

 Indira Gandhi
 National Open University
 School of Computer &
 Information Sciences

MCS-012
COMPUTER

ORGANISATION
 & ASSEMBLY

LANGUAGE
 PROGRAMMING

Block

1
INTRODUCTION TO DIGITAL CIRCUITS

UNIT 1

The Basic Computer 5

UNIT 2
Data Representation 31

UNIT 3
The Principles Of Logic Circuits I 60

UNIT 4

The Principles Of Logic Circuits II 87

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur
Prof. M. Balakrishnan, IIT , Delhi
Prof. Harish Karnick, IIT, Kanpur
Prof. C. Pandurangan, IIT, Madras
Dr. Om Vikas, Sr. Director, MIT
Prof. P. S. Grover, Sr. Consultant,
SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences
Shri Shashi Bhushan
Shri Akshay Kumar
Prof. Manohar Lal
Shri V.V. Subrahmanyam
Shri P.Venkata Suresh

Block Preparation Team

Dr. MPS Bhatia (Content Editor) Mr. Niranjan Sinha
(NSIT), New Delhi (Language Editor)

Ms. Suman Madan SS College of Business Studies, DU
New Delhi

 Mr. Akshay Kumar
SOCIS, IGNOU

Course Coordinator: Shri Akshay Kumar

Block Production Team

Shri H.K. Som, SOCIS

August, 2004

©Indira Gandhi National Open University, 2004

ISBN—81-266-1385-8

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means, without
permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the University’s
office at Maidan Garhi, New Delhi-110068.

Printed and published on behalf of the Indira Gandhi National Open University, New Delhi by the Director, SOCIS.

COURSE INTRODUCTION

In the modern era, Computer system is used in most aspects of life. You may use many different
types of software on a computer system for particular applications ranging from simple document
creation to space data processing. But, how does a Software is executed by the Computer
Hardware? The answer to this basic question is contained in this Course. This course presents an
overview of the Computer hardware, (which include discussion on topics like digital electronic
circuits, various storage devices such as hard disk, optical storage, display and other input/output
technologies) and computer organization and architecture (which includes the basic components
of computer that help it in execution of programs/ applications). Since, personal Computer is one
of the major technology of the present, we will use it as an example for discussion, however, the
examples are not just limited to personal computers only. Thus, after going through this course,
you not only will acquire the conceptual framework of Computer Organisation and Architecture
but also would be able to use the concepts in the domain of Personal Computers.

This course includes details on data representation, interconnection structures, memory system,
input-output system, and the Central Processing Unit. It also provides a detailed view of digital
logic circuits, microprocessors and assembly language Programming and some of the important
peripheral devices. You must attempt various assembly programs during the lab course in which
practical sessions have been allocated for assembly language. You are also advised to write some
sample programs in assembly and test them logically. The course is divided into four blocks.

The first block deals with the introduction of computer and its components, History of
Computers, Data Representation, Instruction Execution, Interrupts, Buses, Boolean Algebra,
Design of Logic Circuits, etc.

The second block deals with the Memory System, The Memory Hierarchy, Secondary Storage
technologies, the concepts of high speed memory, Cache Organisation, the Memory System of
Micro-Computers, Input/ Output System, The Input Output interfaces, Input Output techniques,
DMA, Input Output processors, External Communication Interfaces, Interrupt Processing, BUS
arbitration, etc.

The third block deals with the Central Processing Unit. It includes the Instruction Set, the
Instruction format, the Instruction Set Architecture, Micro-operations, the organization of
Arithmetic logic unit, Design of simple units of ALU, the Control Unit, The hardwired control,
Wilkes control, the Micro-programmed control etc.

The fourth block deals with the Assembly Language Programming, the Microprocessor, the
Instruction format of 8086 Microprocessor, the addressing modes, Input output in Assembly
Language Program, the Assembly Programming tools, Sample Assembly Programs including
arrays, counters, dealing with various simple statements, use of various addressing modes,
Modular Programming, Interfacing assembly with HLL, Device drivers in assembly, Interrupts in
assembly etc.

BLOCK INTRODUCTION

The first block introduces you about the concepts of Computer Organisation. It covers the data
representation and digital logic circuits in details. The block is divided into four units.

Unit 1 covers the basic computer Organisation. It deal with the von Neumann Architecture,
History of Computers, the Instruction Execution and Interrupt, and concept of BUS.

Unit 2 deals with the Data Representation. It includes the Number Systems such as Binary,
Decimal, Octal, Hexadecimal, Conversion of Representation, Alphanumeric representation, Fixed
Point Representation, Floating point representation, Arithmetic operations on binary numbers,
BCD representation, Error detection and correction codes, Boolean Algebraic operations etc.

Unit 3 introduces the students to the basic logic circuits. It deals with Logic Gates, Logic circuits,
Design of Combinational and various examples of logic combinational circuits such as Adders,
Decoders, Multiplexers, Encoders, ROM etc.

Unit 4 provides details on the Sequential circuits, Flip flops, Excitation tables, Edge triggered,
Master-Slave flip flops, Sequential circuit design, examples of sequential circuits such as
Counters, Registers, RAM, etc.

A course on computers can never be complete because of the existing diversities of the computer
systems. Therefore, you are advised to read through further readings to enhance the basic
understanding you will acquire from the block.

Further Readings For The Block

1) Stallings W., Computer Organization & Architecture: Designing For Performance, 6th
Edition, Prentice Hall of India Publication, 2002/ Pearson Education Asia 2003

2) Mano M Morris, Computer System Architecture, 3rd Edition, Prentice Hall of India
Publication, 2001 / Pearson Education Asia 2003

3) Hennessy/Patterson, Computer Architecture: A Quantitative. Approach; 3rd Edition,
Morgan Kaufmann, 2003.

5

The Basic Computer

UNIT 1 THE BASIC COMPUTER

Structure Page Nos.

1.0 Introduction 5
1.1 Objectives 5
1.2 The von Neumann Architecture 5
1.3 Instruction Execution: An Example 9
1.4 Instruction Cycle 12
 1.4.1 Interrupts
 1.4.2 Interrupts and Instruction Cycle
1.5 Computers: Then and Now 18
 1.5.1 The Beginning
 1.5.2 First Generation Computers
 1.5.3 Second Generation Computers
 1.5.4 Third Generation Computers
 1.5.5 Later Generations
1.6 Summary 29
1.7 Solutions/Answers 29

1.0 INTRODUCTION

The use of Information Technology (IT) is well recognised. IT has become a must for
the survival of all business houses with the growing information technology trends.
Computer is the main component of an Information Technology network. Today,
computer technology has permeated every sphere of existence of modern man. From
railway reservations to medical diagnosis, from TV programmes to satellite launching,
from matchmaking to criminal catching ─ everywhere we witness the elegance,
sophistication and efficiency possible only with the help of computers.

In this unit, you will be introduced to one of the important computer system
structures: the von Neumann Architecture. In addition, you will be introduced to the
concepts of a simple model of Instruction execution. This model will be enhanced in
the later blocks of this course. More details on these terms can be obtained from
further reading. We have also discussed about the main developments during the
various periods of computer history. Finally, we will discuss about the basic
components of microprocessors and their uses.

1.1 OBJECTIVES

After going through this unit you will be able to:

• define the logical structure of the computer;
• define the instruction cycle;
• define the concept or Interrupt;
• discuss the basic features of computers; and
• define the various components of a modern computer and their usage.

1.2 THE VON NEUMANN ARCHITECTURE

The von Neumann architecture was the first major proposed structure for a general-
purpose computer. However, before describing the main components of von Neumann

6

Introduction to Digital
Circuits

architecture, let us first define the term ‘computer’ as this will help us in discussing
about von Neumann architecture in logical detail.

Computer is defined in the Oxford dictionary as “An automatic electronic apparatus
for making calculations or controlling operations that are expressible in numerical or
logical terms”.

The definition clearly categorises computer as an electronic apparatus although the
first computers were mechanical and electro-mechanical apparatuses. The definition
also points towards the two major areas of computer applications viz., data
processing’s and computer assisted controls/operations. Another important aspect of
the definition is the fact that the computer can perform only those operations/
calculations, which can be expressed in Logical or Numerical terms.

Some of the basic questions that arise from above definition are:
How are the data processing and control operations performed by an electronic device
like the computer?

Well, electronic components are used for creating basic logic circuits that are used to
perform calculations. These components are further discussed in the later units.
However, for the present discussion, it would be sufficient to say that there must be a
certain unit that will perform the task of data processing and control.

What is the basic function performed by a computer? The basic function performed by
a computer is the execution of the program. A program is a sequence of instructions,
which operates on data, to perform certain tasks such as finding a prime number. The
computer controls the execution of the program.

What is data in computers? In modern digital computers data is represented in binary
form by using two symbols 0 and 1. These are called binary digits or bits. But the data
which we deal with consists of numeric data and characters such as decimal digits 0 to
9, alphabets A to Z, arithmetic operators (e.g. +,-, etc.), relations operators (e.g. =, > ,
etc.), and many other special characters (e.g.;,@,{,], etc.). Therefore, there has to be a
mechanism for data representation. Old computers use eight bits to represent a
character. This allows up to 28 = 256 different items to be represented uniquely. This
collection of eight bits is called a byte. Thus, one byte is used to represent one
character internally. Most computers use two bytes or four bytes to represent numbers
(positive and negative) internally. The data also includes the operational data such as
integer, decimal number etc. We will discuss more about data representation in the
next unit.

Thus, the prime task of a computer is to perform instruction execution. The key
questions, which can be asked in this respect, are: (a) how are the instructions
supplied to the computer? and (b) how are the instructions interpreted and executed?

Let us answer the second question first. All computers have a Unit that performs the
arithmetic and logical functions. This Unit is referred to as the Arithmetic Logic Unit
(ALU). But how will the computer determine what operation is to be performed by
ALU or in other words who will interpret the operation that is to be performed by
ALU?

This interpretation is done by the Control Unit of the computer. The control unit
accepts the binary form of instruction and interprets the instruction to generate control
signals. These control signals then direct the ALU to perform a specified arithmetic or
logic function on the data. Therefore, by changing the control signal the desired
function can be performed on data. Or conversely, the operations that need to be
performed on the data can be obtained by providing a set of control signals. Thus, for
a new operation one only needs to change the set of control signals.

The unit that interprets a code (a machine instruction) to generate respective control
signals is termed as Control Unit (CU). A program now consists of a sequence of
codes. Each code is, in effect, an instruction, for the computer. The hardware

7

The Basic Computer interprets each of these instructions and generates respective control signals such that
the desired operation is performed on the data.

The Arithmetic Logic Unit (ALU) and the Control Unit (CU) together are termed as
the Central Processing Unit (CPU). The CPU is the most important component of a
computer’s hardware.

All these arithmetic and logical Operations are performed in the CPU in special
storage areas called registers. The size of the register is one of the important
considerations in determining the processing capabilities of the CPU. Register size
refers to the amount of information that can be held in a register at a time for
processing. The larger the register size, the faster may be the speed of processing.

But, how can the instructions and data be put into the computers? The instructions and
data to a computer are supplied by external environment; it implies that input devices
are needed in the computer. The main responsibility of input devices will be to put the
data in the form of signals that can be recognised by the system. Similarly, we need
another component, which will report the results in proper format. This component is
called output device. These components together are referred to as input/output (I/O)
devices.

In addition, to transfer the information, the computer system internally needs the
system interconnections. At present we will not discuss about Input/Output devices
and system interconnections in details, except the information that most common
input/output devices are keyboard, monitor and printer, and the most common
interconnection structure is the Bus structure. These concepts are detailed in the later
blocks.

Input devices can bring instructions or data only sequentially, however, a program
may not be executed sequentially as jump, looping, decision-making instructions are
normally encountered in programming. In addition, more than one data element may
be required at a time. Therefore, a temporary storage area is needed in a computer to
store temporarily the instructions and the data. This component is referred to as
memory.

The memory unit stores all the information in a group of memory cells such as a
group of 8 binary digits (that is a byte) or 16 bits or 32 bits etc. These groups of
memory cells or bits are called memory locations. Each memory location has a unique
address and can be addressed independently. The contents of the desired memory
locations are provided to the CPU by referring to the address of the memory location.
The amount of information that can be held in the main memory is known as memory
capacity. The capacity of the main memory is measured in Mega Bytes (MB) or Giga
Bytes (GB). One-kilo byte stands for 210 bytes, which are 1024 bytes (or
approximately 1000 bytes). A Mega byte stands for 220 bytes, which is approximately
a little over one million bytes, a giga byte is 230 bytes.

Let us now define the key features of von Neumann Architecture:

• The most basic function performed by a computer is the execution of a
 program, which involves:

 the execution of an instruction, which supplies the information about an
 operation, and

 the data on which the operation is to be performed.

The control unit (CU) interprets each of these instructions and generates respective
control signals.

• The Arithmetic Logic Unit (ALU) performs the arithmetic and logical
 Operations in special storage areas called registers as per the instructions of

control unit. The size of the register is one of the important considerations in
determining the processing capabilities of the CPU. Register size refers to the

8

Introduction to Digital
Circuits

amount of information that can be held in a register at a time for processing.
The larger the register size, the faster may be the speed of processing.

• An Input/ Output system involving I/O devices allows data input and reporting
of the results in proper form and format. For transfer of information a computer
system internally needs the system interconnections. One such interconnection
structure is BUS interconnection.

• Main Memory is needed in a computer to store instructions and the data at the
time of Program execution. Memory to CPU is an important data transfer path.
The amount of information, which can be transferred between CPU and
memory, depends on the size of BUS connecting the two.

• It was pointed out by von-Neumann that the same memory can be used for
Storing data and instructions. In such a case the data can be treated as data on
which processing can be performed, while instructions can be treated as data,
which can be used for the generation of control signals.

• The von Neumann machine uses stored program concept, i.e., the program
and data are stored in the same memory unit for execution. The computers prior
to this idea used to store programs and data on separate memories. Entering and
modifying these programs was very difficult as they were entered manually by
setting switches, plugging, and unplugging.

• Execution of instructions in von Neumann machine is carried out in a sequential
fashion (unless explicitly altered by the program itself) from one instruction to
the next.

Figure 1 shows the basic structure of a conventional von Neumann machine

Figure 1: Structure of a Computer

A von Neumann machine h
control unit (CU). This fea
Several other architectures
about non von Neumann ar

Check Your Progress 1

1) State True or False

a) A byte is equal to 8 b

b) von Neumann archite
 instructions. The me
 the memory, which s

c) In von Neumann arc
 independently.

d) A program is a seque
as only a single path between the main memory and
ture/constraint is referred to as von Neumann bottleneck.
 have been suggested for modern computers. You can know
chitectures in further readings.

its and can represent a character internally.

cture specifies different memory for data and
mory, which stores data, is called data memory and
tores instructions, is called instruction memory.

hitecture each bit of memory can be accessed

nce of instructions designed for achieving a task/goal.

T/F

The Basic Computer e) One MB is equal to 1024KB.

f) von Neumann machine has one path between memory and control unit.

 This is the bottleneck of von Neumann machines.

2) What is von Neumann Architecture?
 …………………………………………………………………………………………

 …………………………………………………………………………………………

 …………………………………………………………………………………………

3) Why is memory needed in a computer?

 ………………………………………………… ………………………………………

 …………………………………………………………………………………………

 …………………………………………………………………………………………

1.3 INSTRUCTION EXECUTION: AN EXAMPL

After discussing about the basic structure of the computer, let us now try to answe
basic question: “How does the Computer execute a Program?” Let us explain this
the help of an example from higher level language domain.

Problem: Write a program to add two numbers.

A sample C program (Assuming two fixed values of numbers as a = 5 and b = 2)

1. #include <stdio.h>

2. main ()

3. {
4. int a =5, b=2, c;

5. c= a+b;

6. printf (“\n The added value is: % d”, c);

7. }

The program at line 4 declares variables that will be equivalent to 3 memory locati
namely a, b and c. At line 5 these variables are added and at line 6 the value of c i
printed.

But, how will these instructions be executed by CPU?

First you need to compile this program to convert it to machine language. But how
will the machine instructions look like?

Let us assume a hypothetical instruction set of a machines of a size of 16 binary di
(bits) instructions and data. Each instruction of the machine consists of two
components: (a) Operation code that specifies the operation that is to be performed
the instruction, and (b) Address of the operand in memory on which the given
operation is to be performed.

Let us further assume that the size of operation code is assumed to be of six bits;
therefore, rest 10 bits are for the address of the operand. Also the memory word si
is assumed to be of 16 bits. Figure 2 shows the instruction and data formats for thi
machine. However, to simplify our discussion, let us present the operation code u
Pnemonics like LOAD, ADD, STORE and decimal values of operand addresses an
signed decimal values for data.

9

.

.

E

r the
with

ons
s

gits

 by

ze
s
sing
d

10

Introduction to Digital
Circuits

Figure 2: Instruction and data format of an assumed machine

The instruction execution is performed in the CPU registers. But before we define the
process of instruction execution let us first give details on Registers, the temporary
storage location in CPU for program execution. Let us define the minimum set of
registers required for von Neumann machines:

Accumulator Register (AC): This register is used to store data temporarily for
computation by ALU. AC is considered to contain one of the operands. The result of
computation by ALU is also stored back to AC. It implies that the operand value is
over-written by the result.

Memory Address Register (MAR): It specifies the address of memory location from
which data or instruction is to be accessed (read operation) or to which the data is to
be stored (write operation). Refer to figure 3.

Memory Buffer Register (MBR): It is a register, which contains the data to be written
in the memory (write operation) or it receives the data from the memory (read
operation).

Program Counter (PC): It keeps track of the instruction that is to be executed next,
that is, after the execution of an on-going instruction.

Instruction Register (IR): Here the instructions are loaded prior to execution.

Comments on figure 3 are as follows:

• All representation are in decimals. (In actual machines the representations are in
 Binary).
• The Number of Memory Locations = 16
• Size of each memory location = 16 bits = 2 Bytes (Compare with contemporary
 machines word size of 16,32, 64 bits)
• Thus, size of this sample memory = 16 words (Compare it with actual memory)
 size, which is 128 MB, 256 MB, 512 MB, or more).
• In the diagram MAR is pointing to location 10.
• The last operation performed was “read memory location 10” which is 65 in
 this. Thus, the contents of MBR is also 65.

Figure 3: CPU registers and their functions

11

The Basic Computer The role of PC and IR will be explained later.

Now let us define several operation codes required for this machine, so that we can
translate the High level language instructions to assembly/machine instructions.

Operation
Code

 Definition/Operation (please note that the address part in
the Instruction format specifies the Location of the
Operand on whom operation is to be performed

LOAD as “Load the accumulator with the content of memory”
STORE as “Store the current value of Accumulator in the

memory”
ADD as “Add the value from memory to the Accumulator”

A sample machine instructions for the assumed system for line 5 that is c = a + b in
the program would be:

LOAD A ; Load the contents of memory location A to Accumulator
register

ADD B ; Add the contents of B to contents of Accumulator
and store result in Accumulator.

STORE C ; Store the content into location C

Please note that a simple one line statement in ‘C’ program has been translated to
three machine instructions as above. Please also note that these translated instructions
are machine dependent.

Now, how will these instructions execute?

Let us assume that the above machine instructions are stored in three consecutive
memory locations 1, 2 and 3 and the PC contains a value (1), which in turn is address
of first of these instructions. (Please refer to figure 4 (a)).

Figure 4: Memory and Registers Content on execution or the three given Consecutive
Instructions (All notations in Decimals)

Then the execution of the instructions will be as follows:

Fetch First Instruction into CPU:

Step 1: Find or calculate the address of the first instruction in memory: In this
machine example, the next instruction address is contained in PC register. It
contains 1, which is the address of first instruction to be executed. (figure 4
a).

Step 2: Bring the binary instruction to IR register. This step requires:

• Passing the content of PC to Memory Address Registers so that the instruction
 pointed to by PC is fetched. That is location 1’s content is fetched.
• CPU issues “Memory read” operation, thus, brings contents of location pointed
 by MAR (1 in this case) to the MBR register.
• Content of MBR is transferred to IR. In addition PC is incremented to point to
 next instruction in sequence (2 in this case).

12

Introduction to Digital
Circuits

Execute the Instruction

Step 3: The IR has the instruction LOAD A, which is decoded as “Load the content
of address A in the accumulator register”.

Step 4: The address of operand that is 13, that is A, is transferred to MAR register.
Step 5: The content of memory location (specified by MAR that is location 13)
 is transferred to MBR.
Step 6: The content of MBR is transferred to Accumulator Register.

Thus, the accumulator register is loaded with the content of location A, which is 5.
Now the instruction 1 execution is complete, and the next instruction that is 2
(indicated by PC) is fetched and PC is incremented to 3. This instruction is ADD B,
which instruct CPU to add the contents of memory location B to the accumulator. On
execution of this instruction the accumulator will contain the sum of its earlier value
that is A and the value stored in memory location B.

On execution of the instruction at memory location 3, PC becomes 4; the accumulator
results are stored in location C, that is 15, and IR still contains the third instruction.
This state is shown in figure 4 (C).

Please note that the execution of the instructions in the above example is quite simple
and requires only data transfer and data processing operations in each instruction.
Also these instructions require one memory reference during its execution.

Some of the problems/limitations of the example shown above are?

1. The size of memory shown in 16 words, whereas, the instruction is capable of
addressing 210 =1 K words of Memory. But why 210 , because 10 bits are
reserved for address in the machine instruction format.

2. The instructions shown are sequential in nature, however, a machine instruction
can also be a branch instruction that causes change in the sequence of
instruction execution.

3. When does the CPU stop executing a program? A program execution is
normally completed at the end of a program or it can be terminated due to an
error in program execution or sometimes all running programs will be
terminated due to catastrophic failures such as power failure.

1.4 INSTRUCTION CYCLE

We have discussed the instruction execution in the previous section, now let us
discuss more about various types of instruction execution.

What are the various types of operations that may be required by computer for
execution of instruction? The following are the possible steps:

S.No. Step to be
performed How is it done Who does it

1 Calculate the address
of next instruction to
be executed

The Program Counter (PC
register stores the address
of next instruction.

Control Unit (CU).

2. Get the instruction in
the CPU register

The memory is accessed
and the desired
instruction is brought to
register (IR) in CPU

Memory Read
operation is done. Size
of instruction is
important. In addition,
PC is incremented to
point to next
instruction in sequence.

