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BLOCK  INTRODUCTION 
“Contrariwise, “continued Tweedledee, “if it was so, it might be; and if it were so, it would 
be; but as it isn’t, it ain’t.  That’s logic.” 

From ‘Alice in Wonderland’ 
 By Lewis Carroll 
 
Logic is the study and analysis of the nature of the valid argument, the reasoning tool 
by which valid inferences can be drawn from a given set of facts and premises.  It is 
the basis on which all the sciences are built.  Logic was extensively studied and 
developed in ancient Greece.  But the mathematical theory of logic, called symbolic 
logic, only came into its own in the 19th century.  This algebraic way of studying 
arguments was developed by the English mathematician George Boole (1815-1864). 
 
In symbolic logic we study arguments. The basic building blocks of arguments are 
declarative sentences, called propositions or statements. In Unit 1 we introduce you to 
propositions and ways of combining them to form more complex propositions. We 
also introduce you to propositions that contain the quantifiers ‘for every’ and ‘there 
exists’. In symbolic logic, the goal is to determine which propositions are true and 
which are false.  Truth table a tool to find out all possible outcome of a propositions 
truth value  will be discussed in Unit 1. 
 
In Unit 2 we look at paths of reasoning by which we can show that certain statements 
are true.  Such arguments are called ‘proofs’. In this unit we try to give you an 
understanding of why a proof is written the way it is. We expose you to several 
patterns of reasoning that make up different proofs. In this unit we also discuss 
mathematical induction, a fundamental tool for proving many propositions involving 
natural numbers. 
 
The last unit of the block, Unit 3, is closely linked with Unit 1. In this unit you will 
see that the set of propositions, along with certain operations, forms an algebraic 
structure called a Boolean algebra. You will also see the application of this theory for 
studying logic gates and circuits. Here we discuss how Boolean expressions can be 
represented with the help of gating diagrams. One important aspect of Boolean 
algebra that is, minimization of Boolean expression is discussed in detail in covered in 
Block 1 of the course MCS 012. Please try and tuch that discussion with what you 
study here. 
 
Regarding the study of the block, and the course , the best way to absorb the material 
is to try all the exercises in the units  as and when you get to them .Also after going 
through each  unit, you must come back to the section ‘Objectives’, and check if you 
have achieved this. Doing this will help you confirm that you are ready to go further. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



NOTATIONS AND SYMBOLS 
 
 
 
N  the set of natural numbers 
R  the set of real numbers 
p ∨ q  p or q (p, q being statements) 
p ⊕ q  either p or q, but not both. 
P ∧ q  p and q 
~ p  not p 
p → q  p implies q 
  p is sufficient for q 
  p only if q 
p ↔ q  p is necessary and sufficient for q 
  p is necessary and sufficient for q 
  p implies and is implied by q 
p ⇒ q  If p is true, then q is true 
p ⇔ q  p is true if and only if q is true. 
P ≡ q  p is equivalent to q 
∴  therefore 
iff  if and only if 
∀  for all 
∃  there exists 
∃!  There exists one and only one 
P(X)  set of all subsets of a set X 
B  two-element Boolean algebra 
Bn  B x B …. x B (n times) 
X(x1, …., xk)  Boolean expression in k-variables. 
s.v.  state value 
a par b   parallel connections of switches a and b 
a set b   series connections of switches a and b 
CNF  conjunctive normal form 
DNF  disjunctive normal form    
 

 



 

COURSE INTRODUCTION 

Discrete mathematics, sometimes called finite mathematics, is the study of 
mathematical structure that are fundamentally discrete, in the sense of not supporting 
notion of continuity. Discrete mathematics deals with discrete objects, like  the set of 
students in the IGNOU MCA course, the type of policies  offered by an Insurance 
company, the number of blue-line buses in Delhi.  
 
A study of discrete sets has become more and more necessary because of many 
application of Computer Science and various areas of engineering. Regarding 
computer science concept from discrete mathematics are useful to study or express 
objects or problems in computer algorithm and programming languages. For instance, 
to improve the efficiency of a computer programme, we need to study its  logical 
structure, which involves a finite number of steps  each requiring a certain amount of 
time. Using the theory of combinatorics and graph theory, major areas of discrete 
mathematics, we can do this. Therefore, a study of these areas would complement and 
improve your understanding of courses based on algorithm and problem solving  . As 
you will find several of your courses will require the knowledge of  basic concepts in 
discrete mathematics.  
 
This is why we have included two courses of  2 credits each in your curriculum . The 
first course is this one  of 2 blocks  In this course we have chosen to  introduce you to 
only a few topics involving discrete objects, to give you a flavor of this recently 
evolving area of mathematics.   
 
In Block 1, we show you how to differentiate between a sentence and a statement (or 
proposition). Then we look at various ways of combining propositions, and of finding 
whether these statements are true or not. After this we talk about a theory first studied 
by Aristotle (384-322 B.C.), and later evolved mathematically by the 19th century  
mathematicians Boole, De Morgan, Schroder and Frege. This is the theory of 
mathematical logic and the nature of mathematical proof. In this connection, it is 
necessary to mention the monumental work of A.N. Whitehead and Bertrand Russell, 
which they presented in their book ‘Principia Mathematica’ in 1913. 
 
In the final unit of Block 1 we look at an important application of logic, namely, 
Boolean algebras and circuits.Boolean algebra we will use for representing logical 
logical expression.In this we can learn the use of logic gates to make gating diagram  
of  given Boolean expressions. 
 
In Blocks 2, we discuss combinatorics, or different ways of enumerating without 
actually counting. This theory was first developed by Pascal (1623-1662) and Jakob 
Bernoulli (1645-1705). We shall introduce you to various aspects of combinatorial 
reasoning, which underlies all analysis of computer systems, discrete operations 
research problems and finite probability. More specifically, you will study set, 
relations, functions, permutations, combinations, and partitions of numbers and there 
applications. Of course, all these would be presented from an  application-oriented 
point of view. During this course you will find that everything that you learn here is 
having direct implication in your problem solving capabilities.  
 
Now a word about our notation. Each unit is divided into sections, which may be 
further divided into sub-sections. These sections/sub-sections are numbered 
sequentially, in a unit as are the exercises. In each unit you, will find several exercises 
(numbered E1,E2….) and examples (also numbered sequentially).  We show the end 
of an example by *** after it. 
 
Another compulsory component of this course is its assignment – which is based on 
the whole course. Your academic counselor will evaluate them and return them to you 



 

with detailed comments. Thus, the assignments are meant to be a teaching as well as 
an assessment aid. 
 
We hope you enjoy studying this course. If you have a problem in understanding any 
portion of it, please ask your academic counselor for help. For your suggestions, 
comments, and problems related to this course write to the course coordinator at 
mpmishra@ignou.ac.in.  Also, if you feel like studying any topic in greater detail, you 
may consult: 
 
 
1 Elements of Discrete Mathematics, C.L. Liu, McGraw-Hill, 1985. 
2 Discrete Mathematics, Richard Johnsonbaugh, Pearson Education,2003. 
3 Discrete Mathematical Structures, Kolman, Busby and Ross , Prentice-Hall  
             India, 2002. 
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Propositional C alculus 
UNIT 1 PROPOSITIONAL CALCULUS 

Structure              

1.0 Introduction  
1.1 Objectives  
1.2 Propositions  
1.3 Logical Connectives  
 1.3.1 Disjunction 
 1.3.2 Conjunction 
 1.3.3 Negation 
 1.3.4 Conditional Connectives 
 1.3.5 Precedence Rule 
1.4 Logical Equivalence  
1.5 Logical Quantifiers  
1.6 Summary  
1.7 Solutions/ Answers  
 
1.0 INTRODUCTION 

According to the theory of evolution, human beings have evolved from the lower 
species over many millennia. The chief asset that made humans “superior” to their 
ancestors was the ability to reason. How well this ability has been used for scientific 
and technological development is common knowledge. But no systematic study of 
logical reasoning seems to have been done for a long time. The first such study that 
has been found is by Greek philosopher Aristotle (384-322 BC). In a modified form, 
this type of logic seems to have been taught through the Middle Ages. 
 
Then came a major development in the study of logic, its formalisation in terms of 
mathematics.It was mainly Leibniz (1646-1716) and George Boole (1815-1864) who 
seriously studied and development this theory, called symbolic logic. It is the basics 
of this theory that we aim to introduce you to in this unit and the next one. 
 
In the introduction to the block you have read about what symbolic logic is. Using it 
we can formalise our arguments and logical reasoning in a manner that can easily 
show if the reasoning is valid, or is a fallacy. How we symbolise the reasoning is what 
is presented in this unit. 
 
More precisely, in Section 1.2 (i.e., Sec. 1.2, in brief) we talk about what kind of 
sentences are acceptable in mathematical logic.  We call such sentences statements or 
propositions. You will also see that a statement can either be true or false. 
Accordingly, as you will see, we will give the statement a truth value T or F. 
 
In Sec. 1.3 we begin our study of the logical relationship between propositions.  This 
is called prepositional calculus. In this we look at some ways of connecting simple 
propositions to obtain more complex ones.  To do so, we use logical connectives like 
“and” and “or”.  We also introduce you to other connectives like “not”, “implies” and 
“implies and is implied by”.  At the same time we construct tables that allow us to 
find the truth values of the compound statement that we get. 
 
