how the value of Fi changes on
the basis of the four select inputs. This is shown in Figure 10:

Please note that in Figure 10 arithmetic micro-operations have both S3 and S2 bits as
zero. Input Ci is important for only arithmetic micro-operations. For logic micro-
operations S3, S2 values are 01. The values 10 and 11 cause shift micro-operations.
For this shift micro-operation S1 and S0 values and Ci values do not play any role.

S3 S2 S1 S0 Ci F Micro-

operation
Name

0 0 0 0 0 F = x R R1 Transfer
0 0 0 0 1 F = x+1 R R1+1 Increment
0 0 0 1 0 F = x+y R R1+R2 Addition
0 0 0 1 1 F = x+y+1 R R1+R2+1 Addition

with carry
 Arithmetic
 Micro-operation

0 0 1 0 0 F = x+ y R R1+ 2R Subtract
with borrow

0 0 1 0 1 F = x+(y +1) R R1 – R2 Subtract

0 0 1 1 0 F = x – 1 R R1 – 1 Decrement
0 0 1 1 1 F = x R R1 Transfer

0 1 0 0 - F = x.y R R1∧R2 AND
0 1 0 1 - F = x+y R R1∨ R2 OR Logic
0 1 1 0 - F = x⊕ y R R1⊕ R2 Exclusive

OR
 Micro-operation

0 1 1 1 - F = x R 1R Complement

1 0 - - - F = Shl(x) R Shl(R1) Shift left Shift Micro-
1 1 - - - F = Shr(y) R Shr(R1) Shift right operations

 Figure 10: Micro-operations performed by a Sample ALU

3.3 ARITHMETIC PROCESSORS

The questions in this regard are: “What is an arithmetic processor?” and, “What is the
need for arithmetic processors?”

A typical CPU needs most of the control and data processing hardware for
implementing non-arithmetic functions. As the hardware costs are directly related to
chip area, a floating point circuit being complex in nature is costly to implement. They
need not be included in the instruction set of a CPU. In such systems, floating-point
operations were implemented by using software routines.

This implementation of floating point arithmetic is definitely slower than the hardware
implementation. Now, the question is whether a processor can be constructed only for
arithmetic operations. A processor, if devoted exclusively to arithmetic functions, can
be used to implement a full range of arithmetic functions in the hardware at a
relatively low cost. This can be done in a single Integrated Circuit. Thus, a special
purpose arithmetic processor, for performing only the arithmetic operations, can be
constructed. This processor physically may be separate, yet can be utilized by the
CPU to execute complex arithmetic instructions. Please note in the absence of
arithmetic processors, these instructions may be executed using the slower software
routines by the CPU itself. Thus, this auxiliary processor enhances the speed of
execution of programs having a lot of complex arithmetic computations.

 63

ALU Organisation An arithmetic processor also helps in reducing program complexity, as it provides a
richer instruction set for a machine. Some of the instructions that can be assigned to
arithmetic processors can be related to the addition, subtraction, multiplication, and
division of floating point numbers, exponentiation, logarithms and other trigonometric
functions.

How can this arithmetic processor be connected to the CPU?

Two mechanisms are used for connecting the arithmetic processor to the CPU.

If an arithmetic processor is treated as one of the Input / Output or peripheral units
then it is termed as a peripheral processor. The CPU sends data and instructions to the
peripheral processor, which performs the required operations on the data and
communicates the results back to the CPU. A peripheral processor has several
registers to communicate with the CPU. These registers may be addressed by the CPU
as Input /Output register addresses. The CPU and peripheral processors are normally
quite independent and communicate with each other by exchange of information using
data transfer instructions. The data transfer instructions must be specific instructions
in the CPU. This type of connection is called loosely coupled.

On the other hand if the arithmetic processor has a register and instruction set which
can be considered an extension of the CPU registers and instruction set, then it is
called a tightly coupled processor. Here the CPU reserves a special subset of code for
arithmetic processor. In such a system the instructions meant for arithmetic processor
are fetched by CPU and decoded jointly by CPU and the arithmetic processor, and
finally executed by arithmetic processor. Thus, these processors can be considered a
logical extension of the CPU. Such attached arithmetic processors are termed as co-
processors.

The concept of co-processor existed in the 8086 machine till Intel 486 machines
where co-processor was separate. However, Pentium at present does not have a
separate co-processor. Similarly, peripheral processors are not found as arithmetic
processors in general. However, many chips are used for specialized I/O architecture.
These can be found in further readings.

Check Your Progress 2

1. Draw the logic circuit for a ALU unit.

2. What is an Arithmetic Processor?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3.4 SUMMARY

In this unit, we have discussed in detail the hardware implementation of micro-
operations. The unit starts with an implementation of bus, which is the backbone for
any register transfer operation. This is followed by a discussion on arithmetic circuit
and micro-operation thereon using full adder circuits. The logic micro-operation
implementation has also been discussed. Thus, leading to a logical construction of a
simple arithmetic – logic –shift unit. The unit revolves around the basic ALU with the
help of the units that are constructed for the implementation of micro-operations.

In the later part of the unit, we discussed the arithmetic processors. Finally, we have
presented a few chipsets that support the working of a processor for input/output
functions from key board, printer etc.

 64

The Central
Processing Unit 3.5 SOLUTIONS/ ANSWERS

Check Your Progress 1

1. False
2. False
3. True

Check Your Progress 2

1. The diagram is the same as that of Figure 9.
2. Arithmetic processor performs arithmetic computation. These are support

processors to a computer.

The Control Unit

UNIT 4 THE CONTROL UNIT

Structure Page No.

4.0 Introduction 65
4.1 Objectives 65
4.2 The Control Unit 65
4.3 The Hardwired Control 71
4.4 Wilkes Control 72
4.5 The Micro-Programmed Control 74
4.6 The Micro-Instructions 75

4.6.1 Types of Micro-Instructions
4.6.2 Control Memory Organisation

 4.6.3 Micro-Instruction Formats
4.7 The Execution of Micro-Program 78
4.8 Summary 81
4.9 Solutions/ Answers 81

4.0 INTRODUCTION

By now we have discussed instruction sets and register organisation followed by a
discussion on micro-operations and a simple arithmetic logic unit circuit. We have
also discussed the floating point ALU and arithmetic processors, which are commonly
used for floating point computations.

In this unit we are going to discuss the functions of a control unit, its structure
followed by the hardwired type of control unit. We will discuss the micro-
programmed control unit, which are quite popular in modern computers because of
flexibility in designing. We will start the discussion with several definitions about the
unit followed by Wilkes control unit. Finally, we will discuss the concepts involved in
micro-instruction execution.

4.1 OBJECTIVES

After going through this unit you will be able to:

• define what is a control unit and its function;
• describe a simple control unit organization;
• define a hardwired control unit;
• define the micro-programmed control unit;
• define the term micro-instruction; and
• identify types and formats of micro-instruction.

4.2 THE CONTROL UNIT

The two basic components of a CPU are the control unit and the arithmetic and logic
unit. The control unit of the CPU selects and interprets program instructions and then
sees that they are executed. The basic responsibilities of the control unit are to
control:

a) Data exchange of CPU with the memory or I/O modules.
b) Internal operations in the CPU such as:

• moving data between registers (register transfer operations)

 65

The Central
Processing Unit • making ALU to perform a particular operation on the data

• regulating other internal operations.

But how does a control unit control the above operations? What are the functional
requirements of the control unit? What is its structure? Let us explore answers of these
questions in the next sections.

Functional Requirements of a Control Unit

Let us first try to define the functions which a control unit must perform in order to
get things to happen. But in order to define the functions of a control unit, one must
know what resources and means it has at its disposal. A control unit must know about
the:

(a) Basic components of the CPU

(b) Micro-operation this CPU performs.

The CPU of a computer consists of the following basic functional components:

• The Arithmetic Logic Unit (ALU), which performs the basic arithmetic and
logical operations.

• Registers which are used for information storage within the CPU.

• Internal Data Paths: These paths are useful for moving the data between two
registers or between a register and ALU.

• External Data Paths: The roles of these data paths are normally to link the CPU
registers with the memory or I/O interfaces. This role is normally fulfilled by the
system bus.

• The Control Unit: This causes all the operations to happen in the CPU.

The micro-operations performed by the CPU can be classified as:

• Micro-operations for data transfer from register-register, register-memory, I/O-
register etc.

• Micro- operations for performing arithmetic, logic and shift operations. These
micro-operations involve use of registers for input and output.

The basic responsibility of the control unit lies in the fact that the control unit must be
able to guide the various components of CPU to perform a specific sequence of micro-
operations to achieve the execution of an instruction.