3. Decode the
instruction

The control Unit issues
necessary control signals

CU.

13

The Basic Computer
4. Evaluate the operand

address
CPU evaluates the
address based on the
addressing mode
specified.

CPU under the control
of CU

5. Fetch the operand

The memory is accessed
and the desired operands
brought into the CPU
Registers

Memory Read

 Repeat steps 4 and 5 if instruction has more than one operands.
6. Perform the operation

as decoded in steps3.

The ALU does evaluation
of arithmetic or logic,
instruction or the transfer
of control operations.

ALU/CU

7. Store the results in
memory

The value is written to
desired memory location

Memory write

Figure 5: Instruction Cycle

14

Introduction to Digital
Circuits

Thus, in general, the execution cycle for a particular instruction may involve more
than one stage and memory references. In addition, an instruction may ask for an I/O
operation. Considering the steps above, let us work out a more detailed view of
instruction cycle. Figure 5 gives a diagram of an instruction cycle.

Please note that in the preceding diagram some steps may be bypassed while some
may be visited more than once. The instruction cycle shown in figure 5 consists of
following states/stages:

• First the address of the next instruction is calculated, based on the size of
 instruction and memory organisation. For example, if in a computer an
 instruction is of 16 bits and if memory is organized as 16-bits words, then the
 address of the next instruction is evaluated by adding one in the address of
 the current instruction. In case, the memory is organized as bytes, which can
 be addressed individually, then we need to add two in the current instruction
 address to get the address of the next instruction to be executed in sequence.

• Now, the next instruction is fetched from a memory location to the CPU
 registers such as Instruction register.

• The next state decodes the instruction to determine the type of operation
 desired and the operands to be used.

• In case the operands need to be fetched from memory or via Input devices, then
 the address of the memory location or Input device is calculated.

• Next, the operand is fetched (or operands are fetched one by one) from the
 memory or read from the Input devices.

• Now, the operation, asked by the instruction is performed.

• Finally, the results are written back to memory or Output devices, wherever
 desired by first calculating the address of the operand and then transferring the
 values to desired destination.

Please note that multiple operands and multiple results are allowed in many
computers. An example of such a case may be an instruction ADD A, B. This
instruction requires operand A and B to be fetched.

In certain machines a single instruction can trigger an operation to be performed on an
array of numbers or a string of characters. Such an operation involves repeated fetch
for the operands without fetching the instruction again, that is, the instruction cycle
loops at operand fetch.

Thus, a Program is executed as per the instruction cycle of figure 5. But what happens
when you want the program to terminate in between? At what point of time is an
interruption to a program execution allowed? To answer these questions, let us discuss
the process used in computer that is called interrupt handling.

1.4.1 Interrupts

The term interrupt is an exceptional event that causes CPU to temporarily transfer its
control from currently executing program to a different program which provides
service to the exceptional event. It is like you asking a question in a class. When you
ask a question in a class by raising hands, the teacher who is explaining some point
may respond to your request only after completion of his/her point. Similarly, an
interrupt is acknowledged by the CPU when it has completed the currently executing
instruction. An interrupt may be generated by a number of sources, which may be
either internal or external to the CPU.

15

The Basic Computer Some of the basic issues of interrupt are:

• What are the different kinds of interrupts?

• What are the advantages of having an interruption mechanism?

• How is the CPU informed about the occurrence of an interrupt?

• What does the CPU do on occurrence of an interrupt?

Figure 6 Gives the list of some common interrupts and events that cause the
occurrence of those interrupts.

Interrupt Condition Occurrence of Event

Interrupt are generated by executing
program itself (also called traps)

 Division by Zero
 The number exceeds the maximum

allowed.

 Attempt of executing an
illegal/privileged instruction.

 Trying to reference memory
location other than allowed for that
program.

Interrupt generated by clock in the
processor

Generally used on expiry of time
allocated for a program, in
multiprogramming operating systems.

Interrupts generated by I/O devices and
their interfaces

 Request of starting an Input/Output
operation.

 Normal completion of an
Input/Output operation.

 Occurrence of an error in
Input/Output operation.

Interrupts on Hardware failure Power failure
 Memory parity error.

Figure 6: Various classes of Interrupts

Interrupts are a useful mechanism. They are useful in improving the efficiency of
processing. How? This is to the fact that almost all the external devices are slower
than the processor, therefore, in a typical system, a processor has to continually test
whether an input value has arrived or a printout has been completed, in turn wasting a
lot of CPU time. With the interrupt facility CPU is freed from the task of testing status
of Input/Output devices and can do useful processing during this time, thus increasing
the processing efficiency.

How does the CPU know that an interrupt has occurred?

There needs to be a line or a register or status word in CPU that can be raised on
occurrence of interrupt condition.

Once a CPU knows that an interrupt has occurred then what?

First the condition is to be checked as to why the interrupt has occurred. That includes
not only the device but also why that device has raised the interrupt. Once the

16

Introduction to Digital
Circuits

interrupt condition is determined the necessary program called ISRs (Interrupt
servicing routines) must be executed such that the CPU can resume further operations.

For example, assume that the interrupt occurs due to an attempt by an executing
program for execution of an illegal or privileged instruction, then ISR for such
interrupt may terminate the execution of the program that has caused this condition.
Thus, on occurrence of an Interrupt the related ISR is executed by the CPU. The ISRs
are pre-defined programs written for specific interrupt conditions.

Considering these requirements let us work out the steps, which CPU must perform on
the occurrence of an interrupt.

• The CPU must find out the source of the interrupt, as this will determine which
 interrupt service routine is to be executed.

• The CPU then acquires the address of the interrupt service routine, which are
 stored in the memory (in general).

• What happens to the program the CPU was executing before the interrupt? This

program needs to be interrupted till the CPU executes the Interrupt service
program. Do we need to do something for this program? Well the context of this
program is to be saved. We will discuss this a bit later.

• Finally, the CPU executes the interrupt service routine till the completion of the
routine. A RETURN statement marks the end of this routine. After that, the
control is passed back to the interrupted program.

Let us analyse some of the points above in greater detail.

Let us first discuss saving the context of a program. The execution of a program in the
CPU is done using certain set of registers and their respective circuitry. As the CPU
registers are also used for execution of the interrupt service routine, it is highly likely
that these routines alter the content of several registers. Therefore, it is the
responsibility of the operating system that before an interrupt service routine is
executed the previous content of the CPU registers should be stored, such that the
execution of interrupted program can be restarted without any change from the point
of interruption. Therefore, at the beginning of interrupt processing the essential
context of the processor is saved either into a special save area in main memory or
into a stack. This context is restored when the interrupt service routine is finished,
thus, the interrupted program execution can be restarted from the point of interruption.

1.4.2 Interrupts and Instruction Cycle

Let us summarise the interrupt process, on the occurrence of an interrupt, an interrupt
request (in the form of a signal) is issued to the CPU. The CPU on receipt of interrupt
request suspends the operation of the currently executing program, saves the context
of the currently executing program and starts executing the program which services
that interrupt request. This program is also known as interrupt handler. After the
interrupting condition/ device has been serviced the execution of original program is
resumed.

Thus, an interrupt can be considered as the interruption of the execution of an ongoing
user program. The execution of user program resumes as soon as the interrupt
processing is completed. Therefore, the user program does not contain any code for
interrupt handling. This job is to be performed by the processor and the operating
system, which in turn are also responsible for suspending the execution of the user
program, and later after interrupt handling, resumes the user program from the point
of interruption.

17

The Basic Computer

Figure 7: Instruction Cycle with Interrupt Cycle

But when ca a user program execution be interrupted?

It will not be desirable to interrupt a program while an instruction is getting executed
and is in a state like instruction decode. The most desirable place for program

18

Introduction to Digital
Circuits

interruption would be when it has completed the previous instruction and is about to
start a new instruction. Figure 7 shows instruction execution cycle with interrupt
cycle, where the interrupt condition is acknowledged. Please note that even interrupt
service routine is also a program and after acknowledging interrupt the next
instruction executed through instruction cycle is the first instruction of interrupt
servicing routine.

In the interrupt cycle, the responsibility of the CPU/Processor is to check whether any
interrupts have occurred checking the presence of the interrupt signal. In case no
interrupt needs service, the processor proceeds to the next instruction of the current
program. In case an interrupt needs servicing then the interrupt is processed as per the
following.

• Suspend the execution of current program and save its context.
• Set the Program counter to the starting address of the interrupt service routine of
 the interrupt acknowledged.
• The processor then executes the instructions in the interrupt-servicing program.
 The interrupt servicing programs are normally part of the operating system.
• After completing the interrupt servicing program the CPU can resume the .
 program it has suspended in step 1 above.

Check Your Progress 2

1) State True or False

 i) The value of PC will be incremented by 1 after fetching each instruction
 if the memory word is of one byte and an instruction is 16 bits long.

 ii) MAR and MBR both are needed to fetch the data /instruction from the
 memory.

 iii) A clock may generate an interrupt.

iv) Context switching is not desired before interrupt processing.

 v) In case multiple interrupts occur at the same time, then only one of
 the interrupt will be acknowledged and rest will be lost.

2) What is an interrupt?

 ..

 ..

 ..

 ………………………………………………………………………………………..

3) What happens on the occurrence of an interrupt?

 ..

 ..

 ..

 …………………………………………………………………………………………

1.5 COMPUTERS: THEN AND NOW

Let us now discuss the history of computers because this will give the basic
information about the technological development trends in computer in the past an
its projections for the future. If we want to know about computers completely, then

T/F
.

.

.

.

.

.

d
 we

19

The Basic Computer must look at the history of computers and look into the details of various
technological and intellectual breakthroughs. These are essential to give us the feel of
how much work and effort has been done in the past to bring the computer to this
shape. Our effort in this section will be to describe the conceptual breakthroughs in
the past.

The ancestors of modern age computer were the mechanical and electromechanical
devices. This ancestry can be traced as far back as the 17th Century, when the first
machine capable of performing four mathematical operations, viz. addition,
subtraction, division and multiplication, appeared. In the subsequent subsection we
present a very brief account of Mechanical Computers.

1.5.1 The Beginning

Blaise Pascal made the very first attempt towards automatic computing. He invented a
device, which consisted of lots of gears and chains which used to perform repeated
additions and subtractions. This device was called Pascaline. Later many attempts
were made in this direction.

Charles Babbage, the grandfather of the modern computer, had designed two
computers:

The Difference Engine: It was based on the mathematical principle of finite
differences and was used to solve calculations on large numbers using a formula. It
was also used for solving the polynomial and trigonometric functions.

The Analytical Engine by Babbage: It was a general purpose-computing device,
which could be used for performing any mathematical operation automatically. The
basic features of this analytical engine were:

• It was a general-purpose programmable machine.
• It had the provision of automatic sequence control, thus, enabling programs to
 alter its sequence of operations.
• The provision of sign checking of result existed.
• A mechanism for advancing or reversing of control card was permitted thus

enabling execution of any desired instruction. In other words, Babbage had
devised the conditional and branching instructions. The Babbage’s machine was
fundamentally the same as the modern computer. Unfortunately, Babbage work
could not be completed. But as a tribute to Charles Babbage his Analytical
Engine was completed in the last decade of the 20th century and is now on
display at the Science Museum at London.

The next notable attempts towards computers were electromechanical. Zuse used
electromechanical relays that could be either opened or closed automatically. Thus,
the use of binary digits, rather than decimal numbers started, in computers.

Harvard Mark-I and the Bug

The next significant effort towards devising an electromechanical computer was made
at the Harvard University, jointly sponsored by IBM and the Department of UN Navy,
Howard Aiken of Harvard University developed a system called Mark I in 1944. Mark
I was a decimal machine, that is, the computations were performed using decimal
digits.

Some of you must have heard a term called “bug”. It is mainly used to indicate errors
in computer programs. This term was coined when one day, a program in Mark-I did
not run properly due to a moth short-circuiting the computer. Since then, the moth or
the bug has been linked with errors or problems in computer programming. Thus, the
process of eliminating error in a program is known as ‘debugging’.

20

Introduction to Digital
Circuits

The basic drawbacks of these mechanical and electromechanical computers were:

• Friction/inertia of moving components limited the speed.
• The data movement using gears and liners was quite difficult and unreliable.
• The change was to have a switching and storing mechanism with no moving
 parts. The electronic switching device “triode” vacuum tubes were used and

hence the first electronic computer was born.

1.5.2 First Generation Computers

It is indeed ironic that scientific inventions of great significance have often been
linked with supporting a very sad and undesirable aspect of civilization, that is,
fighting wars. Nuclear energy would not have been developed as fast, if colossal
efforts were not spent towards devising nuclear bombs. Similarly, the origin of the
first truly general-purpose computer was also designed to meet the requirement of
World War II. The ENIAC (the Electronic Numerical Integrator And Calculator) was
designed in 1945 at the University of Pennsylvania to calculate figures for thousands
of gunnery tables required by the US army for accuracy in artillery fire. The ENIAC
ushered in the era of what is known as first generation computers. It could perform
5000 additions or 500 multiplications per minute. It was, however, a monstrous
installation. It used thousands of vacuum tubes (18000), weighed 30 tons, occupied a
number of rooms, needed a great amount of electricity and emitted excessive heat.

The main features of ENIAC can be summarised as:

• ENIAC was a general purpose-computing machine in which vacuum tube
 technology was used.
• ENIAC was based on decimal arithmetic rather than binary arithmetic.
• ENIAC needed to be programmed manually by setting switches and plugging or

unplugging. Thus, to pass a set of instructions to the computer was difficult and
time-consuming. This was considered to be the major deficiency of ENIAC.

The trends, which were encountered during the era of first generation computers were:

• Centralised control in a single CPU; all the operations required a direct
 intervention of the CPU.
• Use of ferrite-core main memory was started during this time.
• Concepts such as use of virtual memory and index register (you will know more
 about these terms later) started.
• Punched cards were used as input device.
• Magnetic tapes and magnetic drums were used as secondary memory.
• Binary code or machine language was used for programming.
• Towards the end, due to difficulties encountered in use of machine language as
 programming language, the use of symbolic language that is now called
 assembly language started.
• Assembler, a program that translates assembly language programs to machine
 language, was made.
• Computer was accessible to only one programmer at a time (single user
 environment).
• Advent of von-Neumann architecture.

1.5.3 Second Generation Computers

Silicon brought the advent of the second generation computers. A two state device
called a transistor was made from silicon. Transistor was cheaper, smaller and
dissipated less heat than vacuum tube, but could be utilised in a similar way to
vacuum tubes. A transistor is called a solid state device as it is not created from wires,
metal glass capsule and vacuum which was used in vacuum tubes. The transistors
were invented in 1947 and launched the electronic revolution in 1950.

21

The Basic Computer But how do we characterise the future generation of computers?

The generations of computers are basically differentiated by the fundamental
hardware technology. The advancement in technology led to greater speed, large
memory capacity and smaller size in various generations. Thus, second generation
computers were more advanced in terms of arithmetic and logic unit and control unit
than their counterparts of the first generation and thus, computationally more
powerful. On the software front at the same time use of high level languages started
and the developments were made for creating better Operating System and other
system software.

One of the main computer series during this time was the IBM 700 series. Each
successful member of this series showed increased performance and capacity and
reduced cost. In these series two main concepts, I/O channels - an independent
processor for Input/Output, and Multiplexer - a useful routing device, were used.
These two concepts are defined in the later units.

1.5.4 Third Generation Computers

The third generation has the basic hardware technology: the Integrated Circuits (ICs).
But what are integrated circuits? Let us first define a term called discrete components.
A single self-contained transistor is called discrete component. The discrete
components such as transistors, capacitors, resistors were manufactured separately and
were soldered on circuit boards, to create electronic components or computer cards.
All these cards/components then were put together to make a computer. Since a
computer can contain around 10,000 of these transistors, therefore, the entire
mechanism was cumbersome. The basic idea of integrated circuit was to create
electronic components and later the whole CPU on a single Integrated chip. This was
made possible by the era of microelectronics (small electronics) with the invention of
Integrated Circuits (ICs).

In an integrated circuit technology the components such as transistors, resistors and
conductors are fabricated on a semiconductor material such as silicon. Thus, a desired
circuit can be fabricated in a tiny piece of silicon. Since, the size of these components
is very small in silicon, thus, hundreds or even thousands of transistors could be
fabricated on a single wafer of silicon. These fabricated transistors are connected with
a process of metalisation, thus, creating logic circuits on the chip.

Figure 8: Silicon Wafer, Chip and Gates

22

Introduction to Digital
Circuits

An integrated circuit is constructed on a thin wafer of silicon, which is divided into a
matrix of small areas (size of the order of a few millimeter squares). An identical
circuit pattern is fabricated in a dust free environment on each of these areas and the
wafer is converted into chips. (Refer figure 8). A chip consists of several gates, which
are made using transistors. A chip also has a number of input and output connection
points. A chip then is packaged separately in a housing to protect it. This housing
provides a number of pins for connecting this chip with other devices or circuits. For
example, if you see a microprocessor, what you are looking and touching is its
housing and huge number of pins.

Different circuits can be constructed on different wafers. All these packaged circuit
chips then can be interconnected on a Printed-circuit board (for example, a
motherboard of computer) to produce several complex electronic circuits such as in a
computer.

The Integration Levels:

Initially, only a few gates were integrated reliably on a chip. This initial integration
was referred to as small-scale integration (SSI).

With the advances in microelectronics technologies the SSI gave way to Medium
Scale Integration where 100’s of gates were fabricated on a chip.

Next stage was Large Scale Integration (1,000 gates) and very large integration (VLSI
1000,000 gates on a single chip). Presently, we are in the era of Ultra Large Scale
Integration (ULSI) where 100,000,000 or even more components may be fabricated
on a single chip.

What are the advantages of having densely packed Integrated Circuits? These are:

• Reliability: The integrated circuit interconnections are much more reliable than
soldered connections. In addition, densely packed integrated circuits enable
fewer inter-chip connections. Thus, the computers are more reliable. In fact, the
two unreliable extremes are when the chips are in low-level integration or
extremely high level of integration almost closer to maximum limits of
integration.

• Low cost: The cost of a chip has remained almost constant while the chip
density (number of gates per chip) is ever increasing. It implies that the cost of
computer logic and memory circuitry has been reducing rapidly.

• Greater Operating Speed: The more is the density, the closer are the logic or
memory elements, which implies shorter electrical paths and hence higher
operating speed.

• Smaller computers provide better portability

• Reduction in power and cooling requirements.

The third generation computers mainly used SSI chips. One of the key concept which
was brought forward during this time was the concept of the family of compatible
computers. IBM mainly started this concept with its system/360 family.

A family of computers consists of several models. Each model is assigned a model
number, for example, the IBM system/360 family have, Model 30,40, 50,65 and 75.
The memory capacity, processing speed and cost increases as we go up the ladder.
However, a lower model is compatible to higher model, that is, program written on a
lower model can be executed on a higher model without any change. Only the time of
execution is reduced as we go towards higher model and also a higher model has more

23

The Basic Computer number of instructions. The biggest advantage of this family system was the flexibility
in selection of model.

For example, if you had a limited budget and processing requirements you could
possibly start with a relatively moderate model. As your business grows and your
processing requirements increase, you can upgrade your computer with subsequent
models depending on your need. However, please note that as you have gone for the
computer of the same family, you will not be sacrificing investment on the already
developed software as they can still be used on newer machines also.

Let us summarise the main characteristics of a computer family. These are:

S.No. Feature Characteristics while moving from lower
member to higher member

1. Instruction set Similar instructions.
 Normally, the instructions set on a lower and

member is a subset of higher end member. A
program written on lower end member can
be executed on a higher end member, but
program written on higher end member may
or may not get executed on lower end
members.

2 Operating System Same may have some additional features
added in the operating system for the higher
end members.

3 Speed of instruction
execution Increases

4 Number of I/O ports Increases

5 Memory size Increases

6 Cost Increases

Figure 9: Characteristics of computer families

But how was the family concept implemented? Well, there were three main features
of implementation. These were:

• Increased complexity of arithmetic logic unit;
• Increase in memory - CPU data paths; and
• Simultaneous access of data in higher end members.

The major developments which took place in the third generation, can be summarized
as:

• Application of IC circuits in the computer hardware replacing the discrete
transistor component circuits. Thus, computers became small in physical size
and less expensive.

• Use of Semiconductor (Integrated Circuit) memories as main memory replacing
 earlier technologies.
• The CPU design was made simple and CPU was made more flexible using a
 technique called microprogramming (will be discussed in later Blocks).
• Certain new techniques were introduced to increase the effective speed of

program execution. These techniques were pipelining and multiprocessing. The
details on these concepts can be found in the further readings.

• The operating system of computers was incorporated with efficient methods
of sharing the facilities or resources such as processor and memory space
automatically. These concepts are called multiprogramming and will be
discussed in the course on operating systems.

24

Introduction to Digital
Circuits 1.5.5 Later Generations

One of the major milestones in the IC technology was the very large scale integration
(VLSI) where thousands of transistors can be integrated on a single chip. The main
impact of VLSI was that, it was possible to produce a complete CPU or main memory
or other similar devices on a single IC chip. This implied that mass production of
CPU, memory etc. can be done at a very low cost. The VLSI-based computer
architecture is sometimes referred to as fourth generation computers.

The Fourth generation is also coupled with Parallel Computer Architectures. These
computers had shared or distributed memory and specialized hardware units for
floating point computation. In this era, multiprocessing operating system, compilers
and special languages and tools were developed for parallel processing and distributed
computing. VAX 9000, CRAY X-MP, IBM/3090 were some of the systems
developed during this era.

Fifth generation computers are also available presently. These computers mainly
emphasise on Massively Parallel Processing. These computers use high-density
packaging and optical technologies. Discussions on such technologies are beyond the
scope of this course.
However, let us discuss some of the important breakthroughs of VLSI technologies in
this subsection:

Semiconductor Memories
Initially the IC technology was used for constructing processor, but soon it was
realised that the same technology can be used for construction of memory. The first
memory chip was constructed in 1970 and could hold 256 bits. The cost of this first
chip was high. The cost of semiconductor memory has gone down gradually and
presently the IC RAM’s are quite cheap. Although the cost has gone down, the
memory capacity per chip has increased. At present, we have reached the 1 Gbits on a
single memory chip. Many new RAM technologies are available presently. We will
give more details on these technologies later in Block 2.
Microprocessors
Keeping pace with electronics as more and more components were fabricated on a
single chip, fewer chips were needed to construct a single processor. Intel in 1971
achieved the breakthrough of putting all the components on a single chip. The single
chip processor is known as a microprocessor. The Intel 4004 was the first
microprocessor. It was a primitive microprocessor designed for a specific application.
Intel 8080, which came in 1974, was the first general-purpose microprocessor. This
microprocessor was meant to be used for writing programs that can be used for
general purpose computing. It was an 8-bit microprocessor. Motorola is another
manufacturer in this area. At present 32 and 64 bit general-purpose microprocessors
are already in the market. Let us look into the development of two most important
series of microprocessors.