In Sec. 1.4 we consider the conditions under which two statements are “the same”.  In 
such a situation we can safely replace one by the other. 
 
And finally, in Sec 1.5, we talk about some common terminology and notation which 
is useful for quantifying the objects we are dealing with in a statement. 
 
It is important for you to study this unit carefully, because the other units in this block 
are based on it.  Please be sure to do the exercises as you come to them.  Only then 
will you be able to achieve the following objectives. 
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Elementary Logic 1.1 OBJECTIVES 

After reading this unit, you should be able to:  

• distinguish between propositions and non-propositions; 
• construct the truth table of any compound proposition; 
• identify and use logically equivalent statements; 
• identify and use logical quantifiers. 
 
Let us now begin our discussion on mathematical logic. 
 

1.2 PROPOSITIONS 

Consider the sentence ‘In 2003, the President of India was a woman’. When you read 
this declarative sentence, you can immediately decide whether it is true or false. And 
so can anyone else. Also, it wouldn’t happen that some people say that the statement 
is true and some others say that it is false. Everybody would have the same answer.  
So this sentence is either universally true or universally false. 
 
Similarly, ‘An elephant weighs more than a human being.’ Is a declarative sentence 
which is either true or false, but not both.  In mathematical logic we call such 
sentences statements or propositions. 
 
On the other hand, consider the declarative sentence ‘Women are more intelligent than 
men’. Some people may think it is true while others may disagree. So, it is neither 
universally true nor universally false. Such a sentence is not acceptable as a statement 
or proposition in mathematical logic. 
 
Note that a proposition should be either uniformly true or uniformly false. For 
example, ‘An egg has protein in it.’, and ‘The Prime Minister of India has to be a 
man.’ are both propositions, the first one true and the second one false. 
 
Would you say that the following are propositions? 

‘Watch the film. 
‘How wonderful!’ 
‘What did you say?’ 
 
Actually, none of them are declarative sentences.  (The first one is an order, the 
second an exclamation and the third is a question.) And therefore, none of them are 
propositions. 
 
Now for some mathematical propositions!  You must have studied and created many 
of them while doing mathematics. Some examples are 
 
Two plus two equals four. 
Two plus two equals five. 
x + y > 0 for x > 0 and y > 0. 
A set with n elements has 2n subsets. 
 
Of these statements, three are true and one false (which one?). 
Now consider the algebraic sentence ‘x + y > 0’.  Is this a proposition?  Are we in a 
position to determine whether it is true or false?  Not unless we know the values that x 
and y can take.  For example, it is false for  
x = 1, y = -2 and true if x = 1, y = 0.  Therefore, 
‘x + y > 0’ is not a proposition, while 
‘x + y > 0 for x > 0, y > 0’ is a proposition. 
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Propositional Calculus Why don’t you try this short exercise now? 

E1) Which of the following sentences are statements? What are the reasons for your 
answer? 
i) The sun rises in the West. 
ii) How far is Delhi from here? 
iii) Smoking is injurious to health. 
iv) There is no rain without clouds. 
v) What is a beautiful day! 
vi) She is an engineering graduates. 
vii) 2n + n is an even number for infinitely many n. 
viii) x + y = y + x for all x, y ∈ R. 
ix) Mathematics is fun. 
x) 2n = n2. 

 
Usually, when dealing with propositions, we shall denote them by lower case 
letters like p, q, etc. So, for example, we may denote 
 
‘Ice is always cold.’ by p, or 
‘cos2 θ + sin2 θ =1 for θ ∈ [ 0, 2π]’ by q. 
We shall sometimes show this by saying  
p: Ice is always cold., or 
q: cos2 θ + sin2 θ = 1 for θ ∈ [ 0, 2π]. 

 
Now, given a proposition, we know that it is either true or false, but not both.  If 
it is true, we will allot it the truth value T.  If it is false, its truth value will be 
F.  So, for example, the truth value of 

Sometimes, as in the 
context of logic circuits 
(See unit 3), we will use 1 
instead of T and 0 instead 
of F. 

 
‘Ice melts at 30o C.’ is F, while that of ‘x2 ≥ 0 for x ∈ R’ is T. 
 
Here are some exercises for you now. 

 

E2) Give the truth values of the propositions in E1. 
 

E3) Give two propositions each, the truth values of which are T and F, respectively.  
  Also give two examples of sentences that are not propositions. 

Let us now look at ways of connecting simple propositions to obtain compound 
statements. 
 

1.3 LOGICAL CONNECTIVES 

When you’re talking to someone, do you use very simple sentences only?  Don’t you 
use more complicated ones which are joined by words like ‘and’, ‘or’, etc?  In  the 
same way, most statements in mathematical logic are combinations of simpler 
statements joined by words and phrases like ‘and’. ‘or’, ‘if … then’. ‘if and only if’, 
etc.  These words and phrases are called logical connectives.  There are 6 such 
connectives, which we shall discuss one by one. 
 
1.3.1 Disjunction 

Consider the sentence ‘Alice or the mouse went to the market.’. This can be written as 
‘Alice went to the market or the mouse went to the market.’  So, this statement is 
actually made up of two simple statements connected by ‘or’. We have a term for such 
a compound statement. 
 
Definition: The disjunction of two propositions p and q is the compound statement 
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Elementary Logic p or q, denoted by p ∨ q. 
For example, ‘Zarina has written a book or Singh has written a book.’ Is the 
disjunction of p and q, where 
p : Zarina has written a book, and  
q : Singh has written a book. 
 
Similarly, if p denotes ‘ 2 > 0’ and q denotes ‘2 < 5’, then p ∨ q denotes the statement 
‘2 is greater than 0 or 2 is less than 5.’. 
 
Let us now look at how the truth value of p ∨ q depends upon the truth values of p and 
q.  For doing so, let us look at the example of Zarina and Singh, given above.  If even 
one of them has written a book, then the compound statement p ∨ q is true.  Also, if 
both have written books, the compound statement p ∨ q is again true.  Thus, if the 
truth value of even one out of p and q is T, then that of ‘p ∨ q’ is T.  Otherwise, the 
truth value of p ∨ q is F.  This holds for any pair of propositions p and q.  To see the 
relation between the truth values of p, q and p ∨ q easily, we put this in the form of a 
table (Table 1), which we call a truth table. 

 
Table 1: Truth table for disjunction 

 
p q p ∨ q 
T 
T 
F 
F 

T 
F 
T 
F 

T 
T 
T 
F 

 
 
 
 
 
 
How do we form this table?  We consider the truth values that p can take – T or F.  
Now, when p is true, q can be true or false.  Similarly, when p is false q can be true or 
false. In this way there are 4 possibilities for the compound proposition p ∨ q. Given 
any of these possibilities, we can find the truth value of p ∨ q. For instance, consider 
the third possibility, i.e., p is false and q is true. Then, by definition, p ∨ q is true. In 
the same way, you can check that the other rows are consistent. 
 
Let us consider an example. 
 
Example 1: Obtain the truth value of the disjunction of ‘The earth is flat’.  
and ‘3 + 5 = 2’. 
 
Solution: Let p denote ‘The earth is flat,’ and q denote ‘3 + 5 = 2’. Then we know 
that the truth values of both p and q are F.  Therefore, the truth value of p ∨ q is F. 
 

*** 
Try an exercise now. 
 

E4) Write down the disjunction of the following propositions, and give its truth 
value. 
i) 2 + 3 = 7, 

 ii) Radha is an engineer. 

 
We also use the term ‘inclusive or ‘ for the connective we have just discussed.  This is 
because p ∨ q is true even when both p and q are true.  But, what happens when we 
want to ensure that only one of them should be true?  Then we have the following 
connective. 
 
Definition: The exclusive disjunction of two propositions p and q is the statement 
‘Either p is true or q is true, but both are not true.’.  Either p is true or q is true, 
but both are not true.’. We denote this by p ⊕ q . 
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Propositional Calculus So, for example, if p is ‘2 + 3 = 5’ and q the statement given in E4(ii), then p ⊕ q is 
the statement ‘Either 2 + 3 = 5 or Radha is an engineer’. This will be true only if 
Radha is not an engineer. 
 
In general, how is the truth value of p ⊕ q related to the truth values of p and q?  This 
is what the following exercise is about. 
 

E5) Write down the truth table for ⊕.  Remember that p ⊕ q is not true if both p and 
q are true. 

Now let us look at the logical analogue of the coordinating conjunction ‘and’. 
 
1.3.2 Conjunction 

As in ordinary language, we use ‘and’ to combine simple propositions to make 
compound ones.  For instance, ‘ 1 + 4 ≠ 5 and Prof.  Rao teaches Chemistry.’ is 
formed by joining ‘1 + 4 ≠ 5’ and ‘Prof. Rao teaches Chemistry’ by ‘and’. Let us 
define the formal terminology for such a compound statement. 
 
Definition: We call the compound statement ‘p and q’ the conjunction of the 
statements p and q. We denote this by p ∧ q. 
 
For instance, ‘3 + 1 ≠ 7 ∧ 2 > 0’ is the conjunction of  ‘3 + 1 ≠ 7’ and ‘2 > 0’. 
Similarly, ‘2 + 1 = 3 ∧ 3 = 5’ is the conjunction of ‘2 + 1 = 3’ and ‘3 = 5’. 
 