What are the functions, which a control unit performs to make an instruction
execution feasible? The instruction execution is achieved by executing micro-
operations in a specific sequence. For different instructions this sequence may be
different. Thus the control unit must perform two basic functions:

• Cause the execution of a micro-operation.

• Enable the CPU to execute a proper sequence of micro-operations, which is
determined by the instruction to be executed.

But how are these two tasks achieved? The control unit generates control signals,
which in turn are responsible for achieving the above two tasks. But, how are these
control signals generated? We will answer this question in later sections. First let us
discuss a simple structure of control unit.

 66

The Control Unit Structure of Control Unit

A control unit has a set of input values on the basis of which it produces an output
control signal, which in turn performs micro-operations. These output signals control
the execution of a program. A general model of control unit is shown in Figure 1.

Figure 1: A General Model of Control Unit

In the model given above the control unit is a black box, which has certain inputs and
outputs.

The inputs to the control unit are:

• The Master Clock Signal: This signal causes micro-operations to be performed
in a square. In a single clock cycle either a single or a set of simultaneous micro-
operations can be performed. The time taken in performing a single micro-
operation is also termed as processor cycle time or the clock cycle time in some
machines.

• The Instruction Register: It contains the operation code (opcode) and

addressing mode bits of the instruction. It helps in determining the various cycles
to be performed and hence determines the related micro-operations, which are
needed to be performed.

• Flags: Flags are used by the control unit for determining the status of the CPU &

the outcomes of a previous ALU operation. For example, a zero flag if set
conveys to control unit that for instruction ISZ (skip the next instruction if zero
flag is set) the next instruction is to be skipped. For such a case control unit cause
increment of PC by program instruction length, thus skipping next instruction.

• Control Signals from Control Bus: Some of the control signals are provided to

the control unit through the control bus. These signals are issued from outside the
CPU. Some of these signals are interrupt signals and acknowledgement signals.

On the basis of the input signals the control unit activates certain output control
signals, which in turn are responsible for the execution of an instruction. These output
control signals are:

• Control signals, which are required within the CPU: These control signals
cause two types of micro-operations, viz., for data transfer from one register to
another; and for performing an arithmetic, logic and shift operation using ALU.

• Control signals to control bus: These control signals transfer data from or to

CPU register to or from memory or I/O interface. These control signals are
issued on the control bus to activate a data path on the data / address bus etc.

 67

The Central
Processing Unit

Now, let us discuss the requirements from such a unit. A prime requirement for
control unit is that it must know how all the instructions will be executed. It should
also know about the nature of the results and the indication of possible errors. All this
is achieved with the help of flags, op-codes, clock and some control signals to itself.

A control unit contains a clock portion that provides clock-pulses. This clock signal is
used for measuring the timing of the micro-operations. In general, the timing signals
from control unit are kept sufficiently long to accommodate the proportional delays of
signals within the CPU along various data paths. Since within the same instruction
cycle different control signals are generated at different times for performing different
micro-operations, therefore a counter can be utilised with the clock to keep the count.
However, at the end of each instruction cycle the counter should be reset to the initial
condition. Thus, the clock to the control unit must provide counted timing signals.
Examples, of the functionality of control units along with timing diagrams are given
in further readings.

How are these control signals applied to achieve the particular operation? The
control signals are applied directly as the binary inputs to the logic gates of the logic
circuits. All these inputs are the control signals, which are applied to select a circuit
(for example, select or enable input) or a path (for example, multiplexers) or any other
operation in the logic circuits.

A program execution consists of a sequence of instruction cycles. Each instruction
cycle is made up of a number of sub cycles. One such simple subdivision includes
fetch, indirect, execute, and interrupt cycles, with only fetch and execute cycles
always occurring. Each sub cycle involves one or more micro-operations.

Let us revisit the micro-operations described in Unit 2 to discuss how the events of
any instruction cycle can be described as a sequence of such micro-operations.

The Fetch Cycle

The beginning of each instruction cycle is the fetch cycle, and causes an instruction to
be fetched from memory.

The fetch cycle consists of four micro-operations that are executed in three timing
steps. The fetch cycle can be written as:

 T1 : MAR PC
 T2 : MBR [MAR]
 PC PC + I
 T3 : IR MBR

where I is the instruction length. We assume that a clock is available for timing
purposes and that it emits regularly spaced clock pulses. Each clock pulse defines a
time unit. Thus, all the units are of equal duration. Each micro-operation can be
performed within the time of a single time unit. The notation (T1, T2, T3) represents
successive time units. What is done in these time units?

• In the first time unit the content of PC is moved to MAR.

• In the second time unit the contents of memory location specified by MAR is

moved to MBR and the contents of the PC is incremented by I.
• In the third time unit the content of MBR is moved to IR.

The Indirect Cycle

 68

The Control Unit Once an instruction is fetched, the next step is to fetch the operands. Considering the

same example as of Unit 2, the instruction may have direct and indirect addressing
modes. An indirect address is handled using indirect cycle. The following micro-
operations are required in the indirect cycle:

T1 : MAR IR (address)
T2 : MBR [MAR]
T3 : IR (address) MBR (address)

The MAR is loaded with the address field of IR register. Then the memory is read to
fetch the address of operand, which is transferred to the address field of IR through
MBR as data is received in MBR during the read operation.

Thus, the IR now is in the same state as of direct address, viz., as if indirect addressing
had not been used. IR is now ready for the execute cycle.

The Execute Cycle

The fetch and indirect cycles involve a small, fixed sequence of micro-operations.
Each of these cycles has fixed sequence of micro-operations that are common to all
instructions.

This is not true of the execute cycle. For a machine with N different opcodes, there are
N different sequences of micro-operations that can occur. Let us consider some
hypothetical instructions:

An add instruction that adds the contents of memory location X to Register R1 with
R1 storing the result:

ADD R1, X

The sequence of micro-operations may be:

T1 : MAR IR (address)

T2 : MBR [MAR]

T3 : R1 R1 + MBR

At the beginning of the execute cycle IR contains the ADD instruction and its direct
operand address (memory location X). At time T1, the address portion of the IR is
transferred to the MAR. At T2 the referenced memory location is read into MBR
Finally, at T3 the contents of R1 and MBR are added by the ALU.

Let us discuss one more instruction:

ISZ X, it increments the content of memory location X by 1. If the result is 0, the next
instruction in the sequence is skipped. A possible sequence of micro-operations for
this instruction may be:

 T1 : MAR IR (address)

 T2 : MBR [MAR]

 T3 : MBR MBR+ 1

 T4 : [MAR] MBR

 If (MBR = 0) then (PC PC+ I)

 69

Please note that for this machine we have assumed that MBR can be incremented by
ALU directly.

The Central
Processing Unit

The PC is incremented if MBR contains 0. This test and action can be implemented as
one micro-operation. Note also that this micro-operation can be performed during the
same time unit during which the updated value in MBR is stored back to memory.
Such instructions are useful in implementing looping.

The Interrupt Cycle

On completion of the execute cycle the current instruction execution gets completed.
At this point a test is made to determine whether any enabled interrupts have occurred.
If so, the interrupt cycle is performed. This cycle does not execute an interrupt but
causes start of execution of Interrupt Service Program (ISR). Please note that ISR is
executed as just another program instruction cycle. The nature of this cycle varies
greatly from one machine to another. A typical sequence of micro-operations of the
interrupt cycle are:

T1 : MBR PC

T2 : MAR Save-Address

 PC ISR- Address

T3 : [MAR] MBR

At time T1, the contents of the PC are transferred to the MBR, so that they can be
saved for return from the interrupt. At time T2 the MAR is loaded with the address at
which the contents of the PC are to be saved, and PC is loaded with the address of the
start of the interrupt-servicing routine. At time T3 MBR, which contains the old value
of the PC, is stored in the memory. The processor is now ready to begin the next
instruction cycle.

The Instruction Cycle

The instruction cycle for this given machine consists of four cycles. Assume a 2-bit
instruction cycle code (ICC). The ICC can represent the state of the processor in terms
of cycle. For example, we can use:

00 : Fetch

 01 : Indirect

 10 : Execute

 11 : Interrupt

At the end of each of the four cycles, the ICC is set appropriately. Please note that an
indirect cycle is always followed by the execute cycle and the interrupt cycle is
always followed by the fetch cycle. For both the execute and fetch cycles, the next
cycle depends on the state of the system. Let us show an instruction execution using
timing diagram and instruction cycles:

 70

The Control Unit

Figure 2: Timing Diagram for ISZ instruction

Please note that the address line determine the location of memory. Read/ write signal
controls whether the data is being input or output. For example, at time T2 in M2 the
read control signal becomes active, A9 – A0 input contains MAR that value is kept
enabled on address bits and the data lines are enabled to accept data from RAM, thus
enabling a typical RAM data output on the data bus.