S.No. Processor Year Memory size Bus width Comment

1 4004 1971 640 bytes 4 bits Processor for specific
applications

2. 8080 1974 64 KB 8 bits

First general-purpose
micro-processor. It was
used in development of
first personal computer

3. 8086 1978 1 MB 16 bits

 Supported
instruction cache
memory or queue

 Was the first
powerful machine

25

The Basic Computer

4 80386
1985-1988
various
versions.

4 G Byte
Processor

32 bits

 First 32 bit
 The processor

supports
multitasking

5 80486 1989-1991 4 g Byte 32 bits

 Use of powerful
cache technology.

 Supports pipeline
based instruction
execution

 Contains built-in
facility in the term
of built-in math co-
processor for
floating point
instructions

6 Pentium 1993-1995 64 G Bytes 32-bits and
64 bits

Uses superscalar
techniques, that is
execution of multiple
instructions in parallel.

7 Pentium
II 1997 64 G Bytes 64 bits

Contains instruction for
handling processing of
video, audio, graphics
etc. efficiently. This
technology was called
MMX technology.

8 Pentium
III 1999 64 B bytes 64 bits Supports 3 D graphics

software.

9 Pentium
IV 2000 64 G Bytes 64 bits

Contains instructions for
enhancement of
multimedia. A very
powerful processor

10 Itaium 2001 64 G bytes 64 bits
Supports massively
parallel computing
architecture.

11 Xeon 2001 64 G bytes 64 bits

Support hyper threading
explained after this
diagrams
Outstanding
performance and
dependability: ideal for
low cost servers

Figure 10: Some Important Developments in Intel Family of Microprocessors

Hyper-threading:

Nonthreaded program instructions are executed in a single order at a time, till the
program completion. Suppose a program have 4 tasks namely A, B, C, D. Assume
that each task consist of 10 instructions including few I/O instructions. A simple
sequential execution would require A B C D sequence. → → →

In a threaded system these tasks of a single process/program can be executed in
parallel provided is no data dependency. Since, there is only one processor these tasks
will be executed in threaded system as interleaved threads, for example, 2 instructions
of A 3 instruction of B, 1 instruction of C, 4 instruction of D, 2
instruction of C etc. till completion of the threads.

26

Introduction to Digital
Circuits

Hyper-threading allows 2 threads A & B to execute at the same time. How? Some of
the more important parts of the CPU are duplicated. Thus, there exists 2 executing
threads in the CPU at the exact same time. Please note that both these sections of the
CPU works on the same memory space (as threads are the same program). Eventually
dual CPUs will allow the computer to execute two threads in two separate programs at
the same time.

Thus, Hyper-threading technology allows a single microprocessor to act like two
separate threaded processors to the operating system and the application program that
use it.

Hyper-threading requires software that has multiple threads and optimises speed of
execution. A threaded program executes faster on hyper threaded machine. However,
it should be noted that not all programs can be threaded.

The other architecture that has gained popularity over the last decade is the power PC
family. These machines are reduced set instruction computer (RISC) based
technologies. RISC technologies and are finding their application because of
simplicity of Instructions. You will learn more about RISC in Block 3 of this course.

The IBM made an alliance with Motorola and Apple who has used Motorola 68000
chips in their Macitosh computer to create a POWER PC architecture. Some of the
processors in this family are:

S.No. Processor Year Bus Width Comment

1 601 1993 32 bits The first chip in power PC

2 603/603e 1994 32 bits Low cost machine, intended for
low cost desktop

3 604/604e 1997 64 bits Low end server having
superscalar architecture

4 G3 1997 64 bits Contains two levels of cache
 Shows good performance

5 G4 1999 64 bits Increased speeds & parallelism of
instruction execution

6 G6 2003 64 bits Extremely fast multimedia
capability rated very highly.

Figure 11: Power PC Family

The VLSI technology is still evolving. More and more powerful microprocessors and
more storage space now is being put in a single chip. One question which we have still
not answered, is: Is there any classification of computers? Well-for quite sometime
computers have been classified under the following categories:

• Micro-controllers

• Micro-computers

• Engineering workstations

• Mini computers

• Mainframes

• Super computers
• Network computers.

Micro-controllers: These are specialised device controlling computers that contains
all the functions of computers on a single chip. The chip includes provision for
processing, data input and output display. These chips then can be embedded into
various devices to make them more intelligent. Today this technology has reached

27

The Basic Computer great heights. In fact it has been stated that embedded technology computing power
available even in a car today is much more than what was available in the system on
first lunar mission”.

Microcomputers

A microcomputer’s CPU is a microprocessor. They are typically used as single user
computer although present day microcomputers are very powerful. They support
highly interactive environment specially like graphical user interface like windows.
These computers are popular for home and business applications. The microcomputer
originated in late 1970’s. The first microcomputers were built around 8-bit
microprocessor chips. What do we mean by an 8-bit chip? It means that the chip can
retrieve instructions/data from storage, manipulate, and process an 8-bit data at a time
or we can say that the chip has a built- in 8-bit data transfer path.
An improvement on 8-bit chip technology was seen in early 1980s, when a series of
16-bit chips namely 8086 and 8088 were introduced by Intel Corporation, each one
with an advancement over the other.

8088 was an 8/16 bit chip i.e. an 8-bit path is used to move data between chip and
primary storage (external path), but processing was done within the chip using a 16-
bit path (internal path) at a time. 8086 was a 16/16-bit chip i.e. the internal and
external paths both were 16 bits wide. Both these chips could support a primary basic
memory of storage capacity of 1 Mega Byte (MB).

Similar to Intel’s chip series exists another popular chip series of Motorola. The first
16-bit microprocessor of this series was MC 68000. It was a 16/32-bit chip and could
support up to 16 MB of primary storage. Advancement over the 16/32 bit chips was
the 32/32 chips. Some of the popular 32-bit chips were Intel’s 80486 and MC 68020
chip.

Most of the popular microcomputers were developed around Intel’s chips, while most
of the minis and super minis were built around Motorola’s 68000 series chips. With
the advancement of display and VLSI technology a microcomputer was available in
very small size. Some of these are laptops, note book computers etc. Most of these are
of the size of a small notebook but equivalent capacity of an older mainframe.

Workstations

The workstations are used for engineering applications such as CAD/CAM or any
other types of applications that require a moderate computing power and relatively
high quality graphics capabilities. Workstations generally are required with high
resolution graphics screen, large RAM, network support, a graphical user interface,
and mass storage device. Some special type of workstation comes, without a disk.
These are called diskless terminals/ workstations. Workstations are typically linked
together to form a network. The most common operating systems for workstations are
UNIX, Windows 2003 Server, and Solaris etc.

Please note that networking workstation means any computer connected to a local
area network although it could be a workstation or a personal computer.

Workstations may be a client to server Computers. Server is a computer that is
optimised to provide services to other connected computers through a network.
Servers usually have powerful processors, huge memory and large secondary storage
space.

Minicomputer

The term minicomputer originated in 1960s when it was realised that many computing
tasks do not require an expensive contemporary mainframe computers but can be
solved by a small, inexpensive computer.

28

Introduction to Digital
Circuits

The mini computers support multi-user environment with CPU time being shared
among multiple users. The main emphasis in such computer is on the processing
power and less for interaction. Most of the present day mini computers have
proprietary CPU and operating system. Some common examples of a mini-computer
are IBM AS/400 and Digital VAX. The major use of a minicomputer is in data
processing application pertaining to departments/companies.

Mainframes

Mainframe computers are generally 32-bit machines or higher. These are suited to big
organisations, to manage high volume applications. Few of the popular mainframe
series were DEC, IBM, HP, ICL, etc. Mainframes are also used as central host
computers in distributed systems. Libraries of application programs developed for
mainframe computers are much larger than those of the micro or minicomputers
because of their evolution over several decades as families of computing. All these
factors and many more make the mainframe computers indispensable even with the
popularity of microcomputers.

Supercomputers

The upper end of the state of the art mainframe machine are the supercomputers.
These are amongst the fastest machines in terms of processing speed and use
multiprocessing techniques, where a number of processors are used to solve a
problem. There are a number of manufacturers who dominate the market of
supercomputers-CRAY, IBM 3090 (with vector), NEC Fujitsu, PARAM by C-DEC
are some of them. Lately, a range of parallel computing products, which are
multiprocessors sharing common buses, have been in use in combination with the
mainframe supercomputers. The supercomputers are reaching upto speeds well over
25000 million arithmetic operations per second. India has also announced its
indigenous supercomputer. They support solutions to number crunching problems.

Supercomputers are mainly being used for weather forecasting, computational fluid
dynamics, remote sensing, image processing, biomedical applications, etc. In India,
we have one such mainframe supercomputer system-CRAY XMP-14, which is at
present, being used by Meteorological Department.

Let us discuss about PARAM Super computer in more details

PARAM is a high-performances, scalable, industry standard computer. It has evolved
from the concepts of distributes scalable computers supporting massive parallel
processing in cluster of networked of computers. The PARAM’s main advantages is
its Scalability. PARAM can be constructed to perform Tera-floating point operations
per second. It is a cost effective computer. It supports a number of application
software.

PARAM is made using standard available components. It supports Sun’s Ultra
SPARC series servers and Solaris Operating System. It is based on open
environments and standard protocols. It can execute any standard application
available on Sun Solaris System.

Some of the applications that have been designed to run in parallel computational
mode on PARAM include numerical weather forecasting, seismic data processing,
Molecular modelling, finite element analysis, quantum chemistry.

It also supports many languages and Software Development platforms such as:

Solaris 2.5.1 Operating system on I/O and Server nodes, FORTRAN 77, FORTRAN
90, C and C++ language compilers, and tools for parallel program debugging,
Visualisation and parallel libraries, Distributed Computing Environment, Data
warehousing tools etc.

29

The Basic Computer Check Your Progress 3

1) What is a general purpose machine?

 ...

 ...

 ………………………………………………………………………………………..

2) List the advantages of IC technology over discrete components.
 ..

 ..

 ………………………………………………………………………………………..

3) What is a family of computers? What are its characteristics?

 ...

 ...

1.6 SUMMARY

This completes our discussion on the introductory concepts of computer architecture.
The von-Neumann architecture discussed in the unit is not the only architecture but
many new architectures have come up which you will find in further readings.
The information given on various topics such as interrupts, classification, history of
computer although is exhaustive yet can be supplemented with additional reading. In
fact, a course in an area of computer must be supplemented by further reading to keep
your knowledge up to date, as the computer world is changing with leaps and bounds.
In addition to further readings the student is advised to study several Indian Journals
on computers to enhance his knowledge.

1.7 SOLUTIONS / ANSWERS

Check Your Progress 1

1.
 a) True
 b) False
 c) False
 d) True
 e) True
 f) True

2. von Neumann architecture defines the basic architectural (logical) components
of computer and their features. As per von Neumann the basic components of a
computer are CPU (ALU+CU + Registers), I/O Devices, Memory and
interconnection structures. von Neumann machine follows stored program
concept that is, a program is loaded in the memory of computer prior to its
execution.

3.
• The instructions are not executed in sequence
• More than one data items may be required during a single instruction
 execution.
• Speed of CPU is very fast in comparion to I/O devices.

30

Introduction to Digital
Circuits

Check Your Progress 2

1.

 i) False
 ii) True
 iii) True
 iv) False
 v) False, they may be acknowledged as per priority.

2. An interrupt is an external signal that occurs due to an exceptional event. It

causes interruption in the execution of current program of CPU.

3. An interrupt is acknowledged by the CPU, which executes an interrupt cycle
which causes interruption of currently executing program, and execution of
interrupt servicing routine (ISR) for that interrupt.

Check Your Progress 3

1. A machine, which can be used for variety of applications and is not modeled
only for specific applications. von Neumann machines are general-purpose
machines since they can be programmed for any general application, while
microprocessor based control systems are not general-purpose machines as they
are specifically modeled as control systems.

2.
• Low cost
• Increased operating speed
• Reduction in size of the computers
• Reduction in power and cooling requirements
• More reliable

3. The concept of the family of computer was floated by IBM 360 series where the
features and cost increase from lower end members to higher end members.

31

The Basic Computer

 31

Data Representation

UNIT 2 DATA REPRESENTATION

Structure Page Nos.

2.0 Introduction 31
2.1 Objectives 31
2.2 Data Representation 31
2.3 Number Systems: A Look Back 32
2.4 Decimal Representation in Computers 36
2.5 Alphanumeric Representation 37
2.6 Data Representation For Computation 39
 2.6.1 Fixed Point Representation

2.6.2 Decimal Fixed Point Representation
 2.6.3 Floating Point Representation

2.6.4 Error Detection And Correction Codes
2.7 Summary 56
2.8 Solutions/ Answers 56

2.0 INTRODUCTION

In the previous Unit, you have been introduced to the basic configuration of the
Computer system, its components and working. The concept of instructions and their
execution was also explained. In this Unit, we will describe various types of binary
notations that are used in contemporary computers for storage and processing of data.
As far as instructions and their execution is concerned it will be discussed in detailed
in the later blocks.

The Computer System is based on the binary system; therefore, we will be devoting
this complete unit to the concepts of binary Data Representation in the Computer
System. This unit will re-introduce you to the number system concepts. The number
systems defined in this Unit include the Binary, Octal, and Hexadecimal notations. In
addition, details of various number representations such as floating-point
representation, BCD representation and character-based representations have been
described in this Unit. Finally the Error detection and correction codes have been
described in the Unit.

2.1 OBJECTIVES

At the end of the unit you will be able to:

• Use binary, octal and hexadecimal numbers;
• Convert decimal numbers to other systems and vice versa;
• Describe the character representation in computers;
• Create fixed and floating point number formats;
• Demonstrate use of fixed and floating point numbers in performing arithmetic
 operations; and
• Describe the data error checking mechanism and error detection and correction
 codes.

2.2 DATA REPRESENTATION

The basic nature of a Computer is as an information transformer. Thus, a computer
must be able to take input, process it and produce output. The key questions here are:

 32

Introduction to Digital
Circuits

How is the Information represented in a computer?

Well, it is in the form of Binary Digit popularly called Bit.

How is the input and output presented in a form that is understood by us?

One of the minimum requirements in this case may be to have a representation for
characters. Thus, a mechanism that fulfils such requirement is needed. In Computers
information is represented in digital form, therefore, to represent characters in
computer we need codes. Some common character codes are ASCII, EBCDIC, ISCII
etc. These character codes are discussed in the subsequent sections.

How are the arithmetic calculations performed through these bits?

We need to represent numbers in binary and should be able to perform operations on
these numbers.

Let us try to answer these questions, in the following sections. Let us first recapitulate
some of the age-old concepts of the number system.

2.3 NUMBER SYSTEMS: A LOOK BACK

Number system is used to represent information in quantitative form. Some of the
common number systems are binary, octal, decimal and hexadecimal.

A number system of base (also called radix) r is a system, which has r distinct
symbols for r digits. A string of these symbolic digits represents a number. To
determine the value that a number represents, we multiply the number by its place
value that is an integer power of r depending on the place it is located and then find
the sum of weighted digits.

Decimal Numbers: Decimal number system has ten digits represented by
0,1,2,3,4,5,6,7,8 and 9. Any decimal number can be represented as a string of these
digits and since there are ten decimal digits, therefore, the base or radix of this system
is 10.

Thus, a string of number 234.5 can be represented as:

2 × 102 + 3 × 101 + 4 × 100 + 5 × 10-1

Binary Numbers: In binary numbers we have two digits 0 and 1 and they can also be
represented, as a string of these two-digits called bits. The base of binary number
system is 2.

For example, 101010 is a valid binary number.

Decimal equivalent of a binary number:

For converting the value of binary numbers to decimal equivalent we have to find its
value, which is found by multiplying a digit by its place value. For example, binary
number 101010 is equivalent to:

 1×25+0×24+1×23+ 0×22+1×21+0×20
 = 1×32 + 0×16 + 1×8 + 0×4 + 1×2 + 0×1
 = 32 + 8 + 2
 = 42 in decimal.

Octal Numbers: An octal system has eight digits represented as 0,1,2,3,4,5,6,7. For
finding equivalent decimal number of an octal number one has to find the quantity of
the octal number which is again calculated as:

Data Representation Octal number (23.4)8 .

(Please note the subscript 8 indicates it is an octal number, similarly, a subscript 2 will
indicate binary, 10 will indicate decimal and H will indicate Hexadecimal number, in
case no subscript is specified then number should be treated as decimal number or else
whatever number system is specified before it.)

Decimal equivalent of Octal Number:

(23.4)8

= 2×81 +3×80 +4×8-1

= 2×8+3×1+4×1/8

=16+3+0.5

= (19.5)10

Hexadecimal Numbers: The hexadecimal system has 16 digits, which are represented
as 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. A number (F2)H is equivalent to

F×161 +2×160

 = (15×16) + 2 // (As F is equivalent to 15 for decimal)

 = 240 + 2

 = (242)10

Conversion of Decimal Number to Binary Number: For converting a decimal
number to binary number, the integer and fractional part are handled separately. Let us
explain it with the help of an example:

Example 1: Convert the decimal number 43.125 to binary number.

Solution:

Integer Part = 43 Fraction 0.125

On dividing the quotient of integer part
repeatedly by 2 and separating the
remainder till we get 0 as the quotient

On multiplying the fraction repeatedly
and separating the integer as you get it
till you have all zeros in fraction

Integer Part Quotient on division by 2 Remainder on division by 2

 43 21 1
 21 10 1
 10 05 0
 05 02 1
 02 01 0
 01 00 1 d

Please note in the figure above that:

• The equivalent binary to the Integer part of the number is (101011)2

• You will get the Integer part of the number, if you READ the remainder in the
 direction of the Arrow.
Rea
33

 34

Introduction to Digital
Circuits Fraction On Multiplication by 2 Integer part after

Multiplication
0.125 0.250 0
0.250 0.500 0
0.500 1.000 1

d

Please note in the figure above that:

• The equivalent binary to the Fractional part of the number is 001.

• You will get the fractional part of the number, if you READ the In
 the number in the direction of the Arrow.

Thus, the number (101011.001)2 is equivalent to .)125.43(10

You can cross check it as follows:

1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 + 0 × 2-1 + 0 × 2-2 +1
= 32 + 0 + 8 + 0 + 2 + 1 + 0 + 0 +1/8

= (43.125)10

One easy direct method in Decimal to binary conversion for integer
write the place values as:

26 25 24 23 22 21 20

64 32 16 8 4 2 1

Step 1: Take the integer part e.g. 43, find the next lower or equal bina
 number, in this example it is 32. Place 1 at 32.
Step 2: Subtract the place value from the number, in this case subtrac

which is 11.
Step 3: Repeat the two steps above till you get 0 at step 2.
Step 4: On getting a 0 put 0 at all other place values.

These steps are shown as:

32 16 8 4 2 1

32 16 8 4 2 1

1 - - - - -1 43 -32 =11

1 - 1 - - - 11- 8 = 3

1 - 1 - 1 - 3-2 = 1

1 - 1 - 1 1 1-1= 0

1 0 1 0 1 1 is the required number.

You can extend this logic to fractional part also but in reverse order. Try
with several numbers. It is fast and you will soon be accustomed to it an
whole operation in single iteration.

Conversion of Binary to Octal and Hexadecimal: The rules for these
are straightforward. For converting binary to octal, the binary number is
Rea
teger part of

 × 2-3

part is to first

ry place value

t 32 from 43,

 this method
d can do the

conversions
 divided into

 35

Data Representation groups of three, which are then combined by place value to generate equivalent octal.
For example the binary number 1101011.00101 can be converted to Octal as:

1 101 011 . 001 01

001 101 011 . 001 010

1 5 3 . 1 2

(Please note the number is unchanged even though we have added 0 to complete the
grouping. Also note the style of grouping before and after decimal. We count three
numbers from right to left while after the decimal from left to right.)

Thus, the octal number equivalent to the binary number 1101011.00101 is (153.12)8.

Similarly by grouping four binary digits and finding equivalent hexadecimal digits for
it can make the hexadecimal conversion. For example the same number will be
equivalent to (6B.28)H..

110 1011 . 0010 1

0110 1011 . 0010 1000
6 11 . 2 8

6 B . 2 8 (11in hexadecimal is B)
Thus equivalent hexadecimal number is (6B.28)H

Conversely, we can conclude that a hexadecimal digit can be broken down into a
string of binary having 4 places and an octal can be broken down into string of binary
having 3 place values. Figure 1 gives the binary equivalents of octal and hexadecimal
numbers.

Octal Number Binary coded Octal Hexadecimal
Number

Binary-coded
Hexadecial

0 000 0 0000
1 001 1 0001
2 010 2 0010
3 011 3 0011
4 100 4 0100
5 101 5 0101
6 110 6 0110
7 111 7 0111

 8 1000

 9

-Decimal-
1001

 A 10 1010
 B 11 1011
 C 12 1100
 D 13 1101
 E 14 1110
 F 15 1111
Figure 1: Binary equivalent of octal and hexadecimal digits

 36

Introduction to Digital
Circuits

Check Your Progress 1

1) Convert the following binary numbers to decimal.

 i) 1100.1101

 ii) 10101010

 ...

 ...

 ...

 ...

2) Convert the following decimal numbers to binary.

 i) 23

 ii) 49.25

 iii) 892

 ...

 ...

 ...

 ...

3) Convert the numbers given in question 2 to hexadecimal from decimal or from
the binary.

 ...

 ...

 ...

 ...