Now, when would p ∧ q be true?  Do you agree that this could happen only when both 
p and   q are true, and not otherwise?  For instance, ‘2 + 1 = 3 ∧ 3 = 5’ is not true 
because ‘3 = 5’ is false. 
So, the truth table for conjunction would be as in Table 2. 
 

Table 2: Truth table for conjunction 
 

P q p ∧ q 
T 
T 
F 
F 

T 
F 
T 
F 

T 
F 
F 
F 

 
To see how we can use the truth table above, consider an example. 
 
Example 2: Obtain the truth value of the conjunction of ‘2 ÷5 = 1’ and ‘Padma is in 
 Bangalore.’. 
 
Solution: Let p : 2 ÷5 = 1, and 
 q: Padma is in Bangalore. 
 
Then the truth value of p is F.  Therefore, from Table 3 you will find that the truth 
value of p ∧ q is F. 
 

*** 
Why don’t you try an exercise now? 
 

E6)    Give the set of those real numbers x for which the truth value of p ∧ q is T, 
 where p : x > -2, and  q : x + 3 ≠ 7 

If you look at Tables 1 and 2, do you see a relationship between the truth values in  
their last columns?  You would be able to formalize this relationship after studying the 
next connective. 
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Elementary Logic 1.3.3 Negation 

You must have come across young children who, when asked to do something, go 
ahead and do exactly the opposite.  Or, when asked if they would like to eat, say rice 
and curry, will say ‘No’, the ‘negation’ of yes!  Now, if p denotes the statement ‘I will 
eat rice.’, how can we denote ‘I will not eat rice.’?  Let us define the connective that 
will help us do so. 
 
Definition: The negation of a proposition p is ‘not p’, denoted by ~p. 
 
For example, if p is ‘Dolly is at the study center.’, then ~ p is ‘Dolly is not at the study 
center’.  Similarly, if p is ‘No person can live without oxygen.’, ~ p is ‘At least one 
person can live without oxygen.’. 
 
Now, regarding the truth value of ~ p, you would agree that it would be T if that of p 
is F, and vice versa.  Keeping this in mind you can try the following exercises. 
 

E7) Write down ~ p, where p is 
 i) 0 – 5 ≠ 5 
 ii) n > 2 for every n ∈ N. 
 iii) Most Indian children study till class 5. 
 
E8) Write down the truth table of negation. 

Let us now discuss the conditional connectives, representing ‘If …, then …’ and ‘if 
and only if’. 
 
1.3.4 Conditional Connectives 

Consider the proposition ‘If Ayesha gets 75% or more in the examination, then she 
will get an A grade for the course.’.  We can write this statement as ‘If p, and q’, 
where 

p:  Ayesha gets 75% or more in the examination, and 
q:  Ayesha will get an A grade for the course. 

 
This compound statement is an example of the implication of q by p. 
 
Definition: Given any two propositions p and q, we denote the statement ‘If p, then 
q’ by p → q.  We also read this as ‘p implies q’. or ‘p is sufficient for q’, or ‘p only if 
q’.  We also call p the hypothesis and q the conclusion.  Further, a statement of the 
form p → q is called a conditional statement or a conditional proposition. 
 
So, for example, in the conditional proposition ‘If m is in Z, then m belongs to Q.’ the 
hypothesis is ‘m ∈ Z’ and the conclusion is ‘m ∈ Q’. 
 
Mathematically, we can write this statement as 

m ∈ Z → m ∈ Q. 
 
Let us analyse the statement p → q for its truth value.  Do you agree with the truth 
table we’ve given below (Table 3)?  You may like to check it out while keeping an 
example from your surroundings in mind. 
 

Table 3: Truth table for implication 
 p q p → q 

T 
T 
F 
F 

T 
F 
T 
F 

T 
F 
T 
T 
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Propositional Calculus You may wonder about the third row in Table 3. But, consider the example ‘3 < 0 → 
5 > 0’. Here the conclusion is true regardless of what the hypothesis is.  And 
therefore, the conditional statement remains true.  In such a situation we say that the 
conclusion is vacuously true. 
 
Why don’t you try this exercise now? 
 

E9) Write down the proposition corresponding to p → q, and determine the values 
of x for which it is false, where 

 p : x + y = xy where x, y ∈ R 
q : x ⊀ 0 for every x ∈ Z. 

 
Now, consider the implication ‘If Jahanara goes to Baroda, then the she doesn’t  
participate in the conference at Delhi.’. What would its converse be?  To find it, the  
following definition may be useful. 
 
Definition: The converse of p → q is q → p.  In this case we also say ‘p is 
necessary for q’, or ‘p if q’. 
 
So, in the example above, the converse of the statement would be ‘If Jahanara doesn’t 
participate in the conference at Delhi, then she goes to Baroda.’. This means that  
Jahanara’s non-participation in the conference at Delhi is necessary for her going to  
Baroda. 
 
Now, what happens when we combine an implication and its converse?   
 
To show ‘p → q and q → p’, we introduce a shorter notation. 
 
Definition: Let p and q be two propositions. The compound statement  
(p → q) ∧(q → p) is the biconditional of p and q. We denote it by p ↔ q, and read it 
as ‘p if and only q’. 
 
We usually shorten ‘if and only ‘if’ to iff. 
 
We also say that ‘p implies and is implied by q’. or ‘p is necessary and sufficient  
for  q’. 
 
For example, ‘Sudha will gain weight if and only if she eats regularly.’ Means that  
‘Sudha will gain weight if she eats regularly and Sudha will eat regularly if she gains  
weight.’ 
 
One point that may come to your mind here is whether there’s any difference in the 
two statements p ↔ q and q ↔ p.  When you study Sec. 1.4 you will realize why they 
are inter-changeable. 
 
Let us now consider the truth table of the biconditional, i.e., of the two-way implication.   
 
To obtain its truth values, we need to use Tables 2 and 3, as you will see in Table 4.   
This is because, to find the value of ( p → q ) ∧ ( q → p) we need to know the values 
of each of the simpler statements involved. 

 
Table 4: Truth table for two-way implication. 

 
 
                                             

p q p → q q → p p ↔ q 
T 
T 
F 
F 

T 
F 
T 
F 

T 
F 
T 
T 

T 
T 
F 
T 

T 
F 
F 
T 

The two connectives → and 
↔ are called conditional 
connectives. 
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Elementary Logic As you can see from the last column of the table (and from your own experience),  
p ↔ q is true only when both p and q are true or both p and q are false. In other 
words, p ↔ q is true only when p and q have the same truth values. Thus, for 
example,‘Parimala is in America iff 2 + 3 = 5’ is true only if ‘Parimala is in America,’ 
is true. 
 
Here are some related exercises. 
 

E10) For each of the following compound statements, first identify the simple 
propositions p, q, r, etc., that are combined to make it.  Then write it in symbols, 
using the connectives, and give its truth value. 

 i) If triangle ABC is equilateral, then it is isosceles. 
 ii) a and b are integers if and only if ab is a rational number. 

   iii) If  Raza has five glasses of water and Sudha has four cups of tea, then 
Shyam will not pass the math examination. 

 iv) Mariam is in Class 1 or in Class 2. 
 
E11) Write down two propositions p and q for which q → p is true but p ↔ q is 

false. 

Now, how would you determine the truth value of a proposition which has more than 
one connective in it? For instance, does ~ p ∨ q mean ( ~ p) ∨ q or ~ ( p ∨ q)? We 
discuss some rules for this below. 
 
1.3.5 Precedence Rule 

While dealing with operations on numbers, you would have realized the need for 
applying the BODMAS rule.  According to this rule, when calculating the value of an 
arithmetic expression, we first calculate the value of the Bracketed portion, then apply 
Of, Division, Multiplication, Addition and Subtraction, in this order.  While 
calculating the truth value of compound propositions involving more than one 
connective, we have a similar convention which tells us which connective to apply 
first. 
 
Why do we need such a convention?  Suppose we didn’t have an order of preference, 
and want to find the truth of, say ~ p ∨ q.  Some of us may consider the value of ( ~ 
p) ∨ q, and some may consider ~ ( p ∨ q).  The truth values can be different in 
these cases.  For instance, if p and q are both true, then ( ~ p) ∨ q is true, but ~ ( 
p ∨ q) is false.  So, for the purpose of unambiguity, we agree to such an order or 
rule.  Let us see what it is. 
 
The rule of precedence:  The order of preference in which the connectives are 
applied in a formula of propositions that has no brackets is  

i) ~ 
ii) ∧ 
iii) ∨ and ⊕ 
iv) → and ↔ 
 
Note that the ‘inclusive or’ and ‘exclusive or’ are both third in the order of preference.  
However, if both these appear in a statement, we first apply the left most one.  So, for 
instance, in p ∨ q ⊕ ~ p, we first apply ∨ and then ⊕.  The same applies to the 
‘implication’ and the ‘biconditional’, which are both fourth in the order of preference. 
 
To clearly understand how this rule works, let us consider an example. 
 