For reading no data input is applied by CPU but it is put on data bus by memory after
the read control signal to memory is activated. Write operation is activated along with
data bus carrying the output value.

This diagram is used for illustration of timing and control. However, more
information on these topics can be obtained from further readings.

4.3 THE HARDWIRED CONTROL

With the last section we have discussed the control unit in terms of its inputs, output
and functions. A variety of techniques have been used to organize a control unit. Most
of them fall into two major categories:

1. Hardwired control organization
2. Microprogrammed control organization.

In the hardwired organization, the control unit is designed as a combinational circuit.
That is, the control unit is implemented by gates, flip-flops, decoder and other digital
circuits. Hardwired control units can be optimised for fast operations.
The block diagram of control unit is shown in Figure 3. The major inputs to the circuit
are instruction register, the clock, and the flags. The control unit uses the opcode of
instruction stored in the IR register to perform different actions for different
instructions. The control unit logic has a unique logic input for each opcode. This
simplifies the control logic. This control line selection can be performed by a decoder.

 71

The Central
Processing Unit A decoder will have n binary inputs and 2n binary outputs. Each of these 2n different

input patterns will activate a single unique output line.

The clock portion of the control unit issues a repetitive sequence of pulses for the SS
duration of micro-operation(s). These timing signals control the sequence of execution
of instruction and determine what control signal needs to applied at what time for
instruction execution.

Figure 3: Block Diagram of Control Unit Operation

Check Your Progress 1

1. What are the inputs to control unit?
 ..

........................……………………………………………………………………

……………………………………………………………………………………..

2. How does a control unit control the instruction cycle?
 ..

..………

……………………………………………………………………………………..

3. What is a hardwired control unit?
 ..

..………

……………………………………………………………………………………..

4.4 WILKES CONTROL

Prof. M. V. Wilkes of the Cambridge University Mathematical Laboratory coined the
term microprogramming in 1951. He provided a systematic alternative procedure for
designing the control unit of a digital computer. During instruction executing a
machine instruction, a sequence of transformations and transfer of information from
one register in the processor to another take place. These were also called the micro
operations. Because of the analogy between the execution of individual steps in a
machine instruction to the execution of the individual instruction in a program,
Wilkes introduced the concept of microprogramming. The Wilkes control unit

 72

The Control Unit replaces the sequential and combinational circuits of hardwired control unit by a

simple control unit in conjunction with a storage unit that stores the sequence of steps
of instruction that is a micro-program.

In Wilkes microinstruction has two major components:

a) Control field which indicates the control lines which are to be activated and
b) Address field, which provides the address of the next microinstruction to be

executed.

The figure 4 below is an example of Wilkes control unit design.

Figure 4: Wilkes Control Unit

The control memory in Wilkes control is organized, as a PLA’s like matrix made of
diodes. This is partial matrix and consists of two components, the control signals and
the address of the next micro-instruction. The register I contains the address of the
next micro-instruction that is one step of instruction execution, for example T1 in M1
or T2 in M2 etc. as in Figure 2. On decoding the control signals are generated that
cause execution of micro-operation(s) of that step. In addition, the control unit
indicates the address of the next micro-operation which gets loaded through register II
to register I. Register I can also be loaded by register II and “enable IR input” control
signal. This will pass the address of first micro-instruction of execute cycle. During a
machine cycle one row of the matrix is activated. The first part of the row generates
the control signals that control the operations of the processor. The second part
generates the address of the row to be selected in the next machine cycle.

At the beginning of the cycle, the address of the row to be selected is contained in
register I. This address is the input to the decoder, which is activated by a clock pulse.
This activates the row of the control matrix. The two-register arrangement is needed,
as the decoder is a combinational circuit; with only one register, the output would
become the input during a cycle. This may be an unstable condition due to repetitive
loop.

 73

The Central
Processing Unit 4.5 THE MICRO-PROGRAMMED CONTROL

An alternative to a hardwired control unit is a micro-programmed control unit, in
which the logic of the control unit is specified by a micro-program. A micro-program
is also called firmware (midway between the hardware and the software). It consists
of:

(a) One or more micro-operations to be executed; and
(b) The information about the micro-instruction to be executed next.

The general configuration of a micro-programmed control unit is demonstrated in
Figure 5 below:

Figure 5: Operation of Micro-Programmed Control Unit

The micro-instructions are stored in the control memory. The address register for the
control memory contains the address of the next instruction that is to be read. The
control memory Buffer Register receives the micro-instruction that has been read. A
micro-instruction execution primarily involves the generation of desired control
signals and signals used to determine the next micro-instruction to be executed. The
sequencing logic section loads the control memory address register. It also issues a
read command to control memory. The following functions are performed by the
micro-programmed control unit:

1. The sequence logic unit specifies the address of the control memory word that is
to be read, in the Address Register of the Control Memory. It also issues the
READ signal.

2. The desired control memory word is read into control memory Buffer Register.

 74

The Control Unit 3. The content of the control memory buffer register is decoded to create control

signals and next-address information for the sequencing logic unit.
4. The sequencing logic unit finds the address of the next control word on the basis

of the next-address information from the decoder and the ALU flags.

As we have discussed earlier, the execute cycle steps of micro-operations are different
for all instructions in addition the addressing mode may be different. All such
information generally is dependent on the opcode of the instruction Register (IR).
Thus, IR input to Address Register for Control Memory is desirable. Thus, there exist
a decoder from IR to Address Register for control memory. (Refer Figure 5). This
decoder translates the opcode of the IR into a control memory address.

Check Your Progress 2

1. What is firmware? How is it different from software?
 ..

..………

……………………………………………………………………………………..

2. State True or False

(a) A micro-instruction can initiate only one micro-operation at a time.

T F

(b) A control word is equal to a memory word.

(c) Micro-programmed control is faster than hardwired control.

(d) Wilkes control does not provide a branching micro-instruction.

3. What will be the control signals and address of the next micro-instruction in
Wilkes control example of Figure 4, if the entry address for a machine instru
selects the last but one (branching control line) and the conditional bit value
branch is true?

 ..

..…

…………………………………………………………………………………

4.6 THE MICRO-INSTRUCTIONS

A micro-instruction, as defined earlier, is an instruction of a micro-program. It
specifies one or more micro-operations, which can be executed simultaneously. O
executing a micro-instruction a set of control signals are generated which in turn c
the desired micro-operation to happen.

4.6.1 Types of Micro-instructions

In general the micro-instruction can be categorised into two general types. These
branching and non-branching. After execution of a non-branching micro-instructi
the next micro-instruction is the one following the current micro-instruction.

However, the sequences of micro-instructions are relatively small and last only fo
or 4 micro-instructions.
A conditional branching micro-instruction tests conditional variable or a flag
generated by an ALU operation. Normally, the branch address is contained in the
micro-instruction itself.

4.6.2 Control Memory Organization
.

…

a

t
c
f

o

n

r

he
tion
or

.......

…

…..

ause

re
n

 3

75

The Central
Processing Unit The next important question about the micro-instruction is: how are they organized in

the control memory? One of the simplest ways to organize control memory is to
arrange micro-instructions for various sub cycles of the machine instruction in the
memory. The Figure 6 shows such an organisation.

Figure 6: Control Memory Organisation

Let us give an example of control memory organization. Let us take a machine
instruction: Branch on zero. This instruction causes a branch to a specified main
memory address in case the result of the last ALU operation is zero, that is, the zero
flag is set. The pseudocode of the micro-program for this instruction can be;

 Test "zero flag” If SET branch to label ZERO

 Unconditional branch to label NON-ZERO

ZERO: (Microcode which causes replacement of program counter with the address
provided in the instruction)

 Branch to interrupt or fetch cycle.

NON -ZERO: (Microcode which may set flags if desired indicating the branch has
not taken place).

 Branch to interrupt or fetch cycle. (For Next- Instruction Cycle)

4.6.3 Micro-instruction Formats

Now let us focus on the format of a micro-instruction. The two widely used formats
used for micro-instructions are horizontal and vertical. In the horizontal micro-
instruction each bit of the micro-instruction represents a control signal, which directly
controls a single bus line or sometimes a gate in the machine. However, the length of

 76

The Control Unit such a micro-instruction may be hundreds of bits. A typical horizontal micro-

instruction with its related fields is shown in Figure 7(a).