2.4 DECIMAL REPRESENTATION IN
COMPUTERS

The binary number system is most natural for computer because of the two stable
states of its components. But, unfortunately, this is not a very natural system for us as
we work with decimal number system. So, how does the computer perform the
arithmetic? One solution that is followed in most of the computers is to convert all
input values to binary. Then the computer performs arithmetic operations and finally
converts the results back to the decimal number so that we can interpret it easily. Is
there any alternative to this scheme? Yes, there exists an alternative way of
performing computation in decimal form but it requires that the decimal numbers
should be coded suitably before performing these computations. Normally, the
decimal digits are coded in 7-8 bits as alphanumeric characters but for the purpose of
arithmetic calculations the decimal digits are treated as four bit binary code.
As we know 2 binary bits can represent 22 = 4 different combinations, 3 bits can
represent 23 = 8 combinations, and similarly, 4 bits can represent 24 = 16
combinations. To represent decimal digits into binary form we require 10
combinations, but we need to have a 4-digit code. One such simple representation may
be to use first ten binary combinations to represent the ten decimal digits. These are
popularly known as Binary Coded Decimals (BCD). Figure 2 shows the binary coded
decimal numbers.

 37

Data Representation Decimal Binary Coded Decimal

 0 0000

 1 0001

 2 0010

 3 0011

 4 0100

 5 0101

 6 0110

 7 0111

 8 1000

 9 1001

 10 0001 0000

 11 0001 0001

 12 0001 0010

 13 0001 0011

 .. ……….

 20 0010 0000

 .. ………..

 30 0011 0000

Figure 2: Binary Coded Decimals (BCD)

Let us represent 43.125 in BCD.

4 3 . 1 2 5

0100 0011 . 0001 0010 0101

Compare the equivalent BCD with equivalent binary value. Both are different.

2.5 ALPHANUMERIC REPRESENTATION

But what about alphabets and special characters like +, -, * etc.? How do we represent
these in a computer? A set containing alphabets (in both cases), the decimal digits (10
in number) and special characters (roughly 10-15 in numbers) consist of at least 70-80
elements.

ASCII

One such standard code that allows the language encoding that is popularly used is
ASCII (American Standard Code for Information Interchange). This code uses 7 bits

 38

Introduction to Digital
Circuits

to represent 128 characters, which include 32 non-printing control characters,
alphabets in lower and upper case, decimal digits, and other printable characters that
are available on your keyboard. Later as there was need for additional characters to be
represented such as graphics characters, additional special characters etc., ASCII was
extended to 8 bits to represent 256 characters (called Extended ASCII codes). There
are many variants of ASCII, they follow different code pages for language encoding,
however, having the same format. You can refer to the complete set of ASCII
characters on the web. The extended ASCII codes are the codes used in most of the
Microcomputers.

The major strength of ASCII is that it is quite elegant in the way it represents
characters. It is easy to write a code to manipulate upper/lowercase ASCII characters
and check for valid data ranges because of the way of representation of characters.
In the original ASCII the 8th bit (the most significant bit) was used for the purpose of
error checking as a check bit. We will discuss more about the check bits later in the
Unit.

EBCDIC

Extended Binary Coded Decimal Interchange Code (EBCDIC) is a character-encoding
format used by IBM mainframes. It is an 8-bit code and is NOT Compatible to ASCII.
It had been designed primarily for ease of use of punched cards. This was primarily
used on IBM mainframes and midrange systems such as the AS/400. Another strength
of EBCDIC was the availability of wider range of control characters for ASCII. The
character coding in this set is based on binary coded decimal, that is, the contiguous
characters in the alphanumeric range are represented in blocks of 10 starting from
0000 binary to 1001 binary. Other characters fill in the rest of the range. There are
four main blocks in the EBCDIC code:

0000 0000 to 0011 1111 Used for control characters

0100 0000 to 0111 1111 Punctuation characters

1000 0000 to 1011 1111 Lowercase characters

1100 0000 to 1111 1111 Uppercase characters and numbers.

There are several different variants of EBCDIC. Most of these differ in the
punctuation coding. More details on EBCDIC codes can be obtained from further
reading and web pages on EBCDIC.

Comparison of ASCII and EBCDIC

EBCDIC is an easier to use code on punched cards because of BCD compatibility.
However, ASCII has some of the major advantages on EBCDIC. These are:
While writing a code, since EDCDIC is not contiguous on alphabets, data comparison
to continuous character blocks is not easy. For example, if you want to check whether
a character is an uppercase alphabet, you need to test it in range A to Z for ASCII as
they are contiguous, whereas, since they are not contiguous range in EDCDIC these
may have to be compared in the ranges A to I, J to R, and S to Z which are the
contiguous blocks in EDCDIC.

Some of the characters such as [] \{}^~| are missing in EBCDIC. In addition, missing
control characters may cause some incompatibility problems.

UNICODE

This is a newer International standard for character representation. Unicode provides
a unique code for every character, irrespective of the platform, Program and
Language. Unicode Standard has been adopted by the Industry. The key players that
have adopted Unicode include Apple, HP, IBM, Microsoft, Oracle, SAP, Sun, Sybase,
Unisys and many other companies. Unicode has been implemented in most of the

 39

Data Representation latest client server software. Unicode is required by modern standards such as XML,
Java, JavaScript, CORBA 3.0, etc. It is supported in many operating systems, and
almost all modern web browsers. Unicode includes character set of Dev Nagari. The
emergence of the Unicode Standard, and the availability of tools supporting it, is
among the most significant recent global software technology trends.

One of the major advantages of Unicode in the client-server or multi-tiered
applications and websites is the cost saving over the use of legacy character sets that
results in targeting website and software products across multiple platforms,
languages and countries without re-engineering. Thus, it helps in data transfer through
many different systems without any compatibility problems. In India the suitability of
Unicode to implement Indian languages is still being worked out.

Indian Standard Code for information interchange (ISCII)

The ISCII is an eight-bit code that contains the standard ASCII values till 127 from
128-225 it contains the characters required in the ten Brahmi-based Indian scripts. It
is defined in IS 13194:1991 BIS standard. It supports INSCRIPT keyboard which
provides a logical arrangement of vowels and consonants based on the phonetic
properties and usage frequencies of the letters of Bramhi-scripts. Thus, allowing use
of existing English keyboard for Indian language input. Any software that uses ISCII
codes can be used in any Indian Script, enhancing its commercial viability. It also
allows transliteration between different Indian scripts through change of display
mode.

2.6 DATA REPRESENTATION FOR
COMPUTATION

As discussed earlier, binary codes exist for any basic representation. Binary codes can
be formulated for any set of discrete elements e.g. colours, the spectrum, the musical
notes, chessboard positions etc. In addition these binary codes are also used to
formulate instructions, which are advanced form of data representation. We will
discuss about instructions in more detail in the later blocks. But the basic question
which remains to be answered is:

How are these codes actually used to represent data for scientific calculations?

The computer is a discrete digital device and stores information in flip-flops (see Unit
3, 4 of this Block for more details), which are two state devices, in binary form. Basic
requirements of the computational data representation in binary form are:

• Representation of sign
• Representation of Magnitude
• If the number is fractional then binary or decimal point, and
• Exponent

The solution to sign representation is easy, because sign can be either positive or
negative, therefore, one bit can be used to represent sign. By default it should be the
left most bit (in most of the machines it is the Most Significant Bit).

Thus, a number of n bits can be represented as n+l bit number, where n+lth bit is the
sign bit and rest n bits represent its magnitude (Please refer to Figure 3).

Figure 3: A (n + 1) bit number

 40

Introduction to Digital
Circuits

The decimal position can be represented by a position between the flip-flops (storage
cells in computer). But, how can one determine this decimal position? Well to
simplify the representation aspect two methods were suggested: (1) Fixed point
representation where the binary decimal position is assumed either at the beginning or
at the end of a number; and (2) Floating point representation where a second register
is used to keep the value of exponent that determines the position of the binary or
decimal point in the number.

But before discussing these two representations let us first discuss the term
“complement” of a number. These complements may be used to represent negative
numbers in digital computers.

Complement: There are two types of complements for a number of base (also called
radix) r. These are called r’s complement and (r- 1)’s complement. For example, for
decimal numbers the base is 10, therefore, complements will be 10’s complement and
(10-1) = 9’s complement. For binary numbers we talk about 2’s and 1’s complements.
But how to obtain complements and what do these complements means? Let us
discuss these issues with the help of following example:

Example 2: Find the 9’s complement and 10’s complement for the decimal number
 256.

Solution:

9’s complement: The 9’s complement is obtained by subtracting each digit of the
number from 9 (the highest digit value). Let us assume that we want to represent a
maximum of four decimal digit number range. 9’s complement can be used for BCD
numbers.

 9
-0

 9
-2

 9
-5

 9
-6 9’s complement of 256

 9 7 4 3

Similarly, for obtaining 1’s complement for a binary number we have to subtract each
binary digit of the number from the digit 1.

10’s complement: Adding 1 in the 9’s complement produces the 10’s complement.
 10’s complement of 0256 = 9743+1 = 9744

Please note on adding the number and its 9’s complement we get 9999 (the maximum
possible number that can be represented in the four decimal digit number range) while
on adding the number and its 10’s complement we get 10000 (The number just higher
than the range. This number cannot be represented in four digit representation.)
Example3: Find 1’s and 2’s complement of 1010 using only four-digit representation.

Solution:

1’s complement: The 1’s complement of 1010 is

 1 1 1 1
-1 -0 -1 -0
 0 1 0 1

The number is 1 0 1 0

The 1’s complement is 0 1 0 1

 41

Data Representation Please note that wherever you have a digit 1 in number the complement contains 0 for
that digit and vice versa. In other words to obtain 1’s complement of a binary number,
we only have to change all the 1’s of the number to 0 and all the zeros to 1’s. This can
be done by complementing each bit of the binary number.

2’s complement: Adding 1 in 1’s complement will generate the 2’s complement

The number is 1 0 1 0

The 1’s complement is 0 1 0 1

For 2’s complement add 1 in 1’s complement - - - 1

Please note that 1+1 = 1 0 in binary 0 1 1 0

 Most Significant bit Least significant bit

The number is 1 0 1 0

The 1’s complement is 0 1 1 0

The 2’s complement can also be obtained by not complementing the least significant
zeros till the first 1 is encountered. This 1 is also not complemented. After this 1 the
rest of all the bits are complemented on the left.

Therefore, 2’s complement of the following number (using this method) should be
(you can check it by finding 2’s complement as we have done in the example).

The number is 0 0 1 0 0 1 0 0

The 2’s complement
is 1 1 0 1 1 1 0 0

 No change in these bits

The number is 1 0 0 0 0 0 0 0

The 2’s complement
is 1 0 0 0 0 0 0 0

 No change in number and its 2’s Complement, a special case

The number is 0 0 1 0 1 0 0 1

The 2’s complement is 1 1 0 1 0 1 1 1

No change in this
 bit only

2.6.1 Fixed Point Representation

The fixed-point numbers in binary uses a sign bit. A positive number has a sign bit 0,
while the negative number has a sign bit 1. In the fixed-point numbers we assume that
the position of the binary point is at the end, that is, after the least significant bit. It
implies that all the represented numbers will be integers. A negative number can be
represented in one of the following ways:

• Signed magnitude representation

 42

Introduction to Digital
Circuits

• Signed 1’s complement representation, or
• Signed 2’s complement representation.
(Assumption: size of register = 8 bits including the sign bit)

Signed Magnitude Representation

Representation (8 bits) Decimal
 Number Sign Bit Magnitude (7 bits)

+6 0 000 0110

-6 1 000 0110

No change in the Magnitude, only sign bit changes

Signed 1’s Complement Representation

Representation (8 bits) Decimal

 Number Sign Bit Magnitude/ 1’s complement
for negative number (7 bits)

+6 0 000 0110

-6 1 111 1001
For negative number take 1’s complement of all the bits (including sign
bit) of the positive number

Signed 2’s Complement Representation

Representation (8 bits) Decimal

 Number Sign Bit Magnitude/ 1’s complement
for negative number (7 bits)

+6 0 000 0110

-6 1 111 1010

For negative number take 2’s complement of all the bits (including sign
bit) of the positive number

Arithmetic addition

The complexity of arithmetic addition is dependent on the representation, which has
been followed. Let us discuss this with the help of following example.

Example 4: Add 25 and -30 in binary using 8 bit registers, using:

• Signed magnitude representation
• Signed 1’s complement
• Signed 2’s complement

Solution:

Signed Magnitude Representation
Number

Sign Bit Magnitude
+25 0 001 1001
-25 1 001 1001
+30 0 001 1110
-30 1 001 1110

 43

Data Representation To do the arithmetic addition with one negative number only, we have to check the
magnitude of the numbers. The number having smaller magnitude is then subtracted
from the bigger number and the sign of bigger number is selected. The
implementation of such a scheme in digital hardware will require a long sequence of
control decisions as well as circuits that will add, compare and subtract numbers. Is
there a better alternative than this scheme? Let us first try the signed 2’s complement.

Now let us perform addition using signed 2’s complement notation:

Decimal
equivalent
number

Signed 2’s complement representation Operation

 Carry
out Sign out Magnitude

Comments

+25
+30

-
-

0
0

001
001

1001
1110

+55 0 0 011 0111

Simple binary addition.
There is no carry out of
sign bit

+25
-30

-
-

0
1

001
110

1001
0010

Addition of
two positive
number

Addition of
smaller
Positive and
larger
negative
Number -05 0 1 111 1011

Perform simple binary
addition. No carry in to
the sign bit and no carry
out of the sign bit

Positive
value of
result

+05 0 1 000 0101
2’s complement of above
result

-25
+30

-
-

1
1

110
001

0111
1110

+05 1 0 000 0101

Addition of
larger
Positive and
smaller
negative
Number

Discard the carry out bit

Perform simple binary
addition. No carry in to
the sign bit and carry out
of the sign bit

-25
-30

 - 1
- 1

110
110

0111
0010

-55 1 1 110 1001

Perform simple binary
addition. There is carry in

to the sign bit and carry
out of the sign bit No

overflow

Addition of
two negative
Numbers

Discard the carry out bit

Positive
value of
result

+55 - 0 011 0111
2’s complemnt of above
result

Signed Magnitude Representation
Number

Sign Bit Magnitude

+25 0 001 1001

-25 1 110 0111

+30 0 001 1110

-30 1 110 0010

Please note how easy it is to add two numbers using signed 2’s Complement. This
procedure requires only one control decision and only one circuit for adding the two
numbers. But it puts on additional condition that the negative numbers should be
stored in signed 2’s complement notation in the registers. This can be achieved by

 44

Introduction to Digital
Circuits

complementing the positive number bit by bit and then incrementing the resultant by 1
to get signed 2’s complement.

Signed 1’s complement representation

Another possibility, which also is simple, is use of signed 1’s complement. Signed 1’s
complement has a rule. Add the two numbers, including the sign bit. If carry of the
most significant bit or sign bit is one, then increment the result by 1 and discard the
carry over. Let us repeat all the operations with 1’s complement.

Decimal
equivalent
number

Signed 1’s complement representation Operation

 Carry
out Sign out Magnitude

Comments

+25
+30

-
-

0
0

001
001

1001
1110

+55 0 0 001 0111

 Simple binary addition.
 There is no carry out of
 sign bit

+25
-30

-
-

0
1

001
110

1001
0001

Addition of
two positive
number

Addition of
smaller
Positive and
larger
negative
Number

-05 0 1 111 1011

Perform simple binary
addition. No carry in to
the sign bit and no carry
out of the sign bit

Positive
value of
result

+05 - 0 000 0101
1’s complement of above
result

-25
+30

-
-

1
0

110
001

0111
1110

 1 0 000 0101

Addition of
larger
Positive and
smaller
negative
Number Add carry

to Sum
and
discard it

There is carry in to the
sign bit and carry out of
the sign bit. The carry out
is added it to the Sum bit
and then discard no
overflow.

 +05 - 0 000 0101

-25
-30

 - 1
 - 1

110
110

0111
0010

-55 1 1 100 0111

Perform simple binary
addition. There is carry in
to the sign bit and carry
out of the sign bit No
overflow

Addition of
two negative
Numbers

Add carry
to sum and
discard it

 - 1 100 1000

Positive
value of
result

+55 - 0 011 0111
1’s complemnt of above
result

1

1

Another interesting feature about these representations is the representation of 0. In
signed magnitude and 1’s complement there are two representations for zero as:

Representation + 0 -0

Signed magnitude 0 000 0000 1 000 0000

Signed 1’s complement 0 000 0000 1 111 1111

 45

Data Representation But, in signed 2’s complement there is just one zero and there is no positive or
negative zero.
 +0 in 2’s Complement Notation: 0 000 0000

 -0 in 1’s complement notation: 1 111 1111

 Add 1 for 2’s complement: 1

 Discard the Carry Out 1 0 000 0000

Thus, -0 in 2’s complement notation is same as +0 and is equal to 0 000 0000. Thus,
both +0 and -0 are same in 2’s complement notation. This is an added advantage in
favour of 2’s complement notation.

The highest number that can be accommodated in a register, also depends on the type
of representation. In general in an 8 bit register 1 bit is used as sign, therefore, the rest
7 bits can be used for representing the value. The highest and the lowest numbers that
can be represented are:

For signed magnitude representation (27 – 1) to – (27 – 1)

 = (128–1) to – (128– 1)

 = 127 to –127

For signed 1’s complement 127 to –127

But, for signed 2’s complement we can represent +127 to –128. The – 128 is
represented in signed 2’s complement notation as 10000000.

Arithmetic Subtraction: The subtraction can be easily done using the 2’s
complement by taking the 2’s complement of the value that is to be subtracted
(inclusive of sign bit) and then adding the two numbers.

Signed 2’s complement provides a very simple way for adding and subtracting two
numbers. Thus, many computers (including IBM PC) adopt signed 2’s complement
notation. The reason why signed 2’s complement is preferred over signed 1’s
complement is because it has only one representation for zero.

Overflow: An overflow is said to have occurred when the sum of two n digits number
occupies n+ 1 digits. This definition is valid for both binary as well as decimal digits.

What is the significance of overflow for binary numbers?

Well, the overflow results in errors during binary arithmetic as the numbers are
represented using a fixed number of digits also called the size of the number. Any
value that results from computation must be less than the maximum of the allowed
value as per the size of the number. In case, a result of computation exceeds the
maximum size, the computer will not be able to represent the number correctly, or in
other words the number has overflowed. Every computer employs a limit for
representing numbers e.g. in our examples we are using 8 bit registers for calculating
the sum. But what will happen if the sum of the two numbers can be accommodated in
9 bits? Where are we going to store the 9th bit, The problem will be better understood
by the following example.

Example: Add the numbers 65 and 75 in 8 bit register in signed 2’s complement
notation.

 65 0 100 0001
 75 0 100 1011

 140 1 000 1100

The expected result is +140 but the binary sum is a negative number and is equal to
–116, which obviously is a wrong result. This has occurred because of overflow.

 46

Introduction to Digital
Circuits

How does the computer know that overflow has occurred?

If the carry into the sign bit is not equal to the carry out of the sign bit then
overflow must have occurred.

Another simple test of overflow is: if the sign of both the operands is same during
addition, then overflow must have occurred if the sign of resultant is different than
that of sign of any operand.

For example

Decimal Carry
out

Sign
bit

2’s
Complement
Mantissa

Decimal Carry
out

Sign
bit

2’s
Complement
Mantissa

-65
-15

 1 011 1111
 1 111 0001

-65
-75

1
1

011 1111
111 0001

-80 1 1 011 0000 -140 1 0 111 0100

Carry into Sign bit = 1 Carry into Sign bit = 0

 Carry out of sign bit = 1 Carry out of Sign bit = 1
 Therefore, NO OVERFLOW Therefore, OVERFLOW

Thus, overflow has occurred, i.e. the arithmetic results so calculated have exceeded
the capacity of the representation. This overflow also implies that the calculated
results will be erroneous.

2.6.2 Decimal Fixed Point Representation

The purpose of this representation is to keep the number in decimal equivalent form
and not binary as above. A decimal digit is represented as a combination of four bits;
thus, a four digit decimal number will require 16 bits for decimal digits representation
and additional 1 bit for sign. Normally to keep the convention of one decimal digit to
4 bits, the sign sometimes is also assigned a 4-bit code. This code can be the bit
combination which has not been used to represent decimal digit e.g. 1100 may
represent plus and 1101 can represent minus.

For example, a simple decimal number – 2156 can be represented as:

1101 0010 0001 0101 0110

Sign

Although this scheme wastes considerable amount of storage space yet it does not
require conversion of a decimal number to binary. Thus, it can be used at places where
the amount of computer arithmetic is less than that of the amount of input/output of
data e.g. calculators or business data processing situations. The arithmetic in decimal
can also be performed as in binary except that instead of signed complement, signed
nine’s complement is used and instead of signed 2’s complement signed 9’s
complement is used. More details on decimal arithmetic are available in further
readings.

Check Your Progress 2

1) Write the BCD equivalent for the three numbers given below:

 i) 23

 ii) 49.25

iii) 892

 47

Data Representation ...

 ...

 ...

 ...

2) Find the 1’s and 2’s complement of the following fixed-point numbers.

 i) 10100010

 ii) 00000000

 iii) 11001100

 ...

 ...

 ...

 ……………………………………………………………………………………….

3) Add the following numbers in 8-bit register using signed 2’s complement
notation

 i) +50 and – 5

 ii) +45 and – 65

 iii) +75 and +85

 Also indicate the overflow if any.

 ...

 ………………..

 …….. ...

 …………………………………………………………………………………………

2.6.3 Floating Point Representation

Floating-point number representation consists of two parts. The first part of the
number is a signed fixed-point number, which is termed as mantissa, and the second
part specifies the decimal or binary point position and is termed as an Exponent. The
mantissa can be an integer or a fraction. Please note that the position of decimal or
binary point is assumed and it is not a physical point, therefore, wherever we are
representing a point it is only the assumed position.

Example 1: A decimal + 12.34 in a typical floating point notation can be represented
in any of the following two forms:

 48

Introduction to Digital
Circuits

This number in any of the above forms (if represented in BCD) requires 17 bits for
mantissa (1 for sign and 4 each decimal digit as BCD) and 9 bits for exponent (1 for
sign and 4 for each decimal digit as BCD). Please note that the exponent indicates the
correct decimal location. In the first case where exponent is +2, indicates that actual
position of the decimal point is two places to the right of the assumed position, while
exponent– 2 indicates that the assumed position of the point is two places towards the
left of assumed position. The assumption of the position of point is normally the same
in a computer resulting in a consistent computational environment.