Example 3: Write down the truth table of p → q ∧ ~ r ↔ r ⊕ q 
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Propositional Calculus Solution: We want to find the required truth value when we are given the truth values 
of p, q and r.  According to the rule of precedence given above, we need to first find 
the truth value of ~ r, then that of  ( q ∧ ~ r), then that of (r ⊕ q), and then that of p → 
( q ∧ ~ r), and finally the truth value of [ p → ( q ∧ ~ r)] ↔ r ⊕ q. 
 
So, for instance, suppose p and q are true, and r is false.  Then ~ r will have value T, q 
∧ ~ r will be T, r ⊕ q will be T, p → ( q ∧ ~ r) will be T, and hence, p → q ∧ ~ r ↔ r 
⊕ q will be T. 
 
You can check that the rest of the values are as given in Table 5.  Note that we have 8  
possibilities (=23) because there are 3 simple propositions involved here. 
 

Table 5: Truth table for p → q ∧ ~ r ↔ r ⊕ q 

p q r ~ r q ∧ ~ r r ⊕ q p → q ∧ ~ r p → q ∧ ~ r ↔ r ⊕ q 
T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

F 
T 
F 
T 
F 
T 
F 
T 

F 
T 
F 
F 
F 
T 
F 
F 

F 
T 
T 
F 
F 
T 
T 
F 

F 
T 
F 
F 
T 
T 
T 
T 

T 
T 
F 
T 
F 
T 
T 
F 
 

 
*** 

 
You may now like to try some exercises on the same lines. 
 

E12) In Example 3, how will the truth values of the compound statement change if 
you first apply ↔ and then → ? 

 
E13) In Example 3, if we replace ⊕ by ∧, what is the new truth table? 
 
E14) From the truth table of p ∧ q ∨ ~ r and (p ∧ q ) ∨ ( ~ r) and see where they 

differ. 
 
E15) How would you bracket the following formulae to correctly interpret them? 

[For instance, p ∨ ~ q ∧ r would be bracketed as p ∨ ((~ q) ∧ r).] 
i) p ∨ q, 

 ii) ~ q → ~ p, 
 iii) p → q ↔ ~ p ∨ q, 

iv) p ⊕ q ∧ r → ~ p ∨ q ↔ p ∧ r. 

So far we have considered different ways of making new statements from old ones.  
But, are all these new ones distinct?  Or are some of them the same?  And “same” in 
what way?  This is what we shall now consider. 
 

1.4 LOGICAL EQUIVALENCE 

‘Then you should say what you mean’, the March Have went on. ‘I do,’ Alice hastily 
replied, ‘at least … at least I mean what I say – that’s the same thing you know.’ 
‘Not the same thing a bit!’ said the Hatter. ‘Why you might just as well say that “I see 
what I eat” is the same thing as “I eat what I see”!’ 

-from ‘Alice in Wonderland’ 
        by Lewis Carroll 
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Elementary Logic In Mathematics, as in ordinary language, there can be several ways of saying the same 
thing.  In this section we shall discuss what this means in the context of logical 
statements. 
 
Consider the statements ‘If Lala is rich, then he must own a car.’. and ‘if Lala doesn’t 
own a car, then he is not rich.’. Do these statements mean the same thing? If we write 
the first one as p → q, then the second one will be (~q) → (~ p). How do the truth 
values of both these statements compare? 
 
We find out in the following table. 
 

Table 6 
 

p q ~ p ~ q p → q ~ q → ~p 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

F 
T 
F 
T 

T 
F 
T 
T 

T 
F 
T 
T 

 
                         
 
 
 
 
Consider the last two columns of Table 6. You will find that ‘p → q’ and ‘q → ~ p’ 
have the same truth value for every choice of truth values of p and q. When this 
happens, we call them equivalent statements. 
 
Definition: We call two propositions r and s logically equivalent provided they have 
the same truth value for every choice of truth values of simple propositions involved 
in them.  We denote this fact by r ≡ s. 
 
So, from Table 6 we find that ( p → q) ≡ (~ q → ~ p). 
 
You can also check that ( p ↔ q) ≡ ( q ↔ p) for any pair of propositions p and q. 
 
As another example, consider the following equivalence that is often used in 
mathematics.  You could also apply it to obtain statements equivalent to ‘Neither a 
borrower, nor a lender be.’! 
 
Example 4: For any two propositions p and q, show that ~ (p ∨ q ) ≡ ~ p ∧ ~ q. 
 
Solution:  Consider the following truth table. 
 

Table 7 
 

p q ~ p ~ q p ∨ q ~ ( p ∨ q) ~ p ∧ ~ q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

F 
T 
F 
T 

T 
T 
T 
F 

F 
F 
F 
T 

F 
F 
F 
T 

 
You can see that the last two columns of Table 7 are identical.  Thus, the truth values 
of ~ ( p ∨ q) and ~ p ∧ ~ q agree for every choice of truth values of p and q. 
Therefore, ~ (p ∨ q) ≡ ~ p ∧ ~ q. 

*** 
 
The equivalence you have just seen is one of De Morgan’s laws.  You might have 
already come across these laws in your previous studies of basic Mathematics. 
 
The other law due to De Morgan is similar : ~ (p ∧ q) ≡ ~ p ∨ ~ q. 

Fig. 1: Augustus De Morgan 
(1806-1871) was born 
in Madurai 

 
In fact, there are several such laws about equivalent propositions.  Some of them are 
the following, where, as usual, p, q and r denote propositions. 
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Propositional Calculus a) Double negation law :  ~ ( ~ p) ≡ p 
b) Idempotent laws: p ∧ p ≡ p, 

p ∨ p ≡ p 
 c) Commutativity: p ∨ q ≡ q ∨ p 
     p ∧ q ≡ q ∧ p 

d) Associativity:  (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) 
     (p ∧ q) ∧ r ≡ p ∧ ( q ∧ r) 

e) Distributivity:  ∨ ( q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 
     p ∧ ( q ∨ r) ≡   (p ∧ q) ∨ ( p ∧ r) 

We ask you to prove these laws now. 
 

E16) Show that the laws given in (a)-(e) above hold true. 
E17) Prove that the relation of ‘logical equivalence’ is an equivalence relation. 
E18)  Check whether ( ~ p ∨ q) and ( p → q) are logically equivalent. 

 
The laws given above and the equivalence you have checked in E18 are commonly 
used, and therefore, useful to remember.  You will also be applying them in Unit 3 of 
this Block in the context of switching circuits. 
 
Let us now consider some prepositional formulae which are always true or always 
false. Take, for instance, the statement ‘If Bano is sleeping and Pappu likes ice-cream, 
then Beno is sleeping’. You can draw up the truth table of this compound proposition 
and see that it is always true. This leads us to the following definition. 
 
Definition: A compound proposition that is true for all possible truth values of the 
simple propositions involved in it is called a tautology.  Similarly, a proposition that 
is false for all possible truth values of the simple propositions that constitute it is 
called a contradiction. 
 
Let us look at some example of such propositions. 
 
Example 5: Verify that p ∧ q ∧ ~ p is a contradiction and p → q ↔ ~ p ∨ q is a 
tautology. 
 
Solution: Let us simultaneously draw up the truth tables of these two propositions 
below. 

Table 8 

p q ~ p p ∧ q p ∧ q ∧ ~ p p → q ~ p ∨ q p → q ↔ ~ p ∨ q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

T 
F 
F 
F 

F 
F 
F 
F 

T 
F 
T 
T 

T 
F 
T 
T 

T 
T 
T 
T 

 
Looking at the fifth column of the table, you can see that p ∧ q ∧ ~p is a contradiction.  
This should not be surprising since p ∧ q ∧ ~ p ≡ ( p ∧ ~ p) ∧ q (check this by using 
the various laws given above). 
 
And what does the last column of the table show?  Precisely that p → q ↔ ~ p ∨ q is 
a tautology. 

*** 
 
Why don’t you try an exercise now? 
 

E19) Let T  denote a tautology ( i.e., a statement whose truth value is always T) and F 
a contradiction.  Then, for any statement p, show that 
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Elementary Logic i) p ∨ T  ≡ T 
ii) p ∧ T  ≡ p 
iii) p ∨ F ≡ p 
iv) p ∧ F ≡ F 

Another way of proving that a proposition is a tautology is to use the properties of 
logical equivalence.  Let us look at the following example. 
 
Example 6: Show that [(p → q) ∧ ~ q] → ~ p is a tautology. 
 
Solution: [( p → q) ∧ ~ q] → ~ p 

Complementation law:  
q ∧ ~ q is a contradiction. 

≡ [(~ p ∨ q) ∧ ~ q]→ ~ p, using E18, and symmetricity of  ≡. 
≡ [(~ p ∧ ~ q) ∨ (q  ∧ ~ q)] → ~ p, by De Morgan’s laws. 
≡ [(~ p ∧ ~ q) ∨ F] → ~ p, since q ∧ ~ q is always false. 
≡ (~ p ∧ ~ q) → ~ p, using E18. 

 
Which is tautology. 
 
And therefore the proposition we started with is a tautology. 
 

*** 
 
The laws of logical equivalence can also be used to prove some other logical 
equivalences, without using truth tables. Let us consider an example. 
 
Example 7: Show that (p → ~ q) ∧ ( p → ~ r) ≡ ~ [ p ∧ ( q ∨ r)]. 
 