 (a) Horizontal Micro-instruction

 (b) Vertical Micro-instructions

(c) A Realistic Micro-instructions
Figure 7: Micro- instruction Formats

In a vertical micro-instruction many similar control signals can be encoded into a few
micro-instruction bits. For example, for 16 ALU operations, which may require 16
individual control bits in horizontal micro-instruction, only 4 encoded bits are needed
in vertical micro-instruction. Similarly, in a vertical micro-instruction only 3 bits are
needed to select one of the eight registers. However, these encoded bits need to be
passed from the respective decoders to get the individual control signals. This is
shown in figure 7(b).

 77

The Central
Processing Unit

In general, a horizontal control unit is faster, yet requires wider instruction words,
whereas vertical control units, although; require a decoder, are shorter in length. Most
of the systems use neither purely horizontal nor purely vertical micro-instructions
figure 7(c).

4.7 THE EXECUTION OF MICRO-PROGRAM

The micro-instruction cycle can consist of two basic cycles: the fetch and the execute.
Here, in the fetch cycle the address of the micro-instruction is generated and this
micro-instruction is put in a register used for the address of a micro-instruction for
execution. The execution of a micro-instruction simply means generation of control
signals. These control signals may drive the CPU (internal control signals) or the
system bus. The format of micro-instruction and its contents determine the complexity
of a logic module, which executes a micro-instruction.

One of the key features incorporated in a micro-instruction is the encoding of micro-
instructions. What is encoding of micro-instruction? For answering this question let us
recall the Wilkes control unit. In Wilkes control unit, each bit of information either
generates a control signal or form a bit of next instruction address. Now, let us assume
that a machine needs N total number of control signals. If we follow the Wilkes
scheme we require N bits, one for each control signal in the control unit.

Since we are dealing with binary control signals, therefore, a ‘N’ bit micro-instruction
can represent 2N combinations of control signals.

The question is do we need all these 2N combinations?

No, some of these 2N combinations are not used because:

1. Two sources may be connected by respective control signals to a single
destination; however, only one of these sources can be used at a time. Thus, the
combinations where both these control signals are active for the same
destination are redundant.

2. A register cannot act as a source and a destination at the same time. Thus, such
a combination of control signals is redundant.

3. We can provide only one pattern of control signals at a time to ALU, making
some of the combinations redundant.

4. We can provide only one pattern of control signals at a time to the external
control bus also.

Therefore, we do not need 2N combinations. Suppose, we only need 2K (which is less
than 2N) combinations, then we need only K encoded bits instead of N control signals.
The K bit micro-instruction is an extreme encoded micro-instruction. Let us touch
upon the characteristics of the extreme encoded and unencoded micro-instructions:

Unencoded micro-instructions

• One bit is needed for each control signal; therefore, the number of bits required
in a micro-instruction is high.

• It presents a detailed hardware view, as control signal need can be determined.
• Since each of the control signals can be controlled individually, therefore these

micro-instructions are difficult to program. However, concurrency can be
exploited easily.

• Almost no control logic is needed to decode the instruction as there is one to
one mapping of control signals to a bit of micro-instruction. Thus, execution of
micro-instruction and hence the micro-program is faster.

 78

• The unencoded micro-instruction aims at optimising the performance of a
machine.

The Control Unit

Highly Encoded micro-instructions

• The encoded bits needed in micro-instructions are small.
• It provided an aggregated view that is a higher view of the CPU as only an

encoded sequence can be used for micro-programming.
• The encoding helps in reduction in programming burden; however, the

concurrency may not be exploited to the fullest.
• Complex control logic is needed, as decoding is a must. Thus, the execution of

a micro-instruction can have propagation delay through gates. Therefore, the
execution of micro-program takes a longer time than that of an unencoded
micro-instruction.

• The highly encoded micro-instructions are aimed at optimizing programming
effort.

In most of the cases, the design is kept between the two extremes. The LSI 11 (highly
encoded) and IBM 3033 (unencoded) control units are close examples of these two
approaches.

Execution/decoding of slightly encoded micro-instructions

In general, the micro-programmed control unit designs are neither completely
unencoded nor highly encoded. They are slightly coded. This reduces the width of
control memory and micro-programming efforts. The basic technique for encoding is
shown in Figure 8. The micro-instruction is organised as a set of fields. Each field
contains a code, which, upon decoding, activates one or more control signals. The
execution of a micro-instruction means that every field is decoded and generates
control signals. Thus, with N fields, N simultaneous actions can be specified. Each
action results in the activation of one or more control signals. Generally each control
signal is activated by no more than one field. The design of an encoded micro-
instruction format can be stated in simple terms:

• Organize the format into independent fields. That is, each field depicts a set of
actions such that actions from different fields can occur simultaneously.

• Define each field such that the alternative actions that can be specified by the
field are mutually exclusive. That is, only one of the actions specified for a
given field could occur at a time.

Another aspect of encoding is whether it is direct or indirect (Figure 8). With indirect
encoding, one field is used to determine the interpretation of another field.

Another aspect of micro-instruction execution is the micro-instruction sequencing that
involves address calculation of the next micro-instruction. In general, the next micro-
instruction can be (refer Figure 6):

• Next micro-instruction in sequence
• Calculated on the basis of opcode
• Branch address (conditional or unconditional).

A detailed discussion on these topics is beyond this unit. You must refer to further
readings for more detailed information on Micro-programmed Control Unit Design.

 79

The Central
Processing Unit

Figure (a):

Figure (b):
Figure 8: Micro-instruction Encoding

Check Your Progress 3

1. State True or False

a) A branch micro-instruction can have only an unconditional jump

b) Control store stores opcode-based micro-programs.

c) A true horizontal micro-instruction requires one bit for every con

signal.

d) A decoder is needed to find a branch address in the vertical micr
instruction.

e) One of the responsibilities of sequencing logic (Refer Figure 5) i

reading of micro-instruction addressed by a micro-program coun
the micro-instruction buffer.

f) Status bits supplied from ALU to sequencing logic have no role

with the sequencing of micro-instruction.

2. What art the possibilities for the next instruction address?
 ..

..

...…

….

 …………………………………………………………………………

…………………………………………………………………………

3. How many address fields are there in Wilkes Control Unit?
 ..

..

..

…

 80
T F
.

trol

o-

s to c
ter in

to pla

.........

.........

……

……

……

.........

.........

………
a
t

y

.

.

…

…

.

.

.

.

.

.

use
o

......

......

…

…

…

......

......

…

 81

The Control Unit 4. Compare and contrast unencoded and highly encoded micro-instructions.
 ...

...

..…………

…

4.8 SUMMARY

In this unit we have discussed the organization of control units. Hardwired, Wilkes
and micro-programmed control units are also discussed. The key to such control units
are micro-instruction, which can be briefly (that is types and formats) described in this
unit. The function of a micro-programmed unit, that is, micro-programmed execution,
has also been discussed. The control unit is the key for the optimised performance of a
computer. The information given in this unit can be further appended by going
through further readings.

4.9 SOLUTIONS/ ANSWERS
Check Your Progress 1

1. IR, Timing Signal, Flags Register
2. The control unit issues control signals that cause execution of micro-operations in

a pre-determined sequence. This, enables execution sequence of an instruction.
3. A logic circuit based implementation of control unit.

Check Your Progress 2

1. Firmware is basically micro-programs, which are used in a micro-programmed
control unit. Firmwares are more difficult to write than software.

2. (a) False (b) False (C) False (d) False

3. In sequence from left to right as per figure.

110……00 (control signals …… indicate more values)
110……00 (address of next, micro-instruction is found after assuming that
bottom line after condition code represent true in the Figure 4)

Check Your Progress 3

1. (a) False (b) False (c) True (d) False (e) True (f) False.

2 The address of the next micro-instruction can be one of the following:

• the address of the next micro-instruction in sequence.
• determined by opcode using mapping or any other method.
• branch address supplied on the internal address bus.

3. Wilkes control typically has one address field. However, for a conditional

branching micro-instruction, it contains two addresses. The Wilkes control, in
fact, is a hardware representation of a micro-programmed control unit.

4.

Unencoded Micro instructions Highly encoded
• Large number of bits
• Difficult to program
• No decoding logic

Relatively less bits
Easy to program
Need decoding logic

 82

The Central
Processing Unit • Optimizes machine

performances
• Detailed hardware view

Optimizes programming effort
Aggregated view

 83

Reduced Instruction
Set Computer

Architecture

UNIT 5 REDUCED INSTRUCTION SET

COMPUTER ARCHITECTURE

Structure Page No.