Floating-point numbers are often represented in normalised forms. A floating point
number whose mantissa does not contain zero as the most significant digit of the
number is considered to be in normalised form. For example, a BCD mantissa + 370
which is 0 0011 0111 0000 is in normalised form because these leading zero’s are not
part of a zero digit. On the other hand a binary number 0 01100 is not in a normalised
form. The normalised form of this number is:

0 1100 0100
Sign Normalised Mantissa Exponent (assuming fractional Mantissa

A floating binary number +1010.001 in a 16-bit register can be represented in
normalised form (assuming 10 bits for mantissa and 6 bits for exponent).

 Exponent Mantissa (Integer)

0 00100 1010001000

Sign bit

A zero cannot be normalised as all the digits in mantissa in this case have to be zero.

Arithmetic operations involved with floating point numbers are more complex in
nature, take longer time for execution and require complex hardware. Yet the floating-
point representation is a must as it is useful in scientific calculations. Real numbers
are normally represented as floating point numbers.

The following figure shows a format of a 32-bit floating-point number.

Sign Biased Exponent = 8 bits Significand = 23 bits
90 1

Figure 4: Floating Point Number Representation

The characteristics of a typical floating-point representation of 32 bits in the above
figure are:

• Left-most bit is the sign bit of the number;
• Mantissa or signific and should be in normalised form;
• The base of the number is 2, and
• A value of 128 is added to the exponent. (Why?) This is called a bias.

A normal exponent of 8 bits normally can represent exponent values as 0 to 255.
However, as we are adding 128 for getting the biased exponent from the actual
exponent, the actual exponent values represented in the range will be – 128 to 127.

Now, let us define the range that a normalised mantissa can represent. Let us assum
that our present representations has the normalised mantissa, thus, the left most bit
31
8
e

 49

Data Representation cannot be zero, therefore, it has to be 1. Thus, it is not necessary to store this first bit
and it is being assumed implicitly for the number. Therefore, a 23-bit mantissa can
represent 23 + 1 = 24 bit mantissa in our representation.

Thus, the smallest mantissa value may be:

The implicit first bit as 1 followed by 23 zero’s, that is,

0.1000 0000 0000 0000 0000 0000

Decimal equivalent = 1 × 2-1 = 0.5

The Maximum value of the mantissa:
The implicit first bit 1 followed by 23 one’s, that is,

0.1111 1111 1111 1111 1111 1111

Decimal equivalent:
For finding binary equivalent let us add 2-24 to above mantissa as follows:

Binary: 0.1111 1111 1111 1111 1111 1111

+0.0000 0000 0000 0000 0000 0001 = 2-24

 1.0000 0000 0000 0000 0000 0000 = 1
= (1 – 2-24)

Therefore, in normalised mantissa and biased exponent form, the floating-point
number format as per the above figure, can represent binary floating-point numbers in
the range:

Smallest Negative number
 Maximum mantissa and maximum exponent
 = – (1 –2-24) × 2127

Largest negative number
 Minimum mantissa and Minimum exponent
 = -0.5 × 2-128

Smallest positive number
 = 0.5 × 2-128

Largest positive number
 = (1 –2-24) × 2127

Figure 5: Binary floating-point number range for given 32 bit format

 50

Introduction to Digital
Circuits

In floating point numbers, the basic trade-off is between the range of the numbers and
accuracy, also called the precision of numbers. If we increase the exponent bits in 32-
bit format, the range can be increased, however, the accuracy of numbers will go
down, as size of mantissa will become smaller. Let us take an example, which will
clarify the term precision. Suppose we have one bit binary mantissa then we can
represent only 0.10 and 0.11 in the normalised form as given in above example
(having an implicit 1). The values such as 0.101, 0.1011 and so on cannot be
represented as complete numbers. Either they have to be approximated or truncated
and will be represented as either 0.10 or 0.11. Thus, it will create a truncation or round
off error. The higher the number of bits in mantissa better will be the precision.

In floating point numbers, for increasing both precision and range more number of
bits are needed. This can be achieved by using double precision numbers. A double
precision format is normally of 64 bits.

Institute of Electrical and Electronics Engineers (IEEE) is a society, which has created
lot of standards regarding various aspects of computer, has created IEEE standard 754
for floating-point representation and arithmetic. The basic objective of developing this
standard was to facilitate the portability of programs from one to another computer.
This standard has resulted in development of standard numerical capabilities in
various microprocessors. This representation is shown in figure 6.

0 1 8 9 31

S Biased exponent (E)

Significand (N)

Single Precision = 32 bits

0 1 11 12 63

S

Biased exponent (E)

Significand (N)

 Double Precision = 64 bits

 Figure 6: IEEE Standard 754 format

Figure 7 gives the floating-point numbers specified by the IEEE Standard 754.

Single Precision Numbers (32 bits)

Exponent (E) Significand (N) Value / Comments
255 Not equal to 0 Do represent a number
255 0 - or +∞ depending on sign bit
0<E<255 Any ± (1.N) 2E-127

For example, if S is zero that is positive
number.
N=101 (rest 20 zeros) and E=207
Then the number is = +(1.101) 2207-127
= + 1.101×280

0 Not equal to 0 ± (0.N) 2-126
0 0 ± 0 depending on the sign bit.
Double precision Numbers (64 bits)

Exponent (E) Significand (N) Value / Comments
2047 Not equal to 0 Do not represent a number

 51

Data Representation 2047 0 - or + depending on the sign bit ∞

0<E<2047 Any ± (1.N) 2E-1023
0 Not equal to 0 ± (0.N) 2-1022
0 0 ± 0 depending on the sign bit

Figure 7: Values of floating point numbers as per IEEE standard 754

Please note that IEEE standard 754 specifies plus zero and minus zero and plus
infinity and minus infinity. Floating point arithmetic is more sticky than fixed point
arithmetic. For floating point addition and subtraction we have to follow the following
steps:

• Check whether a typical operand is zero
• Align the significand such that both the significands have same exponent
• Add or subtract the significand only and finally
• The significand is normalised again

These operations can be represented as
x + y = (Nx × 2Ex-Ey + Ny) × 2Ey
and x–y = (Nx × 2Ex-Ey-Ny) × 2Ey

Here, the assumption is that exponent of x (Ex) is greater than exponent of y (Ey), Nx
and Ny represent significand of x and y respectively.

While for multiplication and division operations the significand need to be multiplied
or divided respectively, however, the exponents are to be added or to be subtracted
respectively. In case we are using bias of 128 or any other bias for exponents then on
addition of exponents since both the exponents have bias, the bias gets doubled.
Therefore, we must subtract the bias from the exponent on addition of exponents.
However, bias is to be added if we are subtracting the exponents. The division and
multiplication operation can be represented as:

 x × y = (Nx × Ny) × 2Ex+Ey
 x ÷ y = (Nx ÷ Ny) × 2Ex-Ey

For more details on floating point arithmetic you can refer to the further readings.

2.6.4 Error Detection and Correction Codes

Before we wind up the data representation in the context of today’s computers one
must discuss about the code, which helps in recognition and correction of errors.
Computer is an electronic media; therefore, there is a possibility of errors during data
transmission. Such errors may result from disturbances in transmission media or
external environment. But what is an error in binary bit? An error bit changes from
0 to 1 or 1 to 0. One of the simplest error detection codes is called parity bit.

Parity bit: A parity bit is an error detection bit added to binary data such that it makes
the total number of 1’s in the data either odd or even. For example, in a seven bit data
0110101 an 8th bit, which is a parity bit may be added. If the added parity bit is even
parity bit then the value of this parity bit should be zero, as already four 1’s exists in
the 7-bit number. If we are adding an odd parity bit then it will be 1, since we already
have four 1 bits in the number and on adding 8th bit (which is a parity bit) as 1 we are
making total number of 1’s in the number (which now includes parity bit also) as 5, an
odd number.
Similarly in data 0010101 Parity bit for even parity is 1
 Parity bit for odd parity is 0

But how does the parity bit detect an error? We will discuss this issue in general as an
error detection and correction system (Refer figure 8).

 52

Introduction to Digital
Circuits

The error detection mechanism can be defined as follows:

Figure 8: Error detection and correction

The Objective : Data should be transmitted between a source data pair reliably,
 indicating error, or even correcting it, if possible.

The Process:

• An error detection function is applied on the data available at the source end an
error detection code is generated.

• The data and error detection or correction code are stored together at source.
• On receiving the data transmission request, the stored data along with stored

error detection or correction code are transmitted to the unit requesting data
(Destination).

• On receiving the data and error detection/correction code from source, the
destination once again applies same error detection/correction function as has
been applied at source on the data received (but not on error detection/
correction code received from source) and generates destination error
detection/correction code.

• Source and destination error codes are compared to flag or correct an error as
the case may be.

The parity bit is only an error detection code. The concept of error detection and
correction code has been developed using more than one parity bits. One such code is
Hamming error correcting code.

Hamming Error-Correcting Code: Richard Hamming at Bell Laboratories devised
this code. We will just introduce this code with the help of an example for 4 bit data.

Let us assume a four bit number b4, b3, b2, b1. In order to build a simple error
detection code that detects error in one bit only, we may just add an odd parity bit.
However, if we want to find which bit is in error then we may have to use parity bits
for various combinations of these 4 bits such that a bit error can be identified
uniquely. For example, we may create four parity sets as

 Source Parity Destination Parity

 53

Data Representation b1, b2, b3 P1 D1

b2, b3, b4 P2 D2

b3, b4, b1 P3 D3

b1, b2, b3, b4 P4 D4

Now, a very interesting phenomena can be noticed in the above parity pairs. Suppose
data bit b1 is in error on transmission then, it will cause change in destination parity
D1, D3, D4.

ERROR IN Cause change in Destination Parity
(one bit only)

b1 D1, D3, D4

b2 D1, D2, D4

b3 D1, D2,D3, D4

b4 D2, D3, D4

Figure 9 : The error detection parity code mismatch

Thus, by simply comparing parity bits of source and destination we can identify that
which of the four bits is in error. This bit then can be complemented to remove error.
Please note that, even the source parity bit can be in error on transmission, however,
under the assumption that only one bit (irrespective of data or parity) is in error, it will
be detected as only one destination parity will differ.

What should be the length of the error detection code that detects error in one bit?
Before answering this question we have to look into the comparison logic of error
detection. The error detection is done by comparing the two ‘i’ bit error detection and
correction codes fed to the comparison logic bit by bit (refer to figure 8). Let us have
comparison logic, which produces a zero if the compared bits are same or else it
produces a one.

Therefore, if similar Position bits are same then we get zero at that bit Position, but if
they are different, that is, this bit position may point to some error, then this Particular
bit position will be marked as one. This way a matching word is constructed. This
matching word is ‘i’ bit long, therefore, can represent 2i values or combinations.

For example, a 4-bit matching word can represent 24=16 values, which range from 0
to 15 as:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

The value 0000 or 0 represent no error while the other values i.e. 2i-1
(for 4 bits 24– 1=15, that is from 1 to 15) represent an error condition. Each of these
2i – 1(or 15 for 4 bits) values can be used to represent an error of a particular bit.
Since, the error can occur during the transmission of ‘N’ bit data plus ‘i’ bit error
correction code, therefore, we need to have at least ‘N+i’ error values to represent
them. Therefore, the number of error correction bits should be found from the
following equation:

 2i – 1 >= N+i

If we are assuming 8-bit word then we need to have

 2i – 1 >= 8+i

Say at i=3 LHS = 23 –1 = 7; RHS = 8+3 = 11

 54

Introduction to Digital
Circuits i=4 2i-1 = 24 – 1 = 15; RHS = 8+4 = 12

Therefore, for an eight-bit word we need to have at least four-bit error correction code
for detecting and correcting errors in a single bit during transmission.

Similarly for 16 bit word we need to have i = 5

25 –1 = 31 and 16+i = 16+5 = 21

For 16-bit word we need to have five error correcting bits.

Let us explain this with the help of an example:

Let us assume 4 bit data as 1010

The logic is shown in the following table:

Source:

Source Data Odd parity bits at source

b4 b3

b2

b1

P1
(b1, b2, b3)

P2
(b2, b3, b4)

P3
(b3, b4, b1)

P4
(b1, b2, b3,b4)

1 0 1 0 0 1 0 1

This whole information, that is (data and P1 to P4), is transmitted.

Assuming one bit error in data.

Case 1: Data received as 1011 (Error in b1)

b4 b3

b2

b1

D1
(b1, b2, b3)

D2
(b2, b3, b4)

D3
(b3, b4, b1)

D4
(b1, b2, b3,b4)

1 0 1 0 0 1 0 1

Thus, P1 – D1, P3 – D3, P4 –D4 pair differ, thus, as per Figure 9, b1 is in error, so
correct it by completing b1 to get correct data 1010.

Case 2: Data Received as 1000 (Error in b2)

b4 b3

b2

b1

D1
(b1, b2, b3)

D2
(b2, b3, b4)

D3
(b3, b4, b1)

D4
(b1, b2, b3,b4)

1 0 0 0 0 1 0 0

Thus, P1 – D1, P2 – D2, P4 – D4 pair differ, thus, as per figure 9,bit b2 is in
error. So correct it by complementing it to get correct data 1010.

Case 3:

Now let us take a case when data received is correct but on receipt one of the parity
bit, let us say P4 become 0. Please note in this case since data is 1010 the destination
parity bits will be D1=0, D2=1, D3=0, D4=1. Thus, P1– D1, P2 – D2, P3 – D3, will
be same but P4 –D4 differs. This does not belong to any of the combinations in
Figure 9. Thus we conclude that P4 received is wrong.

Please not that all these above cases will fail in case error is in more than one
bits. Let us see by extending the above example.

 55

Data Representation Normally, Single Error Correction (SEC) code is used in semiconductor memories for
correction of single bit errors, however, it is supplemented with an added feature for
detection of errors in two bits. This is called a SEC-DED (Single Error Correction-
Double Error Detecting) code. This code requires an additional check bit in
comparison to SEC code. We will only illustrate the working principle of SEC-DED
code with the help of an example for a 4-bit data word. Basically, the SEC-DED code
guards against the errors of two bits in SEC codes.

Case: 4

Let us assume now that two bit errors occur in data.
Data received:

b4 b3 b2 b1
1 1 0 0

b4 b3

b2

b1

D1
(b1, b2, b3)

D2
(b2, b3, b4)

D3
(b3, b4, b1)

D4
(b1, b2, b3,b4)

1 0 0 0 0 1 0 0

Thus, on -matching we find P3-D3 pair does not match.
However, this information is wrong. Such problems can be identified by adding one
more bit to this Single Error Detection Code. This is called Double Error Detection
bit (P5, D5).

So our data now is

b4 b3 b2 b1 P1 P2 P3 P4 P5

 1 0 1 0 0 1 0 1 1

 (Overall parity of whole data)

Data receiving end.

b4 b3 b2 b1 D1 D2 D3 D4 D5

 1 1 0 0 0 1 1 1 0

D5–P5 mismatch indicates that there is double bit error, so do not try to correct error,
instead asks the sender to send the data again. Thus, the name single error correction,
but double error detection, as this code corrects single bit errors but only detects error
in two bit.

Check Your Progress 3

1) Represent the following numbers in IEEE-754 floating point single precision
number format:

i) 1010. 0001
ii) –0.0000111

2) Find the even and odd parity bits for the following 7-bit data:

i) 0101010
ii) 0000000
iii) 1111111
iv) 1000100

 ...

 ...

3) Find the length of SEC code and SEC-DED code for a 16-bit word data transfer.

 56

Introduction to Digital
Circuits

 ...

 ...

 ...

2.7 SUMMARY

This unit provides an in-depth coverage of the data representation in a computer
system. We have also covered aspects relating to error detection mechanism. The
unit covers number system, conversion of number system, conversion of numbers to a
different number system. It introduces the concept of computer arithmetic using 2’s
complement notation and provides introduction to information representation codes
like ASCII, EBCDIC, etc. The concept of floating point numbers has also been
covered with the help of a design example and IEEE-754 standard. Finally error
detection and correction mechanism is detailed along with an example of SEC &
SEC-DED code.

The information given on various topics such as data representation, error detection
codes etc. although exhaustive yet can be supplemented with additional reading. In
fact, a course in an area of computer must be supplemented by further reading to keep
your knowledge up to date, as the computer world is changing with by leaps and
bounds. In addition to further reading the student is advised to study several Indian
Journals on computers to enhance his knowledge.

2.8 SOLUTIONS/ANSWERS

Check Your Progress 1

1.

(i) 23 22 21 20 2-1 2-2 2-3 2-4
 1 1 0 0 1 1 0 1

 thus; Integer = (1×23+1×22+0×21+0×20) = (23+22) = (8+4) = 12
 Fraction = (1×2-1+1×2-2+0×2-3+1×2-4) = 2-1+2-2+2-4 = 0.5+0.125 + 0.0625 =0.6875

ii) 10101010

 2
7
 2

6
 2

5
 2

4
 2

3
 2

2
 2

1
 2

0

 1 0 1 0 1 0 1 0

 128 64 32 16 8 4 2 1

 =1 0 1 0 1 0 1 0

The decimal equivalent is

 = 1× 128 + 0×64 + 1×32 + 0×16 + 1×8 + 0×4 + 1×2 + 0×1

 = 128 + 32 + 8 + 2 = 170

2.

i) 16 8 4 2 1

 1 0 1 1 1

ii) Integer is 49.

 57

Data Representation 32 16 8 4 2 1

 1 1 0 0 0 1

 Fraction is 0.25

 1/2 1/4 1/8 1/16

 0 1 0 0

 The decimal number 49.25 is 110001.010

iii)

 512 256 128 64 32 16 8 4 2 1

 1 1 0 1 1 1 1 1 0 0

The decimal number 892 in binary is 1101111100

3)

i) Decimal to Hexadecimal

 16) 23 (1
 -16

 7

Hexadecimal is 17
Binary to Hexadecimal (hex)

= 1 0111 (from answer of 2 (i)

 0001 0111
1 7

ii)
 49.25 or 110001.010

 Decimal to hex

 Integer part = 49

 16) 49 (3
 -48

 1

Integer part = 31

Fraction part = .25 ×16

 = 4.000 So fraction part = 4

Hex number is 31.4

Binary to hex 11 0001 . 010
 = 0011 0001 . 0100
 = 3 1 . 4
 = 31.4

iii) 892 or 1101111100

 0011 0111 1100
 = 3 7 C
 = 37C

Number Quotient on
division by 16

Remainder

 58

Introduction to Digital
Circuits

892

55

3

55

3

0

12=C

7

3

So the hex number is : 37C

Check Your Progress 2

1.

i) 23 in BCD is 0010 0011

ii) 49.25 in BCD is 0100 1001.0010 0101

iii) 892 in BCD is 1000 1001 0010

2. 1’s complement is obtained by complementing each bit while 2’s complement is
obtained by leaving the number unchanged till first 1starting from least
significant bit after that complement each bit.

 (i) (ii) (iii)

 Number 10100010 00000000 11001100

 1’s complement 01011101 11111111 00110011

 2’s complement 01011110 00000000 00110100

3. We are using signed 2’s complement notation

 (i) +50 is 0 0110010
 +5 is 0 0000101
 therefore –5 is 1 1111011

 Add+50 = 0 0110010

 – 5 1 1111011

 1 0 0101101
 ^

carry out (discard the carry)

Carry in to sign bit = 1

Carry out of sign bit = 1 Therefore, no overflow

The solution is 0010 1101= +45

ii) +45 is 0 0101101
 +65 is 0 1000001
Therefore, -65 is 1 0111111
 +45 0 0101101
 – 65 1 0111111
 1 1101100

No carry into sign bit, no carry out of sign bit. Therefore, no overflow.

+20 is 0 0010100

Therefore, -20 is 1 1101100

which is the given sum

 59

Data Representation (iii) +75 is 0 1001011
+85 is 0 1010101

 1 0100000
Carry into sign bit = 1
Carry out of sign bit = 0
Overflow.

Check Your Progress 3

1.

i) 1010.0001
 = 1.0100001 ×23
 So, the single precision number is :
 Significand = 010 0001 000 0000 0000 0000
 Exponent = 3+127 = 130 = 10000010
 Sign=0
 So the number is = 0 1000 0010 010 0001 0000 0000 0000 0000

ii) -0.0000111
 -1.11×2-5
Significand = 110 0000 0000 0000 0000 0000

Exponent = 127-5 = 122 = 0111 1010
Sign = – 1 ≡
So the number is
1 0111 1010 110 0000 0000 0000 0000 0000

2. Data Even parity bit Odd parity bit
 0101010 1 0
 0000000 0 1
 1111111 1 0
 1000100 0 1

3. The equation for SEC code is
 2i -1 > =N+i
 i — Number of bits in SEC code
 N — Number of bits in data word

In, this case N = 16
 i = ?

so the equation is

 2i – 1 > =16 + i

at i = 4
 24 -1 > =16+4
 15 > = 20 Not true.

at i = 5
 25 -1 > =16+5
 31> = 21 True the condition is satisfied.

Although, this condition will be true for i > 5 also but we want to use only minimum
essential correction bits which are 5.

For SEC-DED code we require an additional bit as overall parity. Therefore, the SEC-
DED code will be of 6 bits.

 60

Introduction to Digital
Circuits UNIT 3 PRINCIPLES OF LOGIC CIRCUITS I

Structure Page Nos.

3.0 Introduction 60
3.1 Objectives 60
3.2 Logic Gates 60
3.3 Logic Circuits 62
3.4 Combinational Circuits 63
 3.4.1 Canonical and Standard Forms
 3.4.2 Minimization of Gates
3.5 Design of Combinational Circuits 72
3.6 Examples of Logic Combinational Circuits 73
 3.6.1 Adders
 3.6.2 Decoders
 3.6.3 Multiplexer
 3.6.4 Encoder
 3.6.5 Programmable Logic Array
 3.6.6 Read Only Memory ROM
3.7 Summary 82
3.8 Solutions/ Answers 82

3.0 INTRODUCTION

In the previous units, we have discussed the basic configuration of computer system
von Neumann architecture, data representation and simple instruction execution
paradigm. But ‘How does a computer actually perform computations?’. Now, we will
attempt to find answer of this basic query. In this unit, you will be exposed to some
of the basic components that form the most essential parts of a computer. You will
come across terms like logic gates, binary adders, logic circuits and combinational
circuits etc. These circuits are the backbone of any computer system and knowing
them is quite essential. The characteristics of integrated digital circuits are also
discussed in this unit.