Solution: We shall start with the statement on the left hand side of the equivalence 
that we have to prove. Then, we shall apply the laws we have listed above, or the 
equivalence in E 18, to obtain logically equivalent statements. We shall continue this 
process till we obtain the statement on the right hand side of the equivalence given 
above.  Now 

(p → ~ q) ∧ (p → ~ r) 
 ≡ (~ p ∨ q) ∧ (~ p ∨ ~ r), by E18 
 ≡ ~ p ∨ ( ~ q ∧ ~ r), by distributivity 
 ≡ ~ p ∨ [ ~ (q ∨ r)], by De Morgan’s laws 
 ≡ ~ [p ∧ (q ∨ r)], by De Morgan’s laws 
 
So we have proved the equivalence that we wanted to. 
 

*** 
 
You may now like to try the following exercises on the same lines. 
 

E20) Use the laws given in this section to show that 
 ~ (~ p ∧ q) ∧ ( p ∨ q) ≡ p. 
 
E21) Write down the statement ‘If it is raining and if rain implies that no one can go 
 to see a film, then no one can go to see a film.’ As a compound proposition. 
 Show that this proposition is a tautology, by using the properties of logical 
 equivalence. 
 
E22) Give an example, with justification, of a compound proposition that is neither a 
 tautology nor a contradiction. 
 
Let us now consider proposition-valued functions. 



 
Propositional Calculus 

1.5 LOGICAL QUANTIFIERS 

In Sec. 1.2, you read that a sentence like ‘She has gone to Patna.’ Is not a proposition, 
unless who ‘she’ is clearly specified. 
Similarly, ‘x > 5’ is not a proposition unless we know the values of x that we are 
considering. Such sentences are examples of ‘propositional functions’. 
 
Definition: A propositional function, or a predicate, in a variable x is a sentence 
p(x) involving x that becomes a proposition when we give x a definite value from the 
set of values it can take.  We usually denote such functions by p(x), q(x), etc.  The set 
of values x can take is called the universe of discourse. 
 
So, if p(x) is ‘x > 5’, then p(x) is not a proposition.  But when we give x particular 
values, say x = 6 or x = 0, then we get propositions.  Here, p(6) is a true proposition 
and p(0) is a false proposition. 
 
Similarly, if q(x) is ‘x has gone to Patna.’, then replacing x by ‘Taj Mahal’ gives us a 
false proposition. 
 
Note that a predicate is usually not a  proposition.  But, of course, every proposition is 
a prepositional function in the same way that every real number is a real-valued 
function, namely, the constant function. 
 
Now, can all sentences be written in symbolic from by using only the logical 
connectives?  What about sentences like ‘x is prime and x + 1 is prime for some x.’?  
How would you symbolize the phrase ‘for some x’, which we can rephrase as ‘there 
exists an x’?  You must have come across this term often while studying mathematics.  
We use the symbol ‘∃’ to denote this quantifier, ‘there exists’.  The way we use it ∃ is called the 

existential quantifier.
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is, for instance, to rewrite ‘There is at least one child in the class.’ as‘(∃ x in U)p(x)’, 
where p(x) is the sentence ‘x is in the class.’ and  U is the set of all children. 
 
Now suppose we take the negative of the proposition we have just stated.  Wouldn’t it 
be ‘There is no child in the class.’?  We could symbolize this as ‘for all x in U, q(x)’ 
where x ranges over all children and q(x) denotes the sentence ‘x is not in the class.’, 
i.e., q(x) ≡ ~ p(x). 
 
We have a mathematical symbol for the quantifier ‘for all’, which is ‘∀’.  So the 
proposition above can be written as ∀ is called the 

universal quantifier. 

‘(∀ x ∈ U)q(x)’, or ‘q(x), ∀ x ∈ U’. 
 
An example of the use of the existential quantifier is the true statement. 
 
(∃ x ∈ R) (x + 1 > 0), which is read as ‘There exists an x in R for which x + 1 > 0.’. 
 
Another example is the false statement 

(∃ x ∈N) (x - 
2
1

= 0), which is read as ‘There exists an x in N for which x - 
2
1

= 0.’. 

 
An example of the use of the universal quantifier is (∀ x ∉ N) (x2 > x), which is read 
as ‘for every x not in N, x2 > x.’. Of course, this is a false statement, because there is 
at least one x∉ N, x ∈ R, for which it is false. 
 
We often use both quantifiers together, as in the statement called Bertrand’s 
postulate: 

(∀ n ∈ N\ {1}) ( ∃ x ∈ N) (x is a prime number and n < x < 2n). 
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Elementary Logic In words, this is ‘for every integer n > 1 there is a prime number lying strictly between 
n and 2n.’ 
 
As you have already read in the example of a child in the class, 
( ∀ x ∈U)p(x) is logically equivalent to ~ ( ∃ x ∈ U) (~ p(x)).  Therefore, 
~(∀ x ∈ U)p(x) ≡ ~~ (∃ x ∈U) (~ p(x)) ≡ ( ∃ x ∈ U) ( ~ p(x)). 
 
This is one of the rules for negation that relate ∀ and ∃.  The two rules are  

~ (∀ x ∈ U)p(x) ≡ (∃ x ∈ U) (~ p(x)), and 
~ (∃ x ∈ U)p(x) ≡ (∀ x ∈ U) (~ p(x)) 

 
Where U is the set of values that x can take. 
 
Now, consider the proposition 
 
‘There is a criminal who has committed every crime.’ 
 
We could write this in symbols as 

(∃ c ∈A) ( ∀ x ∈ B) (c has committed x) 
Where, of course, A is the set of criminals and B is the set of crimes (determined by 
law). 
 
What would its negation be?  It would be 

~ (∃ c ∈ A) (∀ x ∈ B) (c has committed x) 
Where, of course, A is the set of criminals and B is the set of crimes (determined by 
law). 
 
What would its negation be?  It would be 

~ (∃ c ∈ A) (∀ x ∈ B) (c has committed x) 
≡ (∀ c ∈ A) [~ (∀ x ∈B) (c has committed x) 
≡ (∀ c ∈ A) (∃ x ∈ B) ( c has not committed x). 

 
We can interpret this as ‘For every criminal, there is a crime that this person has not 
committed.’. 
 
These are only some examples in which the quantifiers occur singly, or together.  
Sometimes you may come across situations (as in E23) where you would use ∃ or ∀ 
twice or more in a statement.  It is in situations like this or worse [say, (∀ xi ∈ U1) (∃ 
x2 ∈ U2) (∃ x3 ∈ U2) (∃ x3 ∈ U3)(∀ x4 ∈ U4) … (∃ xn ∈ Un)p] 

A predicate can be a function in 
two or more variables. 

where our rule for negation comes in useful.  In fact, applying it, in a trice we can say 
that the negation of this seemingly complicated example is 

(∃ x1 ∈U1) (∀ x2 ∈ U2 ) (∀ x3 ∈ U3)(∃ x4 ∈ U4) …(∀ xn ∈ Un ) (~ p). 
 
Why don’t you try some exercise now? 
 

E23) How would you present the following propositions and their negations using 
logical quantifiers?  Also interpret the negations in words. 

 i) The politician can fool all the people all the time. 
 ii) Every real number is the square of some real number. 
 iii) There is lawyer who never tell lies. 
 
E24) Write down suitable mathematical statements that can be represented by the 

following symbolic propostions. Also write down their negations.  What is the 
truth value of your propositions? 

 i) (∀ x) (∃ y)p 
 ii) (∃ x) (∃ y) (∀ z)p. 
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Propositional Calculus And finally, let us look at a very useful quantifier, which is very closely linked to ∃.  
You would need it for writing, for example, ‘There is one and only one key that fits 
the desk’s lock.’ In symbols.  The symbol is ∃! X which stands for ‘there is one and 
only one x’ (which is the same as ‘there is a unique x’ or ‘there is exactly one x’). 
 
So, the statement above would be (∃! X ∈ A) ( x fits the desk’s lock), where A is the 
set of keys. 
 
For other examples, try and recall the statements of uniqueness in the mathematics 
that you’ve studied so far.  What about ‘There is a unique circle that passes through 
three non-collinear points in a plane.’?  How would you represent this in symbols? If 
x denotes a circle, and y denotes a set of 3 non-collinear points in a plane, then the 
proposition is 

(∀ y ∈ P) (∃! X ∈ C) (x passes through y). 
 
Here C denotes the set of circles, and P the set of sets of 3 non-collinear points. 
And now, some short exercises for you! 
 

E25) Which of the following propositions are true (where x, y are in R)? 
 i) (x ≥ 0) → ( ∃ y) (y2 = x) 
 ii) (∀ x) (∃! y) (y2 =x3) 
 iii) (∃x) (∃! y) (xy = 0) 
 
Before ending the unit, let us take quick look at what e have covered in it. 
 

1.6 SUMMARY 

In this unit, we have considered the following points. 