5.0 Introduction 83
5.1 Objectives 83
5.2 Introduction to RISC 83
 5.2.1 Importance of RISC Processors
 5.2.2 Reasons for Increased Complexity
 5.2.3 High Level Language Program Characteristics
5.3 RISC Architecture 88
5.4 The Use of Large Register File 90
5.5 Comments on RISC 93
5.6 RISC Pipelining 94
5.7 Summary 98
5.8 Solutions/ Answers 98

5.0 INTRODUCTION

In the previous units, we have discussed the instruction set, register organization and
pipelining, and control unit organization. The trend of those years was to have a large
instruction set, a large number of addressing modes and about 16 –32 registers.
However, their existed a pool of thought which was in favour of having simplicity in
instruction set. This logic was mainly based on the type of the programs, which were
being written for various machines. This led to the development of a new type of
computers called Reduced Instruction Set Computer (RISC). In this unit, we will
discuss about the RISC machines. Our emphasis will be on discussing the basic
principles of RISC and its pipeline. We will also discuss the arithmetic and logic units
here.

5.1 OBJECTIVES

After going through this unit you should be able to:

• define why complexity of instruction increased?;
• describe the reasons for developing RISC;
• define the basic design principles of RISC;
• describe the importance of having large register file;
• discuss some of the common comments about RISC;
• describe RISC pipelining; and
• define the optimisation in RISC pipelining.

5.2 INTRODUCTION TO RISC

The aim of computer architects is to design computers which are cheaper and more
powerful than their predecessors. A cheaper computer has:

• Low hardware manufacturing cost.
• Low Cost for programming scalable/ portable architecture that require low costs

for debugging the initial hardware and subsequent programs.

 84

The Central
Processing Unit If we review the history of computer families, we find that the most common

architectural change is the trend towards even more complex machines.

5.2.1 Importance of RISC Processors

Reduced Instruction Set Computers recognize a relatively limited number of
instructions. One advantage of a reduced instruction set is that RISC can execute the
instructions very fast because these are so simple. Another advantage is that RISC
chips require fewer gates and hence transistors, which makes them cheaper to design
and produce.

An instruction of RISC machine can be executed in one cycle, as there exists an
instruction pipeline. This may enhance the speed of instruction execution. In addition,
the control unit of the RISC processor is simpler and smaller, so much so that it
acquires only 6% space for a processor in comparison to Complex Instruction Set
Computers (CISC) in which the control unit occupies about 50% of space. This saved
space leaves a lot of room for developing a number of registers.

This further enhances the processing capabilities of the RISC processor. It also
necessitates that the memory to register “LOAD” and “STORE” are independent
instructions.

Various RISC Processors

RISC has fewer design bugs, its simple instructions reduce design time. Thus, because
of all the above important reasons RISC processors have become very popular. Some
of the RISC processors are:

SPARC Processors

Sun 4/100 series, Sun 4/310 SPARCserver 310, Sun 4/330 SPARCserver 330, Sun
4/350 SPARCserver 350, Sun 4/360 SPARCserver 360, Sun 4/370 SPARCserver 370,
Sun 4/20, SPARCstation SLC, Sun 4/40 SPARCstation IPC, Sun 4/75, SPARCstation
2.

PowerPC Processors

MPC603, MPC740, MPC750, MPC755, MPC7400/7410, MPC745x, MPC7450,
MPC8240, MPC8245.

Titanium – IA64 Processor

5.2.2 Reasons for Increased Complexity

Let us see what the reasons for increased complexity are, and what exactly we mean
by this.

Speed of Memory Versus Speed of CPU

In the past, there existed a large gap between the speed of a processor and memory.
Thus, a subroutine execution for an instruction, for example floating point addition,
may have to follow a lengthy instruction sequence. The question is; if we make it a
machine instruction then only one instruction fetch will be required and rest will be
done with control unit sequence. Thus, a “higher level” instruction can be added to
machines in an attempt to improve performance.

However, this assumption is not very valid in the present era where the Main memory
is supported with Cache technology. Cache memories have reduced the difference
between the CPU and the memory speed and, therefore, an instruction execution
through a subroutine step may not be that difficult.

 85

Reduced Instruction
Set Computer

Architecture

Let us explain it with the help of an example:

Suppose the floating point operation ADD A, B requires the following steps
(assuming the machine does not have floating point registers) and the registers being
used for exponent are E1, E2, and EO (output); for mantissa M1, M2 and MO
(output):

• Load the exponent of A in E1
• Load the mantissa of A in M1
• Load the exponent of B in E2
• Load the mantissa of B in M2
• Compare E1 and E2

- If E1 = E2 then MO M1 + M2 and EO E1
Normalise MO and adjust EO
• Result will be contained in MO, E1

 else if E1< E2 then find the difference = E2 – E1
• Shift Right M1, by difference
• MO M1 + M2 and EO E2
• Normalise MO and adjust EO
• Result is contained in MO, EO

 else E2 < E1, if so find the difference = E1 – E2
• Shift Right M2 by difference above
• MO M1 + M2 and EO E1
• Normalise MO and adjust E1 into EO
• Result is contained in MO, EO

 Store the above results in A
 Checks overflow underflow if any.

If all these steps are coded as one machine instruction, then this simple instruction will
require many instruction execution cycles. If this instruction is made as part of the
machine instruction set as: ADDF A,B (Add floating point numbers A & B and store
results in A) then it will just be a single machine instruction. All the above steps
required will then be coded with the help of micro-operations in the form of Control
Unit Micro-Program. Thus, just one instruction cycle (although a long one) may be
needed. This cycle will require just one instruction fetch. Whereas in the program
memory instructions will be fetched.

However, faster cache memory for Instruction and data stored in registers can create
an almost similar instruction execution environment. Pipelining can further enhance
such speed. Thus, creating an instruction as above may not result in faster execution.

Microcode and VLSI Technology

It is considered that the control unit of a computer be constructed using two ways;
create micro-program that execute micro-instructions or build circuits for each
instruction execution. Micro-programmed control allows the implementation of
complex architectures more cost effective than hardwired control as the cost to expand
an instruction set is very small, only a few more micro-instructions for the control
store. Thus, it may be reasoned that moving subroutines like string editing, integer to
floating point number conversion and mathematical evaluations such as polynomial
evaluation to control unit micro-program is more cost effective.

Code Density and Smaller Faster Programs

The memory was very expensive in the older computer. Thus there was a need of less
memory utilization, that is, it was cost effective to have smaller compact programs.
Thus, it was opined that the instruction set should be more complex, so that programs
are smaller. However, increased complexity of instruction sets had resulted in

 86

The Central
Processing Unit instruction sets and addressing modes requiring more bits to represent them. It is

stated that the code compaction is important, but the cost of 10 percent more memory
is often far less than the cost of reducing code by 10 percent out of the CPU
architecture innovations.

The smaller programs are advantageous because they require smaller RAM space.
However, today memory is very inexpensive, this potential advantage today is not so
compelling. More important, small programs should improve performance. How?
Fewer instructions mean fewer instruction bytes to be fetched.

However, the problem with this reasoning is that it is not certain that a CISC program
will be smaller than the corresponding RISC program. In many cases CISC program
expressed in symbolic machine language may be smaller but the number of bits of
machine code program may not be noticeably smaller. This may result from the
reason that in RISC we use register addressing and less instruction, which require
fewer bits in general. In addition, the compilers on CISCs often favour simpler
instructions, so that the conciseness of complex instruction seldom comes into play.

Let us explain this with the help of the following example:

Assumptions:

• The Complex Instruction is: Add C, A, B having 16 bit addresses and 8 bit data
operands

• All the operands are direct memory reference operands
• The machine has 16 registers. So the size of a register address is = 24 = 16 = 4

bits.
• The machine uses an 8-bit opcode.

 8 4 16

 Load rA A
8 16 16 16 Load rB B
Add C A B Add rC rA rB
 Store rC C

Memory-to-Memory Register-to-Register
 Instruction size (I) = 56 bits I = 104 bits
 Data Size (D) = 24 bits D = 24bits
 Total Memory Load (M) = 80 bits M = 128 bits

(a) Add A & B to store result in C

 8 4 16
 Load rA A
8 16 16 16 Load rB B
Add C A B Add rC rB rA
Add A C D Load rD D
Sub D D B Add rA rC Rd
 Sub rD rD rB
 Store rD D

Memory-to-Memory Register-to-Register
 Instruction size (I) = 168 bits I = 172 bits
 Data Size (D) = 72 bits D = 32bits
 Total Memory Load (M) = 240 bits M = 204 bits

(b) Execution of the Instruction Sequence: C = A + B, A = C + D, D = D - B

Figure 1: Program size for different Instruction Set Approaches

 87

Reduced Instruction
Set Computer

Architecture

So, the expectation that a CISC will produce smaller programs may not be realised.