3.1 OBJECTIVES

After going through this unit you will be able to:

• define logic gates;
• describe the significance of Boolean algebra in digital circuit design;
• describe the necessity of minimizing the number of gates in design;
• describe how basic mathematical operations, viz. addition and subtraction, are
 performed by computer; and

• define and describe some of the useful circuits of a computer system such as
 multiplexer, decoders, ROM etc.

3.2 LOGIC GATES
A logic gate is an electronic circuit which produces a typical output signal depending
on its input signal. The output signal of a gate is a simple Boolean operation of its
input signal. Gates are the basic logic elements that produce signals of binary 1 or 0.

We can represent any Boolean function in the form of gates.

 61

Principles of Logic
Circuits I

In general we can represent each gate through a distinct graphic symbol and its
operation can be given by means of algebraic expression. To represent the input-
output relationship of binary variables in each gate, truth tables are used. The
notations and truth -tables for different logic gates are given in Figure 3.1.

Figure 3.1: Logic Gates

The truth table of NAND and NOR can be made from NOT (A AND B) and NOT
 (A OR B) respectively. Exclusive OR (XOR) is a special gate whose output is one
only if the two inputs are not equal. The inverse of exclusive OR, called as XNOR
gate, can be a comparator which will produce a 1 output if two inputs are equal.

The digital circuits use only one or two types of gates for simplicity in fabrication
purposes. Therefore, one must think in terms of functionally complete set of gates.
What does functionally complete set imply? A set of gates by which any Boolean
function can be implemented is called a functionally complete set. The functionally
complete sets are: [AND, NOT], [NOR], [NAND], [OR, NOT].

 62

Introduction to Digital
Circuits 3.3 LOGIC CIRCUITS

A Boolean function can be implemented into a logic circuit using the basic gates:-
AND , OR & NOT. Consider, for example, the Boolean function: -
F (A,B,C) = A B + C

The relationship between this function and its binary variables A, B, C can be
represented in a truth table as shown in figure 3.2(a) and figure 3.2(b) shows the
corresponding logic circuit.

Inputs Output

A B C F

0 0 0 0

0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

(a) Truth Table (b) Logic Circuit

 Figure 3.2 : Truth table & logic diagram for F = A B + C

Thus, in a logic circuit, the variables coming on the left hand side of boolean
expression are inputs to circuit and the variable function coming on the right hand side
of expression is taken as output.

Here, there is one important point to note i.e. there is only one way to represent the
boolean expression in a truth table but can be expressed in variety of logic circuits.
How? [try to find the answer]

Check Your Progress 1

1) What are the logic gates and which gates are called as Universal gates.
 ...

 ...

2) Simplify the Boolean function: F =










 ++





 + BABA


 ……………………………………………………………………………………….

 ……………………………………………………………………………………….

 ……………………………………………………………………………………….

3) Draw the logic diagram of the above function.

 ...

 ...

 ...

 ………………………………………………………………………………………..

 63

Principles of Logic
Circuits I

4) Draw the logic diagram of the simplified function.

 ...

 ...

5) Show implementation of AND, NOT and OR Operations using NAND gates.

 ……………………………………………………………………………………….

 ……………………………………………………………………………………….

 ……………………………………………………………………………………….

3.4 COMBINATIONAL CIRCUIT

Combinational circuits are interconnected circuits of gates according to certain rules
to produce an output depending on its input value. A well-formed combinational
circuit should not have feedback loops. A combinational circuit can be represented as
a network of gates and, therefore, can be expressed by a truth table or a Boolean
expression.

The output of the combinational circuit is related to its input by a combinational
function, which is independent of time. Therefore, for an ideal combinational circuit
the output should change instantaneously according to changes in input. But in actual
case there is a slight delay. The delay is normally proportional to depth or number of
levels i.e. the maximum numbers of gates on any path from input to output. For
example, the depth of the combinational circuit in figure 3.3 is 2.

Figure 3.3 : A two level AND-OR combinational circuit

The basic design issue related to combinational circuits is: the Minimization of
number of gates. The normal circuit constraints for combinational circuit design are :

• The depth of the circuit should not exceed a specific level,
• Number of input lines to a gate (fan in) and to how many gates its output can be
 fed (fan out) are constraint by the circuit power constraints.

3.4.1 Canonical and Standard Forms

An algebric expression can exist in two forms :

i) Sum of Products (SOP) e.g. (A . B) + (A . B)
ii) Product of Sums (POS) e.g. (A + B) . (A + B)

If a product term of SOP expression contains every variable of that function either in
true or complement form then it is defined as a Minterm or Standard Product. This
minterm will be true only for one combination of input values of the variables. For
example, in the SOP expression

F (A, B, C) = (A. B.C) + (A . B . C) + (A . B)
We have three product terms namely A.B.C, . A . B .C and A.B. But only first two of
them qualifies to be a minterm, as the third one does not contain variable C or its

 64

Introduction to Digital
Circuits

complement. In addition, the term A.B.C will be one only if A = 1, B = 1and C = 1,
for any other combination of values of A, B, C the minterm A.B.C will have 0 value.
Similarly, the minterm. A B . C will have value 1 only if A = 1, B = 1 and C = 1 (It
implies A=0, B=0 and C=1) for any other combination of values the minterm will
have a zero value.

Similar type of term used in POS form is called Maxterm or Standard Sums .
Maxterm is a term of POS expression, which contains all the variables of the function
in true or complemented form. For example, F (A, B, C) = (A + B + C). (A + B + C)
has two maxterms. A maxterm has a value 0, for only one combination of input
values.

The maxterm A + B+C will has 0 value only for A = 0, B = 0 and C = 0 for all other
combination of values of A, B, C it will have a value 1.

Figure 3.4 indicates the 2n different minterms and maxterms where n is number of
variables.

Variable’s Value Minterm Maxterm
a b c Term Representation Term Representation
0 0 0 a b c m0 a + b+ c M0

0 0 1 a b c m1 a +b + c M1
0 1 0 a b c m2 a + b + c M2
0 1 1 a b c m3 a + b + c M3

1 0 0 a b c m4 a + b+ c M4

1 0 1 a b c m5 a + b+ c M5
1 1 0 a b c m6 a + b + c M6
1 1 1 a b c m7 a + b + c M7

Figure 3.4: Maxterms and Minterms for 3 variables

We can represent any Boolean function alegebrically directly in minterm and maxterm
form from the truth table. For minterms, consider each combination of variables that
produces a 1 output in function and then taking OR of all those terms. For example,
the function F in figure 3.5 is represented in minterm form by ORing the terms where
the output F is 1 i.e. a b c , a b c a b c, a b c & a b c .

a b c F
0 0 0 0 m0
0 0 1 1 m1
0 1 0 1 m2
0 1 1 1 m3
1 0 0 0 m4
1 0 1 0 m5
1 1 0 1 m6
1 1 1 1 m7

Figure 3.5: Function of three variables

Thus, F (a,b,c) = a b c + a b c + a b c+ a b c + a b c

 = m1 + m2+ m3 + m6 + m7

 = ∑ (1,2,3,6,7)

 65

Principles of Logic
Circuits I

The complement of function F can be obtained by ORing of the minterms
corresponding to the combinations that produce a 0 output in function. Thus,

F (a, b, c) = a b c + a b c + a b c

If we take the complement of F , we get the function F in maxterm form.

F (a, b, c) = (F) = (a b c + a b c + a b c) = (a b c) . (a b c) . (a b c)
= (a + b + c) (a + b + c) (a + b + c) [De Morgan’s law]
= M0 . M4 . M5
= Π (0, 4, 5)

The product symbol stands for ANDing the maxterms. Π
Here, you will appreciate the fact that the terms which were missing in minterm form
are present in maxterm form. Thus if any form is known then the other form can be
directly formed.

The Boolean function expressed as a sum of minterms or product of maxterms has the
property that each and every literal of the function should be present in each and every
term in either normal or complemented form.

3.4.2 Minimization of Gates

The simplification of Boolean expression is very useful for combinational circuit
design. The following three methods are used for this:

• Algebraic Simplification
• Karnaugh Maps
• Quine McCluskey Method

Algebraic Simplification

We have already discussed algebraic simplification of logic circuit. An algebraic
expression can exist in POS or SOP forms. Let us examine the following example to
understand how it helps in implementing any logic circuit.
Example : Consider the function F (a,b,c) = a b c + a b c + a b . The logic circuit

implementation of this function is shown in fig 3.6(a).

(a) F = bacbacb ++a

 66

Introduction to Digital
Circuits

 (b) F = bacbacb ++a

Figure 3.6 : Two logic diagrams for same boolean expression

The expression F can be simplified using boolean algebra.
F(a,b,c) = a b c + a b c + a b
 = a b (c + c) + a b [as c + c = 1]
 = a b + a b
 = a⊕b

The logic diagram of the simplified expression is drawn in fig 3.6 (b) using NOT, OR
and AND gates (the same operation can be performed by using a single XOR gate).
Thus the number of gates are reduced to 5 gates (2 inverters, 2 AND gates & 1 OR)
instead of 7 gates. (3 inverters, 3 AND & 1 OR gate).

The algebraic function can appear in many different forms although a process of
simplification exists yet it is cumbersome because of absence of routes which tell
what rule to apply next. The Karnaugh map is a simple direct approach of
simplification of logic expressions.

Karnaugh Maps

Karnaugh maps are a convenient way of representing and simplifying Boolean
function of 2 to 6 variables. The stepwise procedure for Karnaugh map is.

Step 1: Create a simple map depending on the number of variables in the function.
Figure 3.7(a) shows the map of two, three and four variables. A map of 2
variables contains 4 value position or elements, while for 3 variables it has
23 = 8 elements. Similarly for 4 variables it is 24 =16 elements and so on.
Special care is taken to represent variables in the map. The value of only
one variable changes in two adjacent columns or rows. The advantage of
having change in one variable is that two adjacent cloumns or rows
represent a true or complement form of a single variable.

For example, in figure 3.7(a) the columns which have positive A are
adjacent and so are the column for A . Please note the adjacency of the
corners. The right most column can be considered to be adjacent to the first
column since they differ only by one variable and are adjacent. Similarly
the top most and bottom most rows are adjacent.

 67

Principles of Logic
Circuits I

(a) Maps for 2, 3 and 4 variables

 (b) Possible adjacencies

 Figure 3.7: Maps and their adjacencies

Please note:

1) Decimal equivalents of column are given for help in understanding where the
position of the respective set lies. It is not the value filled in the square. A
square can contain one or nothing.

2) The 00, 01, 11 etc written on the top implies the value of the respective
variables.

3) Wherever the value of a variable is 0 it is said to represent its compliment form.
4) The value of only one variable changes when we move from one row to the next

row or one column to the next column.

Step 2: The next step in Karnaugh map is to map the truth table into the map. The
mapping is done by putting a 1 in the respective square belonging to the 1
value in the truth table. This mapped map is used to arrive at simplified
Boolean expression which then can be used for drawing up the optimal
logical circuit. Step 2 will be more clear in the example.

Step 3: Now, create simple algebraic expression from the K-Map. These
expressions are created by using adjacency if we have two adjacent 1’s then
the expression for those can be simplified together since they differ only in
1 variable. Similarly, we search for the adjacent pairs of 4, 8 and so on. A 1
can appear in more than one adjacent pairs. We should search for octets
first then quadrets and then for doublets. The following example will clarify
the step 3.

 68

Introduction to Digital
Circuits

Example: Now, let us see how to use K map simplification for finding the
Boolean function for the cases whose truth table is given in figure 3.8(a)
and 3.8(B) shows the K-Map for this.

Decimal A B C D Output F

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 0

6 0 1 1 0 1

7 0 1 1 1 0

8 1 0 0 0 1

9 1 0 0 1 1

10 1 0 1 0 1

11 1 0 1 1 0

12 1 1 0 0 0

13 1 1 0 1 0

14 1 1 1 0 0

15 1 1 1 1 0

 ∑Or F = (0, 1, 2, 6, 8, 9, 10)

(a) Truth table

(b) Karnaugh’s map

Figure 3.8 : Truth table & K-Map of Function F = (0, 1, 2, 6, 8, 9, 10) ∑

Let us see what the pairs which can be considered as adjacent in the Karnaugh’s here.

The pairs are:

1) The four corners
2) The four 1’s as in top and bottom in column 00 & 01
3) The two 1’s in the top two rows of last column.

The corners can be represented by the expressions :

1) Four corners

 = (A B C D + A B C D) + (A B C D +A B C D)
 = A B D (C +C) + A B D (C +C) [as C+ C = 1]
 = A B D + A B D
0 = B D (A + A)
 = B D

 69

Principles of Logic
Circuits I

2) The four 1’s in column 00 and 01 gives the following terms

 = (A B C D + A B C D) + (A B C D + A B C D)
 = A B C (D + D) + A B C (D + D)
 = A B C + A B C
 = B C

3) The two 1’s in the last columns

 = A B C D + A B C D
 = A C D (B + B)
 = A C D

Thus, the Boolean expression derived from this K-Map is

F = B D + B C + A C D

[Note : This expression can be directly obtained from the K-Map after making
quadrets and doublets. Try to find how ?]

The expressions so obtained through K-Maps are in the forms of the sum of the
product form i.e. it is expressed as the sum of the products of the variables. This
expression can be expressed in product of sum form, but for this special method are
required to be used [already discussed in last section].

Let us see how we can modify K-Map simplification to obtain POS form. Suppose in
the previous example instead of using 1 we combined the adjacent 0 squares then we
will obtain the inverse function and on taking transform of this function we will get
the POS form.

Another important aspect about this simple method of digital circuit design is
DONOT care conditions. These conditions further simplify the algebraic function.
These conditions imply that it does not matter whether the output produced is 0 or 1
for the specific input. These conditions can occur when the combination of the
number of inputs are more than needed. For example, calculation through BCD where
4 bits are used to represent a decimal digit implies we can represent 24 = 16 digits but
since we have only 10 decimal digits therefore 6 of those input combination values do
not matter and are a candidate for DONOT care condition.

For the purpose of exercises you can do the exercise from the reference [1], [2] ,[3]
given in Block introduction.

What will happen if we have more than 4– 6 variables? As the numbers of variables
increases K-Maps become more and more cumbersome as the numbers of possible
combinations of inputs keep on increasing.

Quine McKluskey Method

A tabular method was suggested to deal with the increasing number of variables
known as Quine McKluskey Method. This method is suitable for programming and
hence provides a tool for automating design in the form of minimizing Boolean
expression.
The basic principle behind the Quine McKluskey Method is to remove the terms,
which are redundant and can be obtained by other terms.

To understand Quine - Mc Kluskey method, lets us see following example:-

Given, F (A,B,C,D,E) = ABCDE + ABC D E + A B C DE + A BCD E +
A B CD E + A B C DE + A B C D E + A B C D E

 70

Introduction to Digital
Circuits

Step I: The terms of the function are placed in table as follows:

Term/var A B C D E Checked/Unchecked

ABCDE 1 1 1 1 1 9

ABC D E 1 1 1 0 1 9

A B C DE 1 0 0 1 1 9

A BCD E 0 1 1 1 0 9

A B CD E 1 0 1 1 0 9

A B C DE 0 0 0 1 1 9

A B C D E 1 0 0 0 1 9

A B C D E 0 0 0 0 0 9

Step II : Forming the pairs which differ in only one variable, also put check (v)

against the terms selected and finding resultant terms as follows :-

AB C D E
AB C D E

A B C D E 9
 A B C D E

A B C D E
A B C D E

 A B C D E 9
A B C D E

In the new terms, again find all the terms which differ only in one variable and put a
check (⌧) across those terms i.e.

B C D E B C E

B C D E

A C D E

B C D E

A B C E

B C D E

Step III : Now, constructing final table as :

ABCDE ABC D E A B C DE A B C D E A BC D A B CD E A B C D E A B C D E

ABCE ⌧ ⌧

A CD E ⌧ ⌧

B C E

 ⌧ ⌧ ⌧ ⌧

Thus all columns have mark ‘X’. Thus the final expression is:

F (A,B,C,D,E) = A B C E + A C D E + B C E

The process can be summarised as follows:-

 71

Principles of Logic
Circuits I

Step I : Build a table in which each term of the expression is represented in row
 (Expression should be in SOP form). The terms can be represented in the

0 (Complemented) or 1 (normal) form.

Step II : Check all the terms that differ in only one variable and then combine the
pairs by removing the variable that differs in those terms. Thus a new
table is formed.

 This process is repeated, if necessary, in the new table also until all
uncommon terms are left i.e. no matches left in table.

Step III :

a) Finally, a two dimensional table is formed all terms which are not
eliminated in the table form rows and all original terms form the column.

b) At each intersection of row and column where row term is subset of column
term, a ‘X’ is placed.

Step IV :

a) Put a square around each ‘X’ which is alone in column
b) Put a circle around each ‘X’ in any row which contains a squared

 ‘X’
c) If every column has a squared or circled ‘X’ then the process is complete

and the corresponding minimal expression is formed by all row terms which
have marked Xs.

Check Your Progress 2

1) Prepare the truth table for the following boolean expressions:

 (i) A B C + A B C

 (ii) (A+B) . (A + B)

2 Simplify the following functions using algebraic simplification procedures and
draw the logic diagram for the simplified function.

(i) F = ((A .B) + B)

(ii) F = ((A. B) . (A B))

 ...

 …………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

3) Simplify the following boolean functions in SOP and POS forms by means of

K-Maps.

Also draw the logic diagram.

F (A,B,C,D) = Σ (0,2,8,9,10,11,14,15)

 . ..

 …………………………………………………………………………………………

 …………………………………………………………………………………………

 …………………………………………………………………………………………

 72

Introduction to Digital
Circuits 3.5 DESIGN OF COMBINATIONAL CIRCUITS

The digital circuits, which we use now-a-days, are constructed with NAND or NOR
gates instead of AND–OR–NOT gates. NAND & NOR gates are called Universal
Gates as we can implement any digital system with these gates. To prove this point
we need to only show that the basic gates : AND , OR & NOT, can be implemented
with either only NAND or with only NOR gate. This is shown in figure 3.9 below:

Figure 3.9 : Basic Logic Operations with NAND and NOR gates

Any Boolean expression can be implemented with NAND gates, by expressing the
function in sum of product form.

Example: Consider the function F (A, B, C) = Σ (1,2,3,4,5,7). Firstly bring it in
SOP form. Thus, from the K-Map shown in figure 3.10(a), we find









=









++=++=

)BA(.)BA(.C

BABACBABAC)C.B.A(F

 Figure 3.10: K-Map & Logic circuit for function F (A, B, C) = Σ (1,2,3,4,5,7).

 73

Principles of Logic
Circuits I

Similarly, any Boolean expression can be implemented with only NOR gate by
expressing in POS form. Let us take same example, F (A, B, C) =Σ (1,2,3,4,5,7).

As discussed in section 3.4.1, the above function F can be represented in POS form as

F (A, B, C) = ∏ (0,6)

() () () ()






 +++





 ++=

++++=++++=

CBACBA

CB.A.CBACBA.CBA

Figure 3.11: Logic circuit for function F (A, B, C) =Σ (1,2,3,4,5,7) using NOR gates

After discussing so much about the design let us discuss some important
combinational circuits. We will not go into the details of their design in this unit.

3.6 EXAMPLES OF COMBINATIONAL
CIRCUITS

The design of combinational circuits can be demonstrated with some basic
combinational circuits like adders, decoders, multiplexers etc. Let us discuss each of
these examples briefly.

3.6.1 Adders

Adders play one of the most important roles in binary arithmetic. In fact fixed point
addition is often used as a simple measure to express processor’s speed. Addition and
subtraction circuit can be used as the basis for implementation of multiplication and
division. (we are not giving details of these, you can find it in Suggested Reading).

Thus, considerable efforts have been put in designing of high speed addition and
substraction circuits. It is considered to be an important task since the time of
Babbage. Number codes are also responsible for adding to the complexity of
arithmetic circuit. The 2’s complement notation is one of the most widely used codes
for fixed-point binary numbers because of ease of performing addition and subtraction
through it.

A combinational circuit which performs addition of two bits is called a half adder,
while the combinational circuit which performs arithmetic addition of three bits (the
third bit is the previous carry bit) is called a full adder.

In half adder the inputs are:

74

Introduction to Digital
Circuits

The augend lets say ‘x’ and addend ‘y’ bits.

The outputs are sum ‘S’ and carry ‘C’ bits.
The logical relationship between these are given by the truth table as shown in figure
3.12 (a). Carry ‘C’ can be obtained on applying AND gate on ‘x’ & ‘y’ inputs,
therefore , C = x.y, while S can be found from the Karnaugh Map as shown in figure
3.12(b). The corresponding logic diagram is shown in figure 3.12(c).

Thus, the sum and carry equations of half- adder are:

S = x. y + x .y
C = x.y

(a) Truth table (b) K- Map for ‘S’

(c) Logic Diagram

 Figure 3.12: Half – Adder implementation

Let us take the full adder. For this another variable carry from previous bit addition is
added let us call it ‘p’. The truth table and K-Map for this is shown in figure 3.13.

 K – Maps for ‘C’
 Truth table

K=Maps for ‘S’

 75

Principles of Logic
Circuits I

(d) Logic Diagram (e) Block Diagram

Figure 3.13 : Full-adder implementation

Three adjacencies marked a,b,c in K-Map of ‘C’ are

a) x y p + x y p

 = x p (y + y)

 = x p

b) x y p + x y p

 = x y

c) x y p + x y p
 = y p

Thus, C = x p + x y + y p

In case of K-Map for ‘S’, there are no adjacencies. Therefore,

 S = x y p + x y p + x y p + x y p

Till now we have discussed about addition of bit only but what will happen if we are
actually adding two numbers. A number in computer can be 4 byte i.e. 32 bit long or
even more. Even for these cases the basic unit is the full adder. Let us see (for
example) how can we construct an adder which adds two 4 bit numbers. Let us
assume that the numbers are: x3 x2 x1 x0 and y3 y2 y1 y0; here xi and yi (i = 0 to 3)
represent a bit. The 4-bit adder is shown in figure 3.14.