1.   What a mathematically acceptable statement (or proposition) is. 
2.   The definition and use of logical connectives: 
     Give propositions p and q, 

i) their disjunction is ‘p and q’, denoted by p ∨ q; 
ii) their exclusive disjunction is ‘either p or q’, denoted by p ⊕ q; 
iii) their conjunction is ‘p and q’, denoted by p ∧ q; 
iv) the negation of p is ‘not p’, denoted by ~ p; 
v) ‘if p, then q’ is denoted by p → q; 
vi) ‘p if and only if q’ is denoted by p ↔ q; 

3.    The truth tables corresponding to the 6 logical connectives. 
4. Rule of precedence : In any compound statement involving more than one 

connective, we first apply ‘~’, then ‘∧’, then ‘∨’ and ‘⊕’, and last of all ‘→’ and 
‘↔’. 

5.   The meaning and use of logical equivalence, denoted by ‘≡’. 
6.   The following laws about equivalent propositions: 
      i) De Morgan’s laws: ~ (p ∧ q) ≡ ~ p ∨ ~ q 
     ~ (p ∨ q) ≡ ~ p ∧ ~ q 
     ii) Double negation law: ~ (~p) ≡ p 
    iii) Idempotent laws: p ∧ p ≡ p, 
                 p  ∨ p ≡ p 
    iv) Commutativity:           p ∨ q ≡ q ∨ p 
     p ∧ q ≡ q ∧ p 
     v) Associativity:  (p ∨ q) ∨ r ≡ p ∨ ( q ∨ r) 
     (p ∧ q) ∧ r ≡ p ∧ ( q ∧ r) 
     vi) Distributivity:  p ∨ ( q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 
     p ∧ (q ∨ r) ≡ ( p ∧ q) ∨ (p ∧ r) 
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Elementary Logic      vii) (~ p ∨ q) ≡ p → q (ref. E18). 
7.  Logical quantifiers: ‘For every’ denoted by ‘∀’, ‘there exist’ denoted by ‘∃’, and 
 ‘there is one and only one’ denoted by ‘∃!’. 
8.   The rule of negation related to the quantifiers: 
       ~ ( ∀ x ∈U)p(x) ≡ (∃ x ∈ U) (~ p(x)) 
       ~ (∃ x ∈ U) p(x) ≡ (∀ x ∈ U) (~ p(x)) 
 
Now we have come to the end of this unit.  You should have tried all the exercises as 
you came to them.  You may like to check your solutions with the ones we have given  
below. 
 

1.7 SOLUTIONS/ ANSWERS 

E1) (i), (iii), (iv), (vii), (viii) are statements because each of them is universally true 
or universally false. 
(ii)  is a question. 
(v)  is an exclamation. 

 The truth or falsity of (vi) depends upon who ‘she’ is. 
 (ix)  is a subjective sentence. 
             (x)  will only be a statement if the value(s) n takes is/are given. 

 Therefore, (ii), (v), (vi), (ix) and (x) are not statements. 
 
E2) The truth value of (i) is F, and of all the others is T. 
 
E3) The disjunction is 

 ‘2+3 = 7 or Radha is an engineer.’. 
 Since ‘2+3 = 7’ is always false, the truth value of this disjunction depends on 

the truth value of ‘Radha is an engineer.’. If this is T, them we use the third row 
of Table 1 to get the required truth value as T. If Radha is not an engineer, then 
we get the required truth value as F. 

 
Table 9: Truth table for ‘exclusive or’ 

 
p q p ⊕ q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
T 
T 
F 

 
E4) p will be a true proposition for x ∈ ] –2, ∞ [ and  
 x ≠ 4, i.e., for x ∈] –2, 4 [ U ] 4, ∞ [. 
 
 
E5) i) 0 – 5 = 5 

ii) ‘n is not greater than 2 for every n ∈ N.’, or ‘There is at least one n n ∈ N 
for which n ≤ 2.’ 

iii) There are some Indian children who do not study till Class 5. 
 
E6) Table 10: Truth table for negation 

 
  p ~ p 

T 
F 

F 
T 

 
 
 
E7) p → q is the statement ‘If x + y = xy for x, y ∈ R, then x ⊄ 0 for every ∈ Z’. 
 

 In this case, q is false.  Therefore, the conditional statement will be true if p is 
false also, and it will be false for those values of x and y that make p true. 
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So, p → q is false for all those real numbers x of the form ,

1−y
y

 where  

y ∈R \{1}. This is because if x = 
1−y

y
 for some y ∈ R \{1}, then x + y = xy, 

i.e., p will be true. 
 
E8)  i) p → q, where p : ∆ABC is isosceles.  If q is true, then p → q is true.  If q is   

false, then p → q is true only when p is false. So, if  ∆ABC is an isosceles            
triangle, the given statement is always true. Also, if  ∆ABC is not isosceles, 
then it can’t be equilateral either. So the given statement is again true. 

 
ii)  p : a is an integer. 

            q : b is an integer. 
  r : ab is a rational number 
  The given statement is (p ∧ q ) ↔ r. 
  Now, if p is true and q is true, then r is still true. 
   
  So, (p ∧ q) ↔ r will be true if p ∧ q is true, or when p ∧ q is false and r is 

 false. 
  In all the other cases (p ∧ q) ↔ r will be false. 
  
 iii) p : Raza has 5 glasses of water. 
  q : Sudha has 4 cups of tea. 
  r : Shyam will pass the math exam. 
   
  The given statement is (p ∧ q) → ~ r. 
  This is true when ~ r is true, or when r is true and p ∧ q is false. 
  In all the other cases it is false. 
  
 iv) p : Mariam is in Class 1. 
  q : Mariam is in Class 2. 
   
  The given statement is p ⊕ q. 
  This is true only when p is true or when q is true. 
 
E9) There are infinitely many such examples.  You need to give one in which p is 

true but q is false. 
 
E10) Obtain the truth table.  The last column will now have entries TTFTTTTT. 
 
E11) According to the rule of precedence, given the truth values of p, q, r you should 

first find those of ~ r, then of q ∧ ~ r, and r ∧ q, and p → q ∧ ~ r, and finally of 
(p → q ∧ ~ r) ↔ r ∧ q. 

  
 Referring to Table 5, the values in the sixth and eighth columns will be replaced 
 by 
 
 
 
  

r ∧ q 
T 
F 
F 
F 
T 
F 
F 
F 

p → q ∧ ~ r ↔ r ∧ q 
F 
F 
T 
T 
T 
F 
F 
F 
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Elementary Logic E12) They should both be the same, viz., 
 

p q r ~ r p ∧ q (p ∧ q) ∨ (~ r) 
T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

F 
T 
F 
T 
F 
T 
F 
T 

T 
T 
F 
F 
F 
F 
F 
F 

T 
T 
F 
T 
F 
T 
F 
T 

 
E13) i) (~ p) ∨ q 

 ii) (~ q) → (~ p) 
iii) (p → q) ↔ [(~p) ∨ q] 
iv)  [(p ⊕ (q ∧ r) → [(~ p) ∨ q]] ↔ (p ∧ r) 

 
E14) a) 
 
  
 
  

p ~ p ~ (~ p) 
T 
F 

F 
T 

T 
F 

 
 The first and third columns prove the double negation law. 
  
 b) p q p ∨ q q ∨ p 

T 
T 
F 
F 

T 
F 
T 
F 

T 
T 
T 
F 

T 
T 
T 
F 

 
 
 
 
 
 The third and fourth columns prove the commutativity of ∨. 
 
E15) For any three propositions p, q, r: 
 i) p ≡ p is trivially true. 

ii) if p ≡ q, then q ≡ p ( if p has the same truth value as q for all choices of 
truth values of p and q, then clearly q has the same truth values as p in all the 
cases.  
iii) if p ≡ q  and q ≡ r, then p ≡ r ( reason as in (ii) above). 
 
Thus, ≡ is reflexive, symmetric and transitive. 

 
 
E16)  

p q ~ p ~ p ∨ q p → q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

T 
F 
T 
T 

T 
F 
T 
T 

 
The last two columns show that [(~p) ∨ q] ≡ (p → q). 

 
E17) i)  

  p Ƭ p ∨ Ƭ 
T 
F 

T 
T 

T 
T 

 

The second and third columns of this table show that p ∨ Ƭ = T. 
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ii) 

   p Ƒ p ∧ Ƒ 
T 
F 

F 
F 

F 
F 

 
 
 
The second and third columns of this table show that p ∧ Ƒ = F. 

 You can similarly check (ii) and (iii). 
 

E18)   ~ (~ p ∧ q) ∧ (p ∨ q) 
      ≡(~(~p)∨ ~ q) ∧ (p ∧ q), by De Morgan’s laws. 
          ≡ (p ∨ ~ q) ∧ (p ∨ q), by the double negation law. 
           ≡ p ∨ (~ q ∧ q), by distributivity 
          ≡ p ∨ Ƒ, where Ƒ denotes a contradiction 
          ≡ p, using E 19. 
 
E19)   p: It is raining.  
          q: Nobody can go to see a film. 
         Then the given proposition is 
          [p ∧ (p → q)] → q 
         ≡ p ∧ (~ p ∨ q) → q, since (p → q) ≡ (~ p ∨ q) 
        ≡ ( p ∧ ~ p) ∨ (p ∧ q) → q, by De Morgan’s law 
        ≡ Ƒ ∨ (p ∧ q) → q, since p ∧ ~ p is a contradiction 
        ≡ (Ƒ ∨ p) ∧ (F ∨ q) → q, by De Morgan’s law 
        ≡ p ∧ q → q, since Ƒ ∨ p ≡ p. 
       which is a tautology. 
 