Support for High-Level Language

With the increasing use of more and higher level languages, manufacturers had
provided more powerful instructions to support them. It was argued that a stronger
instruction set would reduce the software crisis and would simplify the compilers.
Another important reason for such a movement was the desire to improve
performance.

However, even though the instructions that were closer to the high level languages
were implemented in Complex Instruction Set Computers (CISCs), still it was hard to
exploit these instructions since the compilers were needed to find those conditions that
exactly fit those constructs. In addition, the task of optimising the generated code to
minimise code size, reduce instruction execution count, and enhance pipelining is
much more difficult with such a complex instruction set.

Another motivation for increasingly complex instruction sets was that the complex
HLL operation would execute more quickly as a single machine instruction rather
than as a series of more primitive instructions. However, because of the bias of
programmers towards the use of simpler instructions, it may turn out otherwise. CISC
makes the more complex control unit with larger microprogram control store to
accommodate a richer instruction set. This increases the execution time for simpler
instructions.

Thus, it is far from clear that the trend to complex instruction sets is appropriate. This
has led a number of groups to pursue the opposite path.

5.2.3 High Level Language Program Characteristics

Thus, it is clear that new architectures should support high-level language
programming. A high-level language system can be implemented mostly by hardware
or mostly by software, provided the system hides any lower level details from the
programmer. Thus, a cost-effective system can be built by deciding what pieces of the
system should be in hardware and what pieces in software.

To ascertain the above, it may be a good idea to find program characteristics on
general computers. Some of the basic findings about the program characteristics are:

Variables Operations Procedure Calls
Integral Constants 15-25%

Scalar Variables 50-60%

Array/ structure 20-30%

Simple assignment 35-
45%

Looping 2-6%

Procedure call 10-15%

IF 35-45%

GOTO FEW

Others 1-5%

Most time consuming
operation.

FACTS: Most of the
procedures are called with
fewer than 6 arguments.
Most of these have fewer
than 6 local variables

Figure 2: Typical Program Characteristics

Observations

• Integer constants appeared almost as frequently as arrays or structures.

 88

The Central
Processing Unit • Most of the scalars were found to be local variables whereas most of the arrays or

structures were global variables.
• Most of the dynamically called procedures pass lower than six arguments.
• The numbers of scalar variables are less than six.
• A good machine design should attempt to optimize the performance of most time

consuming features of high-level programs.
• Performance can be improved by more register references rather than having more

memory references.
• There should be an optimized instructional pipeline such that any change in flow

of execution is taken care of.

The Origin of RISC

In the 1980s, a new philosophy evolved having optimizing compilers that could be
used to compile “normal” programming languages down to instructions that were as
simple as equivalent micro-operations in a large virtual address space. This made the
instruction cycle time as fast as the technology would permit. These machines should
have simple instructions such that it can harness the potential of simple instruction
execution in one cycle – thus, having reduced instruction sets – hence the reduced
instruction set computers (RISCs).

Check Your Progress 1

1. List the reasons of increased complexity.
..

..

..……………

2. State True or False

 a) The instruction cycle time for RISC is equivalent to CISC.

 b) CISC yields smaller programs than RISC, which improves its perfor

therefore, it is very superior to RISC.

 c) CISC emphasizes optional use of register while RISC does not.

5.3 RISC ARCHITECTURE

Let us first list some important considerations of RISC architecture:

1. The RISC functions are kept simple unless there is a very good reason to
otherwise. A new operation that increases execution time of an instructio
per cent can be added only if it reduces the size of the code by at least 10
Even greater reductions might be necessary if the extra modification nec
change in design.

2. Micro-instructions stored in the control unit cannot be faster than simple
instructions, as the cache is built from the same technology as writable c
unit store, a simple instruction may be executed at the same speed as tha
micro-instruction.

3. Microcode is not magic. Moving software into microcode does not make
it just makes it harder to change. The runtime library of RISC has all the
characteristics of functions in microcode, except that it is easier to chang

4. Simple decoding and pipelined execution are more important than progr
Pipelined execution gives a peak performance of one instruction every s
longest step determines the performance rate of the pipelined machine, s
each pipeline step should take the same amount of time.
T F
manc

 do
n by
 per c
essita

ontrol
t of a

 it be

e.

am siz
tep. T
o idea
e;
10
ent.
tes a

tter;

e.
he
lly

 89

Reduced Instruction
Set Computer

Architecture

5. Compiler should simplify instructions rather than generate complex instructions.
RISC compilers try to remove as much work as possible during compile time so
that simple instructions can be used. For example, RISC compilers try to keep
operands in registers so that simple register-to-register instructions can be used.
RISC compilers keep operands that will be reused in registers, rather than
repeating a memory access or a calculation. They, therefore, use LOADs and
STOREs to access memory so that operands are not implicitly discarded after
being fetched. (Refer to Figure 1(b)).

Thus, the RISC were designed having the following:

• One instruction per cycle: A machine cycle is the time taken to fetch two
operands from registers, perform the ALU operation on them and store the
result in a register. Thus, RISC instruction execution takes about the same time
as the micro-instructions on CISC machines. With such simple instruction
execution rather than micro-instructions, it can use fast logic circuits for control
unit, thus increasing the execution efficiency further.

• Register-to-register operands: In RISC machines the operation that access

memories are LOAD and STORE. All other operands are kept in registers. This
design feature simplifies the instruction set and, therefore, simplifies the control
unit. For example, a RISC instruction set may include only one or two ADD
instructions (e.g. integer add and add with carry); on the other hand a CISC
machine can have 25 add instructions involving different addressing modes.
Another benefit is that RISC encourages the optimization of register use, so that
frequently used operands remain in registers.

• Simple addressing modes: Another characteristic is the use of simple

addressing modes. The RISC machines use simple register addressing having
displacement and PC relative modes. More complex modes are synthesized in
software from these simple ones. Again, this feature also simplifies the
instruction set and the control unit.

• Simple instruction formats: RISC uses simple instruction formats. Generally,

only one or a few instruction formats are used. In such machines the instruction
length is fixed and aligned on word boundaries. In addition, the field locations
can also be fixed. Such an instruction format has a number of benefits. With
fixed fields, opcode decoding and register operand accessing can occur in
parallel. Such a design has many advantages. These are:

• It simplifies the control unit
• Simple fetching as memory words of equal size are to be fetched
• Instructions are not across page boundaries.

Thus, RISC is potentially a very strong architecture. It has high performance potential
and can support VLSI implementation. Let us discuss these points in more detail.

• Performance using optimizing compilers: As the instructions are simple the
compilers can be developed for efficient code organization also maximizing
register utilization etc. Sometimes even the part of the complex instruction can
be executed during the compile time.

• High performance of Instruction execution: While mapping of HLL to
machine instruction the compiler favours relatively simple instructions. In
addition, the control unit design is simple and it uses little or no micro-
instructions, thus could execute simple instructions faster than a comparable
CISC. Simple instructions support better possibilities of using instruction
pipelining.

 90

The Central
Processing Unit • VLSI Implementation of Control Unit: A major potential benefit of RISC is

the VLSI implementation of microprocessor. The VLSI Technology has
reduced the delays of transfer of information among CPU components that
resulted in a microprocessor. The delays across chips are higher than delay
within a chip; thus, it may be a good idea to have the rare functions built on a
separate chip. RISC chips are designed with this consideration. In general, a
typical microprocessor dedicates about half of its area to the control store in a
micro-programmed control unit. The RISC chip devotes only about 6% of its
area to the control unit. Another related issue is the time taken to design and
implement a processor. A VLSI processor is difficult to develop, as the designer
must perform circuit design, layout, and modeling at the device level. With
reduced instruction set architecture, this processor is far easier to build.

5.4 THE USE OF LARGE REGISTER FILE

In general, the register storage is faster than the main memory and the cache. Also the
register addressing uses much shorter addresses than the addresses for main memory
and the cache. However, the numbers of registers in a machine are less as generally
the same chip contains the ALU and control unit. Thus, a strategy is needed that will
optimize the register use and, thus, allow the most frequently accessed operands to be
kept in registers in order to minimize register-memory operations.

Such optimisation can either be entrusted to an optimising complier, which requires
techniques for program analysis; or we can follow some hardware related techniques.
The hardware approach will require the use of more registers so that more variables
can be held in registers for longer periods of time. This technique is used in RISC
machines.

On the face of it the use of a large set of registers should lead to fewer memory
accesses, however in general about 32 registers were considered optimum. So how
does this large register file further optimize the program execution?