Figure 3.14 : 4-bit Adder

 76

Introduction to Digital
Circuits

The overall sum is represented by S3 S2 S1 S0 and over all carry is C3 from the 4th bit
adder. The main feature of this adder is that carry of each lower bit is fed to the next
higher bit addition stage, it implies that addition of the next higher bit has to wait for
the previous stage addition. This is called ripple carry adder. The ripple carry becomes
time consuming when we are going for addition of say 32 bit. Here the most
significant bit i.e. the 32nd bits has to wait till the addition of first 31 bits is complete.

Therefore, a high-speed adder, which generates input carry bit of any stage directly
from the input to previous stages was developed. These are called carry lookahead
adders. In this adder the carry for various stages can be generated directly by the logic
expressions such as:

C0 = x0 y0
C1 = x1 y1 + (x1 + y1) C0

The complexity of the look ahead carry bit increases with higher bits. But in turn it
produces the addition in a very small time. The carry look ahead becomes increasingly
complicated with increasing numbers of bits. Therefore, carry look ahead adders are
normally implemented for adding chunks of 4 to 8 bits and the carry is rippled to next
chunk of 4 to 8 bits carry look ahead circuit.

Adder- subtractor

The subtraction operation on binary numbers can be achieved by sequence of addition
operations only i.e. to perform subtraction, A-B, we can find 2’s complement of B.
This can be calculated using 1’s complemented & then adding 1 to it. Thus, a common
circuit can perform the addition and subtraction operation. A 4-bit adder- subtraction
circuit is shown in figure 3.15, which is formed by using XOR gate with every full
adder. The XOR gate with output 0 is for detecting overflow.

Figure 3.15: 4-bit adder-subtractor circuit

The control input ‘x’ controls the operations i.e. if x =0 then the circuit behaves like
an adder and if x =1 then circuit behaves like a subtractor. The operation is
summarized as :

a) When x = 0, c = 0, the output of all XOR gates will be the same as the
corresponding input Bi where i = 0 to 3. Thus, Ai & Bi are added through full
adders giving Sum, Si & carry Ci

 77

Principles of Logic
Circuits I

b) When x = 1, the output of all XOR gates will be complement of input Bi where i
=0 to 3, to which carry C0=1 is added. Thus, the circuit finds A plus 2’s
complement of B, that is equal to A─B.

3.6.2 Decoders
Decoder converts one type of coded information to another form. A decoder has ‘n’
inputs and an enable line (a sort of selection line) and 2n output lines. Let us see an
example of 3 8 decoder which decodes a 3 bit information and there is only one
output line which gets the value 1 or in other words, out of 2

×
3 = 8 lines only 1 output

line is selected. Thus, depending on selected output line the information of the 3 bits
can be recognized or decoded.

(a) Block Diagram (b) Logic Diagram

 (c) Truth Table

Figure 3.16 : 3×8 decoder

Please make sure while constructing the logic diagram wherever the values in the truth
table are appearing as zero in input and one in output the input should be fed in
complemented form e.g. the first 4 entries of truth table contains 0 in I0 position and
hence I0 value 0 is passed through a NOT gate and fed to AND gates ‘a’, ‘b’, ‘c’ and
‘d’ which implies that these gates will be activated/selected only if I0 is 0. If I0 value is
1 then none of the top 4 AND gates can be activated. Similar type of logic is valid for
I1. Please note the output line selected is named 000 or 010 or 111 etc. The output
value of only one of the lines will be 1. These 000, 010 indicates the label and suggest
that if you have these I0 I1 I2 input values the labeled line will be selected for the
output. The enable line is a good resource for combining two 3×8 decoders to make
one 4×16 decoder.

 78

Introduction to Digital
Circuits 3.6.3 Multiplexer

Multiplexer is one of the basic building units of a computer system which in principle
allows sharing of a common line by more than one input lines. It connects multiple
input lines to a single output line. At a specific time one of the input lines is selected
and the selected input is passed on to the output line. The diagram 4×1 multiplexer
(MUX) is given in figure 3.16.

(a) Block diagram (c) Truth table

(c) Logic diagram

Figure 3.17: 4 × 1 Multiplexer

But how does the multiplexer know which line to select? This is controlled by the
select lines. The select lines provide the communication among the various
components of a computer. Now let us see how the multiplexer also known as MUX
works, here for simplicity we will take the example of 4 ×1 MUX i.e. there are 4
input lines connected to 1 output line. For the sake of consistency we will call input
line as I, and output line as O and control line a selection line S or enable as E.

Please notice the way in which S0 and S1 are connected in the circuit. To the ‘a’ AND
gate S0 and S1 are inputted in complement form that means ‘a’ gate will output I0 when
both the selection lines have a value 0 which implies 0S = 1 and 1S = 1, i.e. S0= 0
and S1=0 and hence the first entry in the truth table. Please note that at S0 = 0 and S1 =
0, AND gate ‘b’, ‘c’, ‘d’ will yield 0 output and when all these outputs will pass OR
gate ‘e’ they will yield I0 as the output for this case. That is for S0=0 and S1=0 the
output becomes I0, which in other words can be said as “ For S0 = 0 and S1 = 0, I0
input line is selected by MUX”. Similarly other entries in the truth table are
corresponding to the logical nature of the diagram. Therefore, by having two control
lines we could have a 4×1 MUX. To have 8×1 MUX we must have 3 control lines or
with 3 control lines we could make 23 = 8 i.e. 8×1 MUX. Similarly, with ‘n’ control
lines we can have

2n×1 MUX. Another parameter which is predominant in MUX design is a number of
inputs to AND gate. These inputs are determined by the voltage of the gate, which
normally support a maximum of 8 inputs to a gate.

 79

Principles of Logic
Circuits I

Where can these devices used in the computer? The multiplexers are used in digital
circuits for data and controlled signal routing.

We have seen a concept where out of ‘n’ input lines, 1 can be selected, can we have a
reverse concept i.e. if we have one input line and data is transmitted to one of the
possible 2n lines where ‘n’ represents the number of selection lines. This operation is
called Demultiplexing.

3.6.4 Encoders
An Encoder performs the reverse function of the decoder. An encoder has 2n input
lines and ‘n’ output line. Let us see the 8 ×3 encoder which encodes 8 bit information
and produces 3 outputs corresponding to binary numbers. This type of encoder is also
called octal–to– binary encoder. The truth table of encoder is shown in figure 3.17.

(a) Block diagram

I0 I1 I2 I3 I4 I5 I6 I7 O2 O1 O0
1 0 0 0 0 0 0 0 D0 0 0 0

0 1 0 0 0 0 0 0 D1 0 0 1

0 0 1 0 0 0 0 0 D2 0 1 0

0 0 0 1 0 0 0 0 D3 0 1 1

0 0 0 0 1 0 0 0 D4 1 0 0

0 0 0 0 0 1 0 0 D5 1 0 1

0 0 0 0 0 0 1 0 D6 1 1 0

0 0 0 0 0 0 0 1 D7 1 1 1

(b) Truth Table

Figure 3.18 : Encoder

From the encoder table, it is evident that at any given time only one input is assumed
to have 1 value. This is a major limitation of encoder. What will happen when two
inputs are together active? The obvious answer is that since the output is not defined
the ambiguity exists. To avoid this ambiguity the encoder circuit has input priority so
that only one input is encoded. The input with high subscript can be given higher
priority. For example, if both D2 and D6 are 1 at the same time, then the output will be
110 because D6 has higher priority then D2.

The encoder can be implimented with 3 OR gates whose inputs can be determined
from the truth table. The output can be expressed as:

O0 = I1 + I3 + I5 + I7
O1 = I2 + I3 + I6 + I7
O2 = I4 + I5 + I6 + I7

You can draw the K-Maps to determine above functions and draw the related
combinational circuit

 80

Introduction to Digital
Circuits 3.6.5 Programmable Logic Array

Till now the individual gates are treated as basic building blocks from which various
logic functions can be derived. We have also learned about the stratergies of
minimization of number of gates. But with the advancement of technology the
integration provided by integrated circuit technology has increased resulting into
production of one to ten gates on a single chip (in small scale integration). The gate
level designs are constructed at the gate level only but if the design is to be done using
these SSI chips the design consideration needs to be changed as a number of such SSI
chips may be used for developing a logic circuit. With MSI and VLSI we can put even
more gates on a chip and can also make gate interconnections on a chip. This
integeration and connection brings the advantages of decreased cost, size and
increased speed. But the basic drawback faced in such VLSI & MSI chip is that for
each logic function the layout of gate and interconnection needs to be designed. The
cost involved in making such custom designed is quite high. Thus, came the concept
of Programmable Logic Array, a general purpose chip which can be readily adopted
for any specific purpose.

The PLA are designed for SOP form of Boolean function and consist of regular
arrangements of NOT, AND & OR gate on a chip. Each input to the chip is passed
through a NOT gate, thus the input and its complement are available to each AND
gate. The output of each AND gate is made available for each OR gate and the output
of each OR gate is treated as chip output. By making appropriate connections any
logic function can be implemented in these Programmable Logic Array.

Figure 319: Programmable Logic Array

 81

Principles of Logic
Circuits I

The figure 3.18(a) shows a PLA of 3 inputs and 2 outputs. Please note the
connectivity points, all these points can be connected if desired. Figure 3.18(b) shows
an implementation of logic function:

O0 = I0. I1. I2 + I 0. I 1. I 2 and O1 = I 0. I 1. I 2 + I 0. I 1 through the PLA.

3.6.6 Read-only-Memory (ROM)
The read-only-memory is an example of a Programmable Logic Device (PLD) i.e the
binary information that is stored within a PLD is specified in some fashion and
embedded within the hardware. Thus the information remains even when the power
goes.

(a) Block Diagram

b) Logic Diagram of 64-bit ROM

Figure 3.20: ROM Design

Figure 3.19 shows the block diagram of ROM. It consists of ‘k’ input address lines
and ‘n’ output data lines. An m ×n ROM is an array of binary cell organised into m
(2k = m) words of ‘n’ bits each. The ROM does not have any data input because the
write operation is not defined for ROM. ROM is classified as a combinational circuit
and constructed internally with decoder and a set of OR gates.

In general, a m × n ROM (where m= 2k, k = no. of address lines) will have an internal
k ×2k decoder and ‘n’ OR gate. Each OR gates has 2k inputs which are connected to
each of the outputs of the decoder.

 82

Introduction to Digital
Circuits

Check Your Progress 3

1) Draw a Karnaugh Map for 5 variables.

 ………………………………………………………………………………..

 ……………………………………………………………………………….

 ……………………………………………………………………………….

2) Map the function having 4 variables in a K- Map and draw the truth table. The

funcion is
 F (A, B, C, D) = (2,6,10,14).

 ………………………………………………………………………………..

 ………………………………………………………………………………..

 ………………………………………………………………………………..

3) Find the optimal logic expression for the above function. Draw the reasultant

logic diagram.

 ………………………………………………………………………………..

 ……………………………………………………………………………….

 ……………………………………………………………………………….

4) What are the advantages of PLA?

 ……………………………………………………………………………….

 ……………………………………………………………………………….

 ……………………………………………………………………………….

5) Can a full adder be constructed using 2 half adders?

 ………………………………………………………………………………

 ………………………………………………………………………………

 ………………………………………………………………………………

3.7 SUMMARY

This unit provides you the information regarding a basis of a computer system. The
key elements for the design of a combinational circuit like adders etc. are discussed in
this unit. With the advent of PLA’s the designing of circuit is changing and now the
scenario is moving towards micro processors. With this developing scenario in the
forefront and the expectation of Ultra- Large- Integration (ULSI) in view, time is not
far of when design of logic circuits will be confined to single microchip components.
You can refer to latest trends of design and development including VHDL (a hardware
design language) in the further readings.

3. 8 SOLUTIONS/ANSWERS

Check Your Progress 1

1. Logic gates produce typical outputs based on input values NAND and NOR are
universal gates as they can be used to constant any other logic gate.

 83

Principles of Logic
Circuits I

2.

F =






 





 ++





 + BABA

 = () ()BA.BA ++
 = (A + B) . (A+ B)
 = (A + B). A + (A + B) B
 = A .A+A B + A . B + B . B
 = 0 + A B + A B + B
 = 0 + B (A+ A) + B
 = 0 + B + B = B

3.

4.

5.

Check Your Progress 2

1 (i):

A B C F= (A B C + A B C)

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0

 84

Introduction to Digital
Circuits

1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

(ii)

A B F=(A+B). (A + B)

0 0 0
0 1 1
1 0 1
1 1 0

2 (i)

F = ((A.B) + B)
 = + A + B + B
 = A + 1 (B+ B is always 1)
 = 1

(ii)

F = (A.B) . (A B)
 = (A + B). (A B)
 = A A B + A B B
 = A B + A B
 = A B

3

DACBBAF ++=

()DACBBAF ++=

F = () () ()DA.CB.BA
F = () () ()DA.CB.BA +++

 85

Principles of Logic
Circuits I

Check Your Progress 3 :

1

2 K-Map

Truth table

A B C D F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0

 86

Introduction to Digital
Circuits

1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

3. One adjacency of 4 variables, So

F = C. D

4. PLA’s are generic chips that can be used to implement a number of SOP logic
function

5.

 87

Principles of Logic
Circuits II UNIT 4 PRINCIPLE OF LOGIC CIRCUITS II

Structure Page Nos.

4.0 Introduction 87
4.1 Objectives 87
4.2 Sequential Circuits: The Definition 87
4.3 Flip Flops 88
 4.3.1 Basic Flip-Flops
 4.3.2 Excitation Tables
 4.3.3 Master Slave Flip Flops
 4.3.4 Edge Triggered Flip-flops
4.4 Sequential Circuit Design 95
4.5 Examples of Sequential Circuits 98
 4.5.1 Registers
 4.5.2 Counters – Asynchronous Counters
 4.5.3 Synchronous Counters
 4.5.4 RAM
4.6 Design of a Sample Counter 103
4.7 Summary 105
4.8 Solutions/ Answers 105

4.0 INTRODUCTION

By now you are aware of the basic configuration of computer systems, how the data is
represented in computer systems, logic gates and combinational circuits. In this unit
you will learn how all the computations are performed inside the system. You will
come across terms like flip flops, registers, counters, sequential circuits etc. Here, you
will also learn how to make circuits using combinational and sequential circuits.
These circuit design will help you in performing practicals in MCSL-017 lab course.

4.1 OBJECTIVES

After going through this unit you will be able to:

• define the flip-flops and latch;

• describe behaviour of various flip-flops;

• define significance of excitation tables and state diagrams;

• define some of the useful circuits of a computer system like registers counters

 etc.; and

• construct logic circuits involving sequential and combinational circuits.

4.2 SEQUENTIAL CIRCUITS: THE DEFINITION

A sequential circuit is an interconnection of combinational circuits and storage
elements. The storage elements, called flip-flops, store binary information that
indicates the state of sequential circuit at that time. The block diagram of a sequential
circuit is shown in figure 4.1.

As shown in the diagram, the present output depends upon the past Input states.

88

Introduction to Digital
Circuits

Figure 4.1: Block Diagram of sequential circuits.

These sequential circuits unlike combinational circuits are time dependent. The
sequential circuits are broadly classified, depending upon the time at which these are
observed and their internal state changes. The two broad classifications of sequential
circuits are:

• Synchronous
• Asynchronous

Synchronous circuits use flip-flops and their status can change only at discrete
intervals (Doesn’t it seems as good choice for discrete digital devices such a
computers?). Asynchronous sequential circuits may be regarded as combinational
circuit with feedback path. Since the propagation delays of output to input are small,
they may tend to become unstable at times Thus, complex asynchronous circuits are
difficult to design.

The synchronization in a sequential circuit is achieved by a clock pulse generator,
which gives continuous clock pulse. Figure. 4.2. shows the form of a clock pulse.

 Figure 4.2: Clock signals of clock pulse generator

A clock pulse can have two states: - 0 or 1; disabled or active state. The storage
elements can change their state only when a clock pulse occurs. Sequential circuits
that have clock pulses as input to flip-flops are called clocked sequential circuit.

4.3 FLIP-FLOPS

Let us see flip-flops in detail. A flip-flop is a binary cell, which stores 1-bit of
information. It itself is a sequential circuit. By now we know that flip-flop can change
its state when clock pulse occurs but when? Generally, a flip-flop can change its state
when the clocks transitions from 0 to 1 (rising edge) or from 1 to 0 (falling edge) and
not when clock is 1. If the storage element changes its state when clock is exactly at 1
then it is called latch. In simple words, flip-flop is edge-triggered and latch is level-
triggered.

 89

Principles of Logic
Circuits II 4.3.1 Basic Flip-flops

Let us first see a basic latch. A latch or a flip-flop can be constructed using two NOR
or NAND gates. Figure 4.3 (a) shows logic diagram for S-R latch using NOR gates.
The latch has two inputs S & R for set and reset respectively. When the output is
Q=1 & Q =0, the latch is said to be in the set state. When Q=0 & Q =1, it is the reset
state. Normally, The outputs Q & Q are complement of each other. When both inputs
are equal to 1 at the same time, an undefined state results, as both outputs are equal to
0.

(a) Logic Diagram (b) Truth Table

Figure. 4.3: SR Latch using NOR gates

Figure 4.3 (b) Shows truth table for S-R latch. Let us examine the latch more
closely.

i) Say, initially 1 is applied to S leaving R to 0 at this time. As soon as S=1, the

output of NOR gate ‘b’ goes to 0 i.e. Q becomes 0 and almost immediately Q
becomes 1 as both the inputs (Q & R) to NOR gate ‘a’ become 0. The change in
the value of S back to 0 does not change Q as the input to NOR gate ‘b’ now
are Q = 1 & S=0. Thus, the flip-flop stays in set state even after S returns to 0.

ii) If R goes to 1 then latch acquires clear state. On changing R to 1, Q changes to

0 irrespective of the state of flip-flop and as Q is 0 & S is 0 then Q becomes 1.
Even after R returns to 0, Q remains 0 i.e. latch is in clear state.

iii) When both S & R go to 1 simultaneously, the two outputs go to 0. This gives

undefined state.

Let us try to construct most common flip- flops from this basic latch.

R-S Flip flop - The graphic symbol of S-R flip-flop is shown in Fig 4.4. It has three
inputs, S (set), R (reset) and C (for clock). The Q(t+1) is the next state of flip-flop
after the occurrence of a clock pulse. Q(t) is the present state, that is present Q value
(Set-1 or Reset– 0).

(a) Graphic Symbol

90

Introduction to Digital
Circuits

(b) Logic Diagram

(c) Characteristic Table

Figure 4.4: R-S Flip-flop

In figure 4.4 (a), the arrowhead symbol in front of clock pulse C indicates that the
flip-flop responds to leading edge (from 0 to 1) of input clock signal.
Operation of R-S flip-flop can be summarised as:

1) If no clock signal i.e. C=0 then output can not change irrespective of R & S
values

2) When clock signal changes from 0 to 1 and S=1, R=0 then output Q=1 & Q =0
(Set)

3) If R=1 S=0 & clock signal C changes from 0 to 1 then output Q=0 & Q =1
(Reset)

4) During positive clock transition if both S & R become 1 then output is not
defined, as it may become 0 or 1 depending upon internal timing delays
occurring in circuit.

D Flip -Flop

The D (data) flip-flop is modification of RS flip-flop. The problem of undefined
output in SR flip-flop when both R & S become 1 gets avoided in D flip-flop. The
simple solution to avoid such condition is by providing just a single input. Thus, the
non-clocked inputs to AND gates (S &R of fig 4.4 (b)) are guaranteed to be opposite
of each other by inserting an inverter between them. The logic diagram and
characteristic table of D flip flop is shown in figure 4.5.

(a) Graphic Symbol (b) Logic Diagram (c) Characteristic Table

Figure 4.5: D Flip flop

 91

Principles of Logic
Circuits II

D flip-flop is also referred as Delay flip-flop because it delays the 0 or 1 applied to its
input by a single clock pulse.

J-K flip-flop

The J-K flip-flop is also a modification of SR flip-flop, it has 2 inputs like S & R and
all possible inputs combinations are valid in J K flip-flop.

Figure. 4.6 shows implementation of J K flip-flop. The inputs J & K behave exactly
like input S & R to set and reset flip-flop, respectively. When J & K are 1, the flip-
flop output is complemented with clock transition. [Try this as an exercise]

(a) Graphic Symbol (b) Logic Diagram (c) Characteristic Table

Figure 4.6: J – K Flip flop

T flip-flop

T (Toggle) flip-flop is obtained from JK flip-flop by joining inputs J &K together. The
implementation of T flip-flop is shown in figure. 4.7. When T=0, the clock pulse
transition does not change the state. When T=1, the clock pulse transition complement
the state of the flip-flop.

(a) Graphic Symbol b) Logic Diagram

(c) Characteristic Table

 Figure 4.7: T- Flip flop

92

Introduction to Digital
Circuits 4.3.2 Excitation Tables

The characteristic tables of flip-flops provide the next state when inputs and the
present state are known. These tables are useful for analysis of sequential circuits.
But, during the design process, we know the required transition from present state to
next state and wish to find the required flip-flop inputs. Thus comes the need of a
table that lists the required input values for given change of state. Such a table is
called excitation Table. Fig 4.8 shows excitation tables for all flip-flops.

Q(t) Q(t+1) J K Q((t) Q(t+1) S R

0 0 0 X 0 0 0 X

0 1 1 X 0 1 1 0

1 0 X 1 1 0 0 1

1 1 X 0 1 1 X 0

(a) J-K Flip flop (b) S-R Flip flop

Q(t) Q(t+1) D Q(t) Q(t+1) T

0 0 0 0 0 0

0 1 1 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

(c) D Flip flop (d) T Flip flop

Figure 4.8: Excitation Tables for flip-flops

Q(t) & Q(t+1) indicates present and next state for flip a flop, respectively. The symbol
X in the table means don’t care condition i.e. doesn’t matter whether input is 0 or 1.

Let us discuss more deeply, how these excitation tables are formed. For this, we take
an example of J-K Flip flop.

1) The state transition from present state 0 to next state 0 (Figure 408 (a) can be
achieved when

 (a) J=0, K=0, then no change in the state of flip flop

(b) J=0, K=1, then flip flop resets i.e. 0

 (remember J-K Characterstic table from figure 4.6)

Thus in either case J=0 but K can be 0 or 1 that is represented by don’t care
condition X.