E20)   There are infinitely many examples.  One such is: 

‘If Venkat is on leave, then Shabnam will work on the computer’.This is of the 
form p → q. Its truth values will be T or F, depending on those of p and q.  

 
E21)  i) (∀ t ∈ [0, ∞[) (∀ x ∈ H)p(x,t) is the given statement where p(x, t) is the  

predicate ‘The politician can fool x at time t second.’, and H is the set of 
human beings. 
Its negation is (∃ t ∈ [0, ∞[) (∃ x ∈ H) (~ p(x, t)), i.e., there is somebody 
who is not fooled by the politician at least for one moment. 

          
 ii)  The given statement is 

(∀ x ∈ R) (∃ y ∈R) (x = y2). Its negation is 
 (∃ x ∈R) (∀ y ∈ R) ( x ≠ y2), i.e., 
 there is a real number which is not the square of any real number. 

 iii) The given statement is 
(∃ x ∈ L) (∀ t ∈ [0, ∞[)p(x, t), where L is the set of lawyers and p(x, t) : x 
does not lie at time t. The negation is 
(∀ x ∈ L) (∃ t ∈ [0, ∞[) (~p), i.e., every lawyer tells a lie at some time. 

 
E22)   i) For example, 

( ∀ x ∈ N) (∃ y ∈ Z) (
y
x
∈ Q) is a true statement. Its negation is 

∃ x ∈N) (∀ y ∈ Z) ∉
y
x( Q ) 

You can try (ii) similarly. 
 
E23) (i), (iii) are true. 
 (ii) is false (e.g., for x = -1 there is no y such that y2= x3). 
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Elementary Logic (iv) is equivalent to (∀ x ∈ R) [~ (∃! y ∈ R) (x + y = 0)], i.e., for every x there 
is no unique y such that x + y = 0.  This is clearly false, because for  

 every x there is a unique y(= - x) such that x + y = 0. 
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UNIT 2   METHODS OF PROOF 

Structure        

2.0   Introduction            
2.1      Objectives 
2.2   What is a Proof?            
2.3    Different Methods of Proof         
          2.3.1 Direct Proof 
          2.3.2 Indirect Proofs 
          2.3.3  Counterexamples 
2.4     Principle of Induction          
2.5     Summary             
2.6 Solutions/ Answers 
                      

2.0 INTRODUCTION 

In the previous unit you studied about statements and their truth values. In this unit, 
we shall discuss ways in which statements can be linked to form a logically valid 
argument. Throughout your mathematical studies you would have come across the 
terms ‘theorem’ and  ‘proof’. In sec. 2.2, we shall talk about what a theorem is and 
what constitutes a mathematically acceptable proof. 

Fig. 1: George Boole
             (1815-1864) 

 
In Sec 2.3, we shall discuss some ideas formalised by the English mathematician 
Boole and the German logician Frege (1848-1925). These are the different methods 
used for proving or disproving a statement. As you go through the different types of 
valid arguments, please try and find connections with what we discussed in Block 1. 
 
The principle of mathematical induction has a very special place in mathematics 
because of its simplicity and vast applicability. You will revisit this tool for proving 
statements in sec. 2.4. 
 
Please go through this unit carefully. You need to be able to convince your learners 
that its contents are part of the foundation on which all mathematical knowledge is 
built. 

2.1 OBJECTIVES 

After reading this unit, you should be able to develop in your learners the ability to: 

• explain the terms ‘theorem’, ‘proof’ and ‘disproof’; 
• describe the direct method and some indirect methods of proof; 
• state and apply both forms of the principle of induction 
 
2.2 WHAT IS A PROOF? 

Suppose I tell somebody, “I am stronger than you.”  The person is quite likely to turn 
around, look menacingly at me, and say, “Prove it!” What she or he really wants is to 
be convinced of my statement by some evidence.  (In this case it would probably be a 
big physical push!) 
 
Convincing evidence is also what the world asks for before accepting a scientist's 
predictions, or a historian's claims.  
 
In the same way, if you want a mathematical statement to be accepted as true, you 
would need to provide mathematically acceptable evidence to support it. This means 
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Elementary Logic that you would need to show that the statement is universally true. And this would be 

done in the form of a logically valid argument.  
 
Definition: An argument (in mathematics or logic) is a finite sequence of  
statements p1 , · · · , pn , p such that (p1 ∧ p2  ∧· · · ∧ p) → p.  
 
Each statement in the sequence, p1 , p2 , . . . , pn is called a premise (or an  
assumption, or a hypothesis). The final statement p is called the conclusion.  
 
Let's consider an example of an argument that shows that a given statement is true.  
 
Example 1: Give an argument to show that the mathematical statement  
‘For any two sets A and B, A ∩ B ⊆ A’ is true.  
 
Solution: One argument could be the following.  
Let x be an arbitrary element of A ∩ B.  
Then x ∈ A and x ∈ B, by definition of ‘∩’. 
Therefore, x ∈ A.  
This is true for every x in A ∩ B.  
Therefore, A ∩ B ⊆ A, by definition of `⊆'.  
 

*** 
 
The argument in Example 1 has a peculiar nature. The truth of each of the 4 premises 
and of its conclusion follows from the truth of the earlier premises in it. Of course, we 
start by assuming that the first statement is true. Then, assuming the definition of 
`intersection', the second statement is true. The third one is true, whenever the second 
one is true because of the properties of logical implication. The fourth statement is 
true whenever the first three are true, because of the definition and properties of the 
term `for all'. And finally, the last statement is true whenever all the earlier ones are. 
In this way we have shown that the given statement is true. In other words, we have 
proved the given statement, as the following definition show. 
  
Definitions: We say that a proposition p follows logically from propositions  
p1 , p2 , · · ·, pn if p must be true whenever p1 , p2, · · · , pn are true, i.e.,  
(p1 ∧ p2 ∧ · · · ∧ pn ) ⇒ p.  
[Here, note the use of the implication arrow `⇒'. For any two propositions r  
and s, `r ⇒ s' denotes ‘s is true whenever r is true.’ Note that, using the  
contrapositive, this also denotes `r is false whenever s is false'. Thus `r → s' and  
`r ⇒ s' are different except when both r and s are true or both are false.]  
 
A proof of a proposition p is a mathematical argument consisting of a sequence  
of statements p1 , p2 , · · · , pn from which p logically follows. So, p is the conclusion of 
this argument.  
 
The statement that is proved to be true is called a theorem.  
 
Sometimes, as you will see in Sec.2.3.3, instead of showing that a statement p is true, 
we try to prove that it is false, i.e., that ∼ p is true. Such a proof is called a disproof of 
p. In the next section you will read about some ways of disproving a statement.  
 
Sometimes it happens that we feel a certain statement is true, but we don't succeed in 
proving it. It may also happen that we can't disprove it. Such statements are called 
conjectures. If and when a conjecture is proved, it would be called a theorem. If it is 
disproved, then its negative will be a theorem!  
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In this context, there’s a very famous conjecture which was made by a mathematician 
Goldbach  in 1742. He stated that : 



 
Methods of Proof For every n ∈ N.  If n is even and n > 2, then n is the sum of two primes. 

To this day, no one has been able to prove it or disprove it. To disprove it several 
people have hunting for an example for which the statement is not true, i.e., an even 
number n>2 such that n cannot be written as the sum of two prime numbers. 
 
Now, as you have seen, a mathematical proof of a statement consists of one or more 
premises. These premises could be of four types: 

i) a proposition that has been proved earlier (e.g., to prove that the complex roots 
 of a polynomial in R[x] occur in pairs, we use the division algorithm); or 
ii) a proposition that follows logically from the earlier propositions given in the 
 proof (as you have seen in Example 1); or 
iii) a mathematical fact that has never been proved, but is universally accepted as 

true (e.g., two points determine a line). Such a fact is called an axiom (or a 
postulate); 

iv) the definition of a mathematical term (e.g., assuming the definition of  ‘⊆’ in 
 the proof of  A ∩ B ⊆A). 
 
You will come across more examples of each type while doing the following 
exercises, and while going through proofs in this course and other course. 
 

E1) Write down an example of a theorem, and its proof  (of at least 4 steps), taken 
from school-level algebra. At each step, indicate which of the four types of 
premise it is. 

E2) Is every statement a theorem?  Why? 

So far we have spoken about valid, or acceptable, arguments. Now let us see an 
  example of a sequence of statements that will not form a valid argument. Consider the 

following sequence. 
 

If  Maya sees the movie, she won’t finish her homework. 
Maya won’t finish her homework. 
Therefore, Maya sees the movie. 

 
Looking at the argument, can you say whether it is valid or not?  Intuitively you may 
feel that the argument isn’t valid. But, is there a formal logical tool that you can apply 
check if your intuition is correct? What about truth tables? Let’s see. 
 
The given argument is of the form 
[(p → q) ∧ q] ⇒ p, where 
p:  Maya sees the movie, and 
q:  Maya won’t finish here homework. 
 
Let us look at the truth table related to this argument (see Table 1). 
 