Since most operand references are to local variables of a function in C they are the
obvious choice for storing in registers. Some registers can also be used for global
variables. However, the problem here is that the program follows function call - return
so the local variables are related to most recent local function, in addition this call -
return expects saving the context of calling program and return address. This also
requires parameter passing on call. On return, from a call the variables of the calling
program must be restored and the results must be passed back to the calling program.

RISC register file provides a support for such call- returns with the help of register
windows. Register files are broken into multiple small sets of registers and assigned to
a different function. A function call automatically changes each of these sets. The use
from one fixed size window of registers to another, rather than saving registers in
memory as done in CISC. Windows for adjacent procedures are overlapped. This
feature allows parameter passing without moving the variables at all. The following
figure tries to explain this concept:

Assumptions:

Register file contains 138 registers. Let them be called by register number 0 – 137.

The diagram shows the use of registers: when there is call to function A (fA) which
calls function B (fB) and function B calls function C (fC).

 91

Reduced Instruction
Set Computer

Architecture

Registers Nos. Used for
0 – 9 Global variables

required by fA, fB, and
fC

Function A

 Function B

 Function C

10 – 83 Unused
84 – 89
(6 Registers)

Used by parameters of
fC that may be passed
to next call

 Temporary
variables of
function C

90 – 99
(10 Registers)

Used for local variable
of fC

 Local
variables of
function C

100 – 105
(6 Registers)

Used by parameters
that were passed from
fB fC

 Temporary
variables of
function B

Parameters
of function
C

106 – 115
(10 Registers)

Local variables of fB Local
variables of
function B

116 – 121
(6 Registers)

Parameters that were
passed from fA to fB

Temporary
variables of
function A

Parameters
of function
B

122 – 131
(10 Registers)

Local variable of fA Local
variables of
function A

132 – 138
(6 Registers)

Parameter passed to fA Parameters
of function
A

Figure 3: Use of three Overlapped Register Windows

Please note the functioning of the registers: at any point of time the global registers
and only one window of registers is visible and is addressable as if it were the only set
of registers. Thus, for programming purpose there may be only 32 registers. Window
in the above example although has a total of 138 registers. This window consists of:

• Global registers which are shareable by all functions.
• Parameters registers for holding parameters passed from the previous function to

the current function. They also hold the results that are to be passed back.
• Local registers that hold the local variables, as assigned by the compiler.
• Temporary registers: They are physically the same as the parameter registers at

the next level. This overlap permits parameter passing without the actual
movement of data.

But what is the maximum function calls nesting can be allowed through RISC? Let us
describe it with the help of a circular buffer diagram, technically the registers as above
have to be circular in the call return hierarchy.

This organization is shown in the following figure. The register buffer is filled as
function A called function B, function B called function C, function C called function
D. The function D is the current function. The current window pointer (CWP) points
to the register window of the most recent function (function D in this case). Any
register references by a machine instruction is added with the contents of this pointer
to determine the actual physical registers. On the other hand the saved window
pointer identifies the window most recently saved in memory. This action will be
needed if a further call is made and there is no space for that call. If function D now
calls function E arguments for function E are placed in D’s temporary registers
indicated by D temp and the CWP is advanced by one window.

 92

The Central
Processing Unit

Figure 4: Circular-.Buffer Organization of Overlapped Windows

If function E now makes a call to function F, the call cannot be made with the current
status of the buffer, unless we free space equivalent to exactly one window. This
condition can easily be determined as current window pointer on incrementing will be
equal to saved window pointer. Now, we need to create space; how can we do it? The
simplest way will be to swap FA register to memory and use that space. Thus, an N
window register file can support N –1 level of function calls.

Thus, the register file, organized in the form as above, is a small fast register buffer
that holds most of the variables that are likely to be used heavily. From this point of
view the register file acts almost like a cache memory.

So let us find how the two approaches are different:

Characteristics of large-register-file and cache organizations

Large Register File Cache
Hold local variables for almost all
functions. This saves time.

Recently used local variables are fetched
from main memory for any further use.
Dynamic use optimises memory.

The variables are individual. The transfer from memory is block wise.
Global variables are assigned by the
compilers.

It stores recently used variables. It cannot
keep track of future use.

Save/restore needed only after the
maximum call nesting is over (that is n –
1 open windows) .

Save/restore based on cache replacement
algorithms.

It follows faster register addressing. It is memory addressing.

All but one point above basically show comparative equality. The basic difference is
due to addressing overhead of the two approaches.

The following figure shows the difference. Small register (R) address is added with
current window Pointer W#. This generates the address in register file, which is
decoded by decoder for register access. On the other hand Cache reference will be
generated from a long memory address, which first goes through comparison logic to
ascertain the presence of data, and if the data is present it goes through the select
circuit. Thus, for simple variables access register file is superior to cache memory.

Reduced Instruction
Set Computer

Architecture

However, even in RISC computer, performance can be enhanced by the addition of
instruction cache.

(a) Windows based Register file

(b) Cache Reference

Figure 5: Referencing a local Simple Variables

Check Your Progress 2

1. State True or False in the context of RISC architecture:

a. RISC has a large register file so that more variables can be stored i
or longer periods of time.

b. Only global variables are stored in registers.

c. Variables are passed as parameters in registers using temporary reg

window.

d. Cache is superior to a large register file as it stores most recently us

scalars.

2. An overlapped register window RISC machine is having 32 registers. S

of these registers are dedicated to global variables and the remaining 24
for incoming parameters, local and scalar variables and outgoing param
What are the ways of allocating these 24 registers in the three categorie

 ...

 ...

 ...

5.5 COMMENTS ON RISC

Let us now try and answer some of the comments that are asked for RISC
architectures. Let us provide our suggestions on those.
T F
n reg ter

ister

ed lo

uppo
 are
eters
s?
........

........

........
is
s
 in a
cal
93

se 8
split
.

.....

.....

.....

 94

The Central
Processing Unit CISCs provide better support for high-level languages as they include high-level

language constructs such as CASE, CALL etc.

Yes CISC architecture tries to narrow the gap between assembly and High Level
Language (HLL); however, this support comes at a cost. In fact the support can be
measured as the inverse of the costs of using typical HLL constructs on a particular
machine. If the architect provides a feature that looks like the HLL construct but runs
slowly, or has many options, the compiler writer may omit the feature, or even, the
HLL programmer may avoid the construct, as it is slow and cumbersome. Thus, the
comment above does not hold.

It is more difficult to write a compiler for a RISC than a CISC.

The studies have shown that it is not so due to the following reasons:

If an instruction can be executed in more ways than one, then more cases must be
considered. For it the compiler writer needed to balance the speed of the compilers to
get good code. In CISCs compilers need to analyze the potential usage of all available
instruction, which is time consuming. Thus, it is recommended that there is at least
one good way to do something. In RISC, there are few choices; for example, if an
operand is in memory it must first be loaded into a register. Thus, RISC requires
simple case analysis, which means a simple compiler, although more machine
instructions will be generated in each case.

RISC is tailored for C language and will not work well with other high level
languages.

But the studies of other high level languages found that the most frequently executed
operations in other languages are also the same as simple HLL constructs found in C,
for which RISC has been optimized. Unless a HLL changes the paradigm of
programming we will get similar result.

The good performance is due to the overlapped register windows; the reduced
instruction set has nothing to do with it.

Certainly, a major portion of the speed is due to the overlapped register windows of
the RISC that provide support for function calls. However, please note this register
windows is possible due to reduction in control unit size from 50 to 6 per cent. In
addition, the control is simple in RISC than CISC, thus further helping the simple
instructions to execute faster.

5.6 RISC PIPELINING

Instruction pipelining is often used to enhance performance. Let us consider this in the
context of RISC architecture. In RISC machines most of the operations are register-to-
register. Therefore, the instructions can be executed in two phases:

 F: Instruction Fetch to get the instruction.
 E: Instruction Execute on register operands and store the results in register.

In general, the memory access in RISC is performed through LOAD and STORE
operations. For such instructions the following steps may be needed:

 F: Instruction Fetch to get the instruction
 E: Effective address calculation for the desired memory operand
 D: Memory to register or register to memory data transfer through bus.

 95

Reduced Instruction
Set Computer

Architecture

Let us explain pipelining in RISC with an example program execution sample. Take
the following program (R indicates register).

LOAD RA (Load from memory location A)
LOAD RB (Load from memory location B)
ADD RC ,RA , RB (RC = RA + RB))
SUB RD , RA , RB (RD = RA - RB)
MUL RE , RC , RD (RE = RC × RD)
STOR RE (Store in memory location C)
Return to main.