2) The state transition from present state 0 to next state 1 can be achieved when

 (a) J=1, K=0, then flip flop is set i.e. 1

 (b) J=1, K=1, then flip flop is complemented i.e.change from 0 to 1

Here, also in either case J=1 but K can be 0 or1 that means again K is
represented as a don’t care case.

3) Similarly, state transition from present state 1 to next state 0 can be achieved
when

 (a) J=0, K=1, flip flop is reset i.e.0

 (b) J=1, K=1, flip flop is complemented i.e. changes from 1 to 0

 93

Principles of Logic
Circuits II

This indicates that in either case K=1 but J can be either 0 or 1 thus don’t care case.

4) For state transition from present state 1 to next state 1 can be achieved when

 (a) J=0, K=0, no change in flip flop

 (b) J=1, K=0, flip flop is set i.e 1

 Thus J is don’t care case but K=0.

This whole process can be summarized in the table below:

Present State Next State Can be achieved

0 0 a) J=0, K=0, since Q (t) =0

 b) J=0, K=1, flip flop resets

0 1 a) J=1, K=0, flip flop set

 b) J=1, K=1, flip flop complements,
 Q (t) =0=Q (t+1) =1

1 0 a) J=0, K=1, flip flop reset

 b) J=1, K=1, complement Q (t)=)t(Q

1 1 a) J=0, K=0, no change

 b) J=1, K=0, flip – flop set

Similarly, the excitation tables for the rest of the flip-flops can be derived (Try to do
this as an exercise).

Check Your Progress 1

1. What are sequential circuits?

 ...

 ...

 …………………………………………………………………………………………

 …………………………………………………………………………………………

2. What is flip- flop? How is different from latch?
 ...

 ...

 …………………………………………………………………………………………

 …………………………………………………………………………………………

3. What is the difference between excitation table and characteristic table?

 ...

 ...

 …………………………………………………………………………………………

4.3.3 Master-Slave Flip-Flop

The master slave flip-flop consists of two flip-flops. One is the master flip-flop &
other is called the slave flip-flop. Fig 4.9 shows implementation of master-slave flip-
flop using J-K flip-flop.

94

Introduction to Digital
Circuits

Note: Master-slave flip-flop
manner.

Now, let us summarize the wo

(i) When the clock pulse
becomes active and it
respectively. Why? W
are either Y=1, Y =0
following combinatio

 (a) J=1, K=0
 (b) J=0, K=1

(ii) When inputs are applie
activated resulting in in
the input and previous
maintaining its previou
becomes inactive and sl
and (b) conditions abov

But why do we require this m
situation where output of one
assumption is that clock pulse
same time. The change of stat
during that time the output of
flops in the system can be cha
though output of flip-flops are

4.3.4 Edge-Triggered

An edge-triggered flip-flop is
pulse transition instead of con
rising edge (0 to 1 transition)
transition). Fig 4.10 shows th
triggered flip-flops.

Figure 4.9: Master – Slave flip- flop
 can be constructed using D or SR flip-flop in the same

rking of this flip-flop:

 is 0, the master flip-flop is disabled but the slave
’s output Q & Q becomes equal to Y and Y
ell the possible combination of the value of Y and Y’
or Y=0 Y =1. Thus, the slave flip-flop can have
ns: -

which means Q=1, Q =0 (stet flip-flop)
which means Q=0, Q =1 (clear flip-flop)

d at JK and clock pulse becomes 1, only master gets
termediate output Y going to state 0 or 1 depending on
 state. Remember that during this time slave is also
s state only. As the clock pulse becomes 0, the master
ave acquires the same state as master as explained in (a)
e.

aster-slave combination? To understand this, consider a
flip-flop is going to be input of other flip-flop. Here, the
 inputs of all flip-flops are synchronized and occur at the
e of master occurs when the clock pulse goes to 1 but
slave still has not changed, thus the state of the flip-
nged simultaneously during the same clock pulse even
 connected to the inputs of other flip-flops.

 flip-flops

used to synchronize the state change during a clock
stant level. Some edge-triggered flip-flops trigger on the
whereas others trigger on the falling edge (1- to 0
e clock pulse signal in positive & negative edge-

Principles of Logic
Circuits II

 Output
 can not Output
 change cannot

Positive … change
Transition Negative

 Transition
(a) Pulse in positive edge-triggered flip-flop (b) Pulse in Negative edge-triggered flip flop

Figure. 4.10: Pulse signal

 O

(a) Po riggered D flip-flop (b) Negative edge–triggered D flip-flop

The e
which
transi
not ch

Chec

1.

2.

4.4

A seq
and in
to des
makin

Let u
funct
next)
In sta
betwe
labell
input
state.

The f
 CC

D Q

sitive edge-t
Figure 4.11: Edge triggered D flip

ffective positive clock transition include
 the D input must be maintained at cons
tion. Similarly, a minimum time called h
ange after the application of positive tra

k Your Progress 2

What are the advantages of master- slav

..

..

What are edge- triggered flip-flops?

..

..

 SEQUENTIAL CIRCU

uential circuit is specified by a time seq
ternal flip-flop binary states. Thus firstl
cribe behaviour of the circuit. Then from
g logic circuit diagram.

s first see what is state table and state dia
ional relationships between the inputs, o
 of a sequential circuit. A state diagram p
te diagram, a circle describes a state and
en states. The state of flip-flop is written
ed with two binary numbers separated b
 value during present state and second nu
 The state diagram of a binary counter is

ollowing is the procedure for design of s

D Q

95

- flops

s a minimum time called setup time, for
tant value before the occurrence of clock
old time, for which the D input must
nsition of the pulse.

e flip-flop?

...

...

...

...

IT DESIGN

uence of external inputs, external outputs
y, a state table and state diagram is used
 the state table, we get information for

gram. A state table includes the
utput and flip-flop states (present and
ictorially describes the state transition.
 directed lines indicate the transition
 inside the circle. The directed lines are

y a slash. The first one indicates the
mber indicates output during present
 given in figure 4.12 (b).

equential circuits:

96

Introduction to Digital
Circuits

1) Draw state table or state diagram from the problem statement, (if state diagram
is available, draw state table also)

2) Give binary codes to states.
3) From state table, make input equation in simplified form. i.e. generating

Boolean functions which describes signals for the inputs of flip-flops.
4) From state table, derive output equation in simplified form.
5) Draw logic diagram with required flip-flops and combinational circuits.

Let us take an example to illustrate the above procedure. Suppose we want to design
2-bit binary counter using D flip-flop. The circuit goes through repeated binary states
00, 01, 10 and 11 when external input X = 1 is applied. The state of circuit will not
change when X = 0. The state table & state diagram for this is shown in figure 4.12.
But how do we make this state diagram? Please note the number of flip-flops– 2 in
our example as we are designing 2 bits counter. Various states of two bit input would
be 00 01 10 and 11. These are shown in circle. The arrow indicate the transitions
on an input value X. For example, when the counter is in state 00 and input value
X=0 occurs, the counter remains in 00 state. Hence the loop back on X= 0. However,
on encountering X=1 the counter moves to state 01. Like wise in all other states
similar transition occur. For making state table remember the excitation table of D
flip-flop given in figure 4.8 (c).

The present state of the two flip-flops and next states of the flip-flops are put into the
table along with any input value. For example, if the present state of flip-flops is 01
and input value is 1 then counter will move to state 10. Notice these values in the
fourth row of the values in the state table (figure 4.12 (a)
Or we can write as

A B A (Next) B (Next)
0 1 X =1 1 0

This implies that flip-flop. A has moved from state clear to set. As we are making the
counter using D flip-flop, the question is what would be the input DA value of A flip-
flop that allows this transition that is Q(t) = 0 to Q(t+1) =1 possible for A flip flop.
On checking the excitation table for D Flip-flop, we find the value of D input of A
flip-flop (called DA in this example) would be 1. Similarly, the B flip-flop have a
transition Q(t) = 1 to Q(t+1)=0, thus, DB, would be 0. Hence notice the values of flip-
flop inputs DA and DB. (Row 3).

a) State Table (b) State Diagram

Figure 4.12: Binary Counter Design

Next step indicates simplification of input equation to flip-flop which is done using
K-Maps as shown in fig 4.13. But why did we make K-map for DA or DB which
happens to be flip-flop input values? Please note in sequential circuit design, we are

 97

Principles of Logic
Circuits II

designing the combinational logic that controls the state transition of flip-flops. Thus,
each input to a flip-flop is one output of this combinational logic and the present state
of flip-flops and any other input value form the input values to this combinational
logic.

Figure 4.13: Maps for combinational circuit of 2-bit counter

Thus, two simplified flip–flop input equations are derived:

DA = A B + A X + A BX

DB = B X + B X

The logic diagram is drawn in fig 4.14.

Figure 4.14: Logic diagram for 2-bit Binary Counter

98

Introduction to Digital
Circuits

Note: Similarly, the sequential circuits can be designed using any number of flip-
flops using state diagrams and combinational circuits design methods.

4.5 EXAMPLES OF SEQUENTIAL CIRCUITS

Let us now discuss some of the useful examples of sequential circuits like registers,
counters etc.

4.5.1 Registers

A register is a group of flip-flops, which store binary information, and gates, which
controls when and how information is transferred to the register. An n-bit register has
n flip-flops and stores n-bits of binary information. Two basic types of registers are:
parallel registers and shift registers.

A parallel register is one of the simplest registers, consisting of a set of flip-flops that
can be read or written simultaneously. Fig. 4.15 shows a 4-bit register with parallel
input-output. The signal lines Io to I3 inputs to flip-flops, which may be output of other
arithmetic circuits like multipliers, so that data from different sources can be loaded
into the register. It has one additional line called clear line, which can clears the
register completely. This register is called a parallel register as all the bits of the
register can be loaded in a single clock pulse.

Figure 4.15: 4-bit parallel register

A shift register is used for shifting the data to the left or right. A shift register operates
in serial input-output mode i.e. data is entered in the register one bit at a time from one
end of the register and can be read from the other end as one bit at a time. Fig. 4.16
shows a 4-bit right shift register using D logical shift functions.

Figure 4.16: 4-bit right – shift register

Principles of Logic
Circuits II

Please note that in this re ister signal shift enable is used instead of clock pulse, why?
Because it is not necess y that we want the register to perform shift on each clock
pulse.

A register, which shifts d
register and a register, w
shift register. Shift regis
input-output. A general s
from the register along w
require additional contro
desired and left or right s
4.17 for this register.

There are 3 main contro
active, parallel input-ou
select line for selecting r
and for value 1, left shift

Figure. 4

4.5.2 Counters A

A counter is a register, w
clock pulse is applied. In
the capacity of register i
value, the next increme
circuits of digital system
example, in CPU we hav

Counters can be classifie
Asynchronous and synch
state of one flip-flop trigg
faster because the state o

Asynchronous Counter
change, which occurs in
end to the other. Fig 4.18
flip-flops. This counter is
counts from 0000 to 1111

g
ar
99

ata only in one direction, is called uni-directional shift
hich can shift data in both directions, is called bi-directional
ter can be constructed for bi-directional shift with parallel
hift register structure may have parallel data transfer to or
ith added facility of left or right shift. This structure will
l lines for indicating whether parallel or serial output is
hift is required. A general symbolic diagram is shown in Fig.

l lines shown in the above figure. If parallel load enable is
tput operation is done otherwise serial input- output shift
ight or left shift. If it has value 0 then right shift is performed
 is done. Shift enable signal indicates when to start shift.

.17: 4 – bit left shift register with parallel load

synchronous Counters

hich goes through a predetermined sequence of states when
 principle, the value of counters is incremented by 1 module
.e. when the value stored in a counter reaches its maximum
nted value becomes zero. The counters are mainly used in
s where sequence and control operations are performed, for
e program counter (PC).

d into two categories, based on the way they operate:
ronous counters. In Asynchronous counters, the change in
ers the other flip-flops. Synchronous counters are relatively

f all flip-flops can be changed at the same time.

s : This is more often referred to as ripple counter, as the
order to increment the counter ripples through it from one
 shows an implementation of 4-bit ripple counter using J-K
 incremented on the occurrence of each clock pulse and
 (i.e. 0 to 15).

100

Introduction to Digital
Circuits

Figure. 4.18: 4 – bit ripple counter

The input line to J & K of all flip-flops is kept high i.e. logic1. Each time a clock
pulse occurs the value of flip-flop is complemented (Refer to characteristic table of J
K flip-flop in Figure. 4.6 (c). Please note that the clock pulse is given only to first flip-
flop and second flip-flop onwards, the output of previous flip-flop is fed as clock
signal. This implies that these flip-flops will be complemented if the previous flip-flop
has a value 1. Thus, the effect of complement will ripple through these flip-flops.

4.5.3 Synchronous Counters

The major disadvantage of ripple counter is the delay in changing the value. How? To
understand this, take an instance when the state of ripple counter is 0111. Now the
next state will be 1000, which means change in the state of all flip-flops. But will it
occur simultaneously in ripple counter? No, first O0 will change then O1, O2 & lastly
O3. The delay is proportional to the length of the counter. Therefore, to avoid this
disadvantage of ripple counters, synchronous counters are used in which all flip-flops
change their states at same time. Fig 4.19 shows 3-bit synchronous counter.

Figure 4.19: Logic diagram of 3-bit synchronous counter

You can understand the working of this counter by analyzing the sequence of states
(O0, O1, O2) given in Figure 4.20

O2 O1 O0

0
0
0
0
1
1
1
1
0

0
0
1
1
0
0
1
1
0

0
1
0
1
0
1
0
1
0

Figure. 4.20 : Truth table for 3 bit synchronous counter

 101

Principles of Logic
Circuits II

The operation can be summarized as: -

i) The first flip-flop is complemented in every clock cycle

ii) The second flip-flop is complemented on occurrence of a clock cycle if

 the current state of first flip-flop is 1.

iii) The third flip-flop is fed by an AND gate which is connected with output of first

and second flip-flops. It will be complemented only when first & second flip-

flops are in Set State.

4.5.4 RAM (Random Access Memory)

Here we will confine our discussion, in general to the RAM only as an example of
sequential circuit. A memory unit is a collection of storage cells or flip flops
alongwith associated circuits required to transfer information in and out of the device.
The access time and cycle time it takes are constant and independent of the location,
hence the name random access memory.

(a) Block Diagram (b) Logic Diagram

Figure 4.21: Binary Cell

RAMs are organized (logically) as words of fixed length. The memory communicates
with other devices through data input and output lines, address selection lines and
control lines that specify the direction of transfer.

Now, let us try to understand how data is stored in memory. The internal construction
of a RAM of ‘m’ words and ‘n’ bits per word consists of m ×n binary cells and
associated circuits for dectecting individual words. Figure 4.21 shows logic diagram
and block digram of a binary cell.

The input is fed to AND gate ‘a’ in complemented form. The read operation is
indicated by 1 on read/ write signal. Therefore during the read operation only the
‘AND’ gate ‘c’ becomes active. If the cell has been selected, then the output will
become equal to the state of flip flop i.e. the data value stored in flip flop is read. In
write operation ‘a’ & ‘b’ gates become active and they set or clear the J-K flip flop
depending upon the input value. Please note in case input is 0, the flip flop will go to
clear state and if input is 1, the flip flop will go to set state. In effect, the input data is

102

Introduction to Digital
Circuits

reflected in the state of flip-flop. Thus, we say that input data has been stored in flip-
flop or binary cell.

Fig 4.22 is the extension of this binary cell to an IC RAM circuit, where a 2×4
decoder is used to select one of the four words. (For 4 words we need 2 address lines)
Please note that each decoder output is connected to a 4bit word and the read/write
signal is given to each binary cell. Once the decoder selects the word, the read/write
input tells the operation. This is derived using an OR gate, since all the non-selected
cells will produce a zero output. When the memory select input to decoder is 0, none
of the words is selected and the contents of the cell are unchanged irrespective of
read/write input.

Figure 4.22: 4 × 4 RAM

 103

Principles of Logic
Circuits II

After discussing so much about combinational circuits and sequential circuits, let us
discuss in the next section an example having a combination of both circuits.

4.6 DESIGN OF A SAMPLE COUNTER

Let us design a synchronous BCD counter. A BCD counter follows a sequence of ten
states and returns to 0 after the count of 9. These counters are also called decade
counters. This type of counter is useful in display applications in which BCD is
required for conversion to a decimal readout. Fig 4.23 shows the characteristic table
for this counter.

 Present State Next State Flip-Flops Inputs
A B C D A B C D JA KA JB KB JC KC JD KD

0 0 0 0 0 0 0 1 0 X 0 X 0 X 1 X

0 0 0 1 0 0 1 0 0 X 0 X 1 X X 1

0 0 1 0 0 0 1 1 0 X 0 X X 0 1 X

0 0 1 1 0 1 0 0 0 X 1 X X 1 X 1

0 1 0 0 0 1 0 1 0 X X 0 0 X 1 X

0 1 0 1 0 1 1 0 0 X X 0 1 X X 1

0 1 1 0 0 1 1 1 0 X X 0 X 0 1 X

0 1 1 1 1 0 0 0 1 X X 1 X 1 X 1

1 0 0 0 1 0 0 1 0 X 0 X 0 X 1 X

1 0 0 1 0 0 0 0 0 X 0 X 0 X X 1

Figure 4.23: Characteristic table for decade counter

[NOTE : Remember excitation table for J-K flip flop given in fig 4.8]

There are 4 flip-flop inputs for decade counter i.e. A, B, C, D. The next state of
flip-flop is given in the table. JA & KA indicates the flip flop input corresponding to
flip-flop-A. Please note this counter require 4-flip-flops.

From this the flip flop input equations are simplified using K-Maps as shown in figure
4.24. The unused minterms from 1010 through 1111 are taken as don’t care
conditions.

104

Introduction to Digital
Circuits

Figure 4.24: K-maps for Decade counter

Thus, the simplified input equation for BCD counter are:

JA = BCD KA = D
JB = CD KB = CD

JC = A D KC = D
JD = 1 KD = 1
The logic circuit can be made with 4 JK flip flops & 3 AND gates

Figure 4.25: Logic Diagram for decade counter.

 105

Principles of Logic
Circuits II Check Your Progress 3

1) Differentiate between synchronous & asynchronous counters?
 ...

 ...

 ...

2) Can ripple counter be constructed from a shift register?

 ...

 ...

 ...

3) Can we design a counter with the following repeated binary sequence:
0,1,2,3,4,5,6. If yes, design it using J K flip flop.

 ...

 ...

 ...

4.7 SUMMARY

As told to you earlier this unit provides you information regarding sequential circuits
which is the foundation of digital design. Flip-flops are basic storage unit in sequential
circuits are derived from the latches. The sequential circuit can be formed using
combinational circuits (discussed in the last unit) and flip flops. The behavior of
sequential circuit can be analyzed using tables & state diagrams.

Registers, counters etc. are structured sequential blocks. This unit has outlined the
construction of registers, counters, RAM etc. Lastly, we discussed how a circuit can
be designed using both sequential & combinational circuits. For more details, the
students can refer to further reading.

4.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1) An interconnection of combinational circuits and flip-flops, used for making
different logic devices in computers that involves manipulation and storage of
data. Some such circuits are registers, counters etc.

2) Flip flop is the basic storage element for synchronous sequential circuits.

Whereas latches are bistable devices whose state normally depends upon the
asynchronous inputs and are not suitable for use in synchronous sequential
circuits using single clock.

3) Excitation table indicates that if present and next state are known then what will

be inputs whereas a characteristics table indicates just opposite of this i.e. inputs
are known the, next state has to be found.

Check Your Progress 2

1) The main advantage is that they allow feed back paths

2) Edge-Triggered flip-flops are bi-stable devices with synchronous inputs whose
state depends on the inputs only at the triggering transition of a clock pulse i.e.
changes in output occur only at triggering transition of the clock

106

Introduction to Digital
Circuits

Check Your Progress 3

1) The main difference is the time when the counter flip-flops change its states. In
synchronous counter all the flip flops that need to change; change
simultaneously. In asynchronous counter the complement if to be done may
ripple through a series of flip-flops.

2) Yes, but this: circuit will generate sequence of states where only 1-bit changes

at a time i.e. 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001

3) Yes, We require 23 i.e. three flip flops for the sequence 0, 1, 2, 3, 4, 5&6.

 Present State Next State Flip – Flops Inputs

A B C A B C JA KA JB KB JC KC

0 0 0 0 0 1 0 X 0 X 1 X

0 0 1 0 1 0 0 X 1 X X 1

0 1 0 0 1 1 0 X X 0 1 X

0 1 1 1 0 0 1 X X 1 X 1

1 0 0 1 0 1 X 0 0 X 1 X

1 0 1 1 1 0 X 0 1 X X 1

1 1 0 0 0 0 X 1 X 1 0 X

The state is don’t care condition: Make the suitable K-maps. The following are the
flip-flop input values:

JA= BC KA = B

JB = C KB = C + A

JC = A + B KC = 1

The circuit can be constructed as:

	MCS-012 Introduction to Digital Circuits
	Index
	Credit Page
	Course Introduction
	Block Introduction
	UNIT 1 The Basic Computer
	1.0 Introduction
	1.1 Objectives
	1.2 The von Neumann Architecture
	1.3 Instruction Execution: An Example
	1.4 Instruction Cycle
	1.5 Computers: Then and Now
	1.6 Summary
	1.7 Solutions

	UNIT 2 Data Representation
	2.0 Introduction
	2.1 Objectives
	2.2 Data Representation
	2.3 Number Systems: A Look Back
	2.4 Decimal Representation in Computers
	2.5 Alphanumeric Representation
	2.6 Data Representation For Computation
	2.7 Summary
	2.8 Solutions

	UNIT 3 Principles of Logic Circuits I
	3.0 Introduction
	3.1 Objectives
	3.2 Logic Gates
	3.3 Logic Circuits
	3.4 Combinational Circuit
	3.5 Design of Combinational Circuits
	3.6 Examples of Logic Combinational Circuits
	3.7 Summary
	3. 8 Solutions

	UNIT 4 Principle of Logic Circuits II
	4.0 Introduction
	4.1 Objectives
	4.2 Sequential Circuits: The Definition
	4.3 Flip - Flop
	4.4 Sequential Circuit Design
	4.5 Examples of Sequential Circuits
	4.6 Design of a Sample Counter
	4.7 Summary
	4.8 Solutions