Load RA M(A) F E D

Load RB M(B) F E D

Add RC RA +RB F E

Sub RD RA - RB F E

Mul RE RC×RD F E

Stor RE M(C) Time -------------- F E D

Return Time = 17 units F E
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 6: Sequential Execution of Instructions

Figure 7 shows a simple pipelining scheme, in which F and E phases of two different
instructions are performed simultaneously. This scheme speeds up the execution rate
of the sequential scheme.

Load RA M(A) F E D
Load RB M(B) F E D
Add RC RA + RB F E
Sub RD RA - RB F E
Mul RE RC × RD F E
Stor RE M(C) F E D
Return F E
 Time 1 2 3 4 5 6 7 8 9 10 11
Total time = 11 units

Figure 7: Two Way Pipelined Timing

Please note that the pipeline above is not running at its full capacity. This is because
of the following problems:

• We are assuming a single port memory thus only one memory access is allowed at
a time. Thus, Fetch and Data transfer operations cannot occur at the same time.
Thus, you may notice blank in the time slot 3, 5 etc.

• The last instruction is an unconditional jump. Please note that after this instruction
the next instruction of the calling program will be executed. Although not visible
in this example a branch instruction interrupts the sequential flow of instruction
execution. Thus, causing inefficiencies in the pipelined execution.

This pipeline can simply be improved by allowing two memory accesses at a time.

Thus, the modified pipeline would be:

The pipeline may suffer because of data dependencies and branch instructions
penalties. A good pipeline has equal phases.

 96

The Central
Processing Unit

Load RA M(A) F E D

Load RB M(B) F E D
Add RC RA + RB F E
Sub RD RA - RB F E
Mul RE = RC × RD F E
Stor RE M(C) Time ------ F E D
Return Time = 8 units F E

Figure 8: Three-way Pipelining Timing

Optimization of Pipelining

RISC machines can employ a very efficient pipeline scheme because of the simple
and regular instructions. Like all other instruction pipelines RISC pipeline suffer from
the problems of data dependencies and branching instructions. RISC optimizes this
problem by using a technique called delayed branching.

One of the common techniques used to avoid branch penalty is to pre-fetch the branch
destination also. RISC follows a branch optimization technique called delayed jump
as shown in the example given below:

Load RA M(A) F E D

Load RB M(B) F E D

Add RC RA + RB F E

Sub RD RA - RB F E

If RD < 0 Return F E

Stor RC M(C) F E D

Return F E

(a) The instruction “If RD < 0 Return” may cause pipeline to empty

Load RA M(A) F E D

Load RB M(B) F E D
Add RC RA + RB F E

Sub RD RA - RB F E
If RD < 0 Return F E

NO Operation F E

Stor RC M(C) Or
Return as the case may be

 F E D

Return F E

(b) The No operation instruction causes decision of the If instruction known, thus

correct instruction can be fetched.

 97

Reduced Instruction
Set Computer

Architecture

Load RA M(A) F E D
Load RB M(B) F E D
Sub RD RA - RB F E
If RD < 0 Return F E
Add RC RA + RB F E
Stor RC M(C) F E D
Return F E

(c) The branch is calculated before, thus the pipeline need not be emptied. This is

delayed branch.

Figure 9: Delayed Branch

Finally, let us summarize the basic differences between CISC and RISC architecture.
The following table lists these differences:

CISC RISC
1. Large number of instructions – from

120 to 350.
1. Relatively fewer instructions - less
 than 100.

2. Employs a variety of data types and a
 large number of addressing modes.

2. Relatively fewer addressing modes.

3. Variable-length instruction formats. 3. Fixed-length instructions usually 32
 bits, easy to decode instruction format.

4. Instructions manipulate operands
 residing in memory.

4. Mostly register-register operations.
 The only memory access is through
 explicit LOAD/STORE instructions.

5. Number of Cycles Per Instruction
 (CPI) varies from 1-20 depending upon
 the instruction.

5. Number of CPI is one as it uses
 pipelining. Pipeline in RISC is
 optimised because of simple
 instructions and instruction formats.

6. GPRs varies from 8-32. But no support
 is available for the parameter passing
 and function calls.

6. Large number of GPRs are available
 that are primarily used as Global
 registers and as a register based
 procedural call and parameter passing

stack, thus, optimised for structured
 programming.

7. Microprogrammed Control Unit. 7. Hardwired Control Unit.

Check Your Progress 3

1. What are the problems, which prevent RISC pipelining to achieve maximum
speed?

 ..

 ..

 ..

2. How can the above problems be handled?
 ..

 ..

 ..

 98

The Central
Processing Unit 3. What are the problems of RISC architecture? How are these problems

compensated such that there is no reduction in performance?
 ..

 ..

..

5.7 SUMMARY

RISC represents new styles of computers that take less time to build yet provide a
higher performance. While traditional machines support HLLs with instruction that
look like HLL constructs, this machine supports the use of HLLs with instructions that
HLL compilers can use efficiently. The loss of complexity has not reduced RISC’s
functionality; the chosen subset, especially when combined with the register window
scheme, emulates more complex machines. It also appears that we can build such a
single chip computer much sooner and with much less effort than traditional
architectures.

Thus, we see that because of all the features discussed above, the RISC architecture
should prove to be far superior to even the most complex CISC architecture.

In this unit we have also covered the details of the pipelined features of the RISC
architecture, which further strengthen our arguments for the support of this
architecture.

5.8 SOLUTIONS/ ANSWERS

Check Your Progress 1

1.
• Speed of memory is slower than the speed of CPU.
• Microcode implementation is cost effective and easy.
• The intention of reducing code size.
• For providing support for high-level language.

2.

a) False
b) False
c) False

Check Your Progress 2

1.
(a) True
(b) False
(c) True
(d) False

2. Assume that the number of incoming parameters is equal to the number of

outgoing parameters.

 Therefore, Number of locals = 24 –(2 × Number of incoming parameters)

Return address is also counted as a parameter, therefore, number of incoming
parameters is more than or equal to 1 or in other terms the possible combination,
are:

 99

Reduced Instruction
Set Computer

Architecture

Incoming
Parameter
Registers

Outgoing
Parameter
Registers

No. of Local
Registers

1 1 22

2 2 20

3 3 18
4 4 16
5 5 14
6 6 12
7 7 10
8 8 8
9 9 6
10 10 4
11 11 2
12 12 0

Check Your Progress 3

1. The following are the problems:

• It has a single port memory reducing the access to one device at a time
• Branch instruction
• The data dependencies between the instructions

2. It can be improved by:

• allowing two memory accesses per phase
• introducing three phases of approximately equal duration in pipelining
• causing optimized delayed jumps/loads etc.

3. The problems of RISC architecture are:

• More instructions to achieve the same amount of work as CISC.
• Higher instruction traffic
• However, the cycle time of one instruction per cycle and instruction cache in

the chip may compensate for these problems.

	MCS-012 The Central Processing Unit
	Index
	Credit Page
	Block Introduction
	UNIT 1 Instruction Set Architecture
	1.0 Introduction
	1.1 Objectives
	1.2 Instruction Set Characteristics
	1.3 Instruction Set Design Considerations
	1.4 Addressing Schemes
	1.5 Instruction Set and Format Design Issues
	1.6 Example of Instruction Format
	1.7 Summary
	1.8 Solutions/ Answers

	UNIT 2 Registers, Micro-Operations And Instruction Execution
	2.1 Objectives
	2.0 Introduction
	2.2 Basic CPU Structure
	2.3 Register Organisation
	2.4 General Registers in a Processor
	2.5 Micor-Operation Concepts
	2.6 Instruction Execuations and Micro-operations
	2.7 Instruction Pipelinning
	2.8 Summary
	2.9 Solutions/Answers

	UNIT 3 ALU ORGANISATION
	3.0 Introduction
	3.1 Objectives
	3.2 ALU Organisation
	3.3 Airthmetic Processors
	3.4 Summary
	3.5 Solutions/Answers

	UNIT 4 The Control Unit
	4.0 Introduction
	4.1 Objectives
	4.2 The Control Unit
	4.3 The Hardwired Control
	4.4 Wilkes Control
	4.5 The Micro-Programmed Control
	4.6 The Micro-Instructions
	4.7 The Execution of Micro-Program
	4.8 Summary
	4.9 Solutions/Answers

	UNIT 5 Reduced Instruction Set Computer Architecture
	5.0 Introudction
	5.2 Introduction to RISC
	5.1 Objectives
	5.3 RISC Architecure
	5.4 The Use of Large Register File
	5.5 Comments on RISC
	5.6 RISC Pipelining
	5.7 Summary
	5.8 Solutions/Answers