Table 1. 
 
p q p → q (p → q) ∧ q 
T 
T
F 
F 

T 
F 
T 
F 

T 
F 
T 
T 

T 
F 
T 
F 

 
 
 
 
 
 

 
This last column gives the truth values of the premises. The first column given  
corresponding truth values of the conclusion. Now, the argument will only be valid 

  if whenever both the premises are true, the conclusion is true. This happens in 
the first row, but not in the third row. Therefore, the argument is not valid. 
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Elementary Logic Why don’t you check an argument for validity now? 

 

E3) Check whether the following argument is valid 
 (p → q ∨ ~r) ∧ (q → p) ⇒ (p → r) 

 
You have seen that a proof is a logical argument that verifies the truth of a theorem.  
There are several ways of proving a theorem, as you will see in the next section. All of 
them are based on one or more rules of inference, which are different forms of 
arguments. We shall now present four of the most commonly used rules. 
 
i) Law of detachment (or modus ponens) 
 Consider the following argument: 
 
 If Kali can draw, she will get a job. 
 Kali can draw. 
 Therefore, she will get a job. 
 
To study the form of the argument, let us take p to be the proposition ‘Kali can draw’. 
And q to be the proposition ‘Kali will get a job.’ Then the premises are (p → q) and p.  
The conclusion is q. 
 
So, the form of the argument is 
p → q 

q
p

∴
 ,  i.e., [(p → q) ∧ p] ⇒ q. 

 
Is this argument valid?  To find out, let’s construct its truth table (see Table 2). 
 
                             Table 2: Truth table for [(p → q) ∧ p] ⇒ q 
   
                    
 
 

 
 
 

p q p → q (p → q) ∧ q
T 
T
F 
F 

T 
F 
T 
F 

T 
F 
T 
T 

T 
F 
F 
F 

∴ denotes ‘therefore’. 

‘Modus ponens’ is a 
Latin term which means 
‘method of affirmation’. 

 
In the table, look at the second column (the conclusion) and the fourth column (the  
premises). Whenever the premises are true, i.e., in Row 1, the conclusion is true.   
Therefore, the argument is valid. 
 
This form of valid argument is called the law of detachment because the conclusion q 
is detached from a premise (namely, p → q).  It is also called the law of direct 
inference. 

 
ii) Law of contraposition (or modus tollens) ‘Modus tollens’ means 

‘method of denial’.  To understand this law, consider the following argument: 
 

If  Kali can draw, then she will get a job. 
Kali will not get a job. 
Therefore, Kali can’t draw. 

 
Taking p and q as in (i) above, you can see that the premises are p → q and ~ q. The 
conclusion is ~ p 
 
So the argument is 
p → q 
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~ q ,  i.e., [( p → q) ∧ ~] ⇒ ~ p. 
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If you check, you’ll find that this is a valid form of argument. There are two more 
rules of inference that most commonly form the basis of several proofs.  The 
following exercise is about them. 
 

E4) You will find three arguments below.  Convert each of them into the language 
of symbols, and check if they are valid. 

 i)  Either the eraser is white or oxygen is a metal. 
The eraser is black. 
Therefore, oxygen is a metal. 

 ii)  If madhu is a ‘sarpanch’, she will head the ‘panchayat’. 
 If Madhu heads the ‘panchayat’, she will decide on property disputes. 
 Therefore, if Madhu is a ‘sarpanch’, she will decide on property disputes. 
 iii) Either Munna will cook or Munni will practise Karate. 
 If Munni practices Karate, then Munna studies. 
 Munna does not study. 
     Therefore, Munni will practise Karate. 
 
E5) Write down one example each of modus ponens and modus tollens. 

As you must have discovered, the arguments in E4(i) and (ii) are valid. The first one is 
an example of a disjunctive syllogism. The second one is an example of a 
hypothetical syllogism.  
 
Thus, a disjunctive syllogism is of the form 
p ∨ q 

~ 
q
p    i.e., [(p ∨ q) ∧ ~p] ⇒ q. 

    
And, a hypothetical syllogism is of the form 
p → q 
q → r  ,      i.e., [(p → q) ∧ (q → r)] ⇒ (p → r). 
_____ 
 p → r 
 
Let us now see how different forms of arguments can be put together to prove or 
disprove a statement. 
 

2.3 DIFFERENT METHODS OF PROOF 

In this section we shall consider three different strategies for proving a statement.  We 
will also discuss a method that is used only for disproving a statement. 
 
Let us start with a proof strategy based on the first rule of inference that we discussed 
in the previous section. 
 
2.3.1 Direct Proof 

This form of proof is based entirely on modus ponens. Let us formally spell out the 
strategy. 
 
Definition: A direct proof of p ⇒ q is a logically valid argument that begins with 
the assumptions that p is true and, in one or more applications of the law of 
detachment, concludes that q must be true. 
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So, to construct a direct proof of p ⇒ q, we start by assuming that p is true. Then, in 
one or more steps of the form p ⇒ q1, q1⇒ q2, ……., qn ⇒ q, we conclude that q is 
true. Consider the following examples. 
 



 
Elementary Logic Example 2: Give a direct proof of the statement ‘The product of two odd integers is 

odd’. 
 
Solution: Let us clearly analyse what our hypotheses are, and what we have to prove. 
We start by considering any two odd integers x and y.  So our hypothesis is p: x and y 
are odd. 
 
The conclusion we want to reach is  
q : xy is odd. 
Let us first prove that p ⇒ q. 
Since x is odd, x = 2m + 1 for some integer m. 
Similarly, y = 2n + 1 for some integer n. 
Then xy = (2m + 1) (2n + 1) = 2(2mn + m + n) +1 
Therefore, xy is odd. 
So we have shown that p ⇒ q. 
 
Now we can apply modus ponens to p ∧ ( p ⇒ q) to get the required conclusion. 
 
Note that the essence of this direct proof lies in showing p ⇒ q. 
 
                                                    *** 
 
Example 3: Give a direct proof of the theorem ‘The square of an even integer is an 
even integer.’ 
 
Solution: First of all, let us write the given statement symbolically, as 
 (∀ x ∈ Z)(p(x) ⇒ q(x))  
where p(x) : x is even, and 
q(x) : x2 is even, i.e., q(x) is the same as p (x2 ). 
 
The direct proof, then goes as follows. 
 
Let x be an even number (i.e., we assume p(x) is true). 
Then x = 2n, for some integer n (we apply the definition of an even number). 
Then x2  = (2n)2 = 4n2 = 2(2n2). 
x2 is even (i.e., q (x) is true). 
 
                                                    *** 
 
Why don’t you try an exercise now? 
 

E6) Give a direct proof of the statement ‘If x is a real number such that x2 = 9, then 
either x=3 or x = -3. ‘. 

Let us now consider another proof strategy. 
 

2.3.2 Indirect Proofs 

In this sub-section we shall consider two roundabout methods for proving p ⇒ q. 
 
Proof by contrapositive: In the first method, we use the fact that the proposition p ⇒ 
q is logically equivalent to its contrapositive (~ q ⇒ ~ p), 
i.e., 

(p ⇒ q) ≡ ( ~ q ⇒ ~ p). 
For instance, ‘If Ammu does not agree with communalists, then she is not orthodox.’ 
is the same as ‘If Ammu is orthodox, then she agrees with communalists.’. 
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Methods of Proof Because of this equivalence, to prove p ⇒ q, we can, instead, prove ~ q ⇒ ~ p. This 

means that we can assume that ~ q is true, and then try to prove that ~ p is true. In 
other words, what we do to prove p ⇒ q in this method is to assume that q is false 
and then show that p is false.  Let us consider an example. 
 
Example 4: Prove that ‘If x, y ∈ Z such that xy is odd, then both x and y are odd.’, by 
proving its contrapositive. 
 
Solution: Let us name the statements involved as below. 
p : xy is odd  
q : both x and y are odd. 
So, 
~ p : xy is even, and 
~ q : x is even or y is even, or both are even. 
 
We want to prove p ⇒ q, by proving that ~ q ⇒ ~ p. So we start by assuming that ~ q 
is true, i.e., we suppose that x is even. 
 
The x = 2n for some n ∈ N. 
Therefore, xy = 2ny. 
Therefore xy is even, by definition. 
That is, ~ p is true. 
 
So, we have shown that ~ q ⇒ ~p. Therefore, p ⇒ q. 
 
Why don’t you ask your students to try some related exercises now? 
 

E7) Write down the contrapositive of the statement ‘If f is a 1-1 function from a 
finite set X into itself, then f must be subjective.’.  

E8) Prove the statement ‘If x is an integer and x2 is even, then x is also even.’ By 
proving its contrapositive. 

 
And now let us consider the other way of proving a statement indirectly. 

 
Proof by contradiction: In this method, to prove q is true, we start by assuming that 
q is false (i.e., ~ q is true). Then, by a logical argument we arrive at a situation where 
a statement is true as well as false, i.e., we reach a contradiction r ∧ ~ r for some 
statement that is always false. This can only happen when ~ q is false also. Therefore, 
q must be true. 

 
This method is called proof by contradiction. It is also called reductio ad absurdum 
(a Latin phrase) because it relies on reducing a given assumption to an absurdity. 

 
Let us consider an example of the use of this method. 
 
Example 5: Show that 5  is irrational. 

 
Solution: Let us try and prove the given statement by contradiction. For this, we 
begin by assuming that 5  is rational.  This means that there exist positive integers a 

and b such that 5  = 
b
a

, where a and b have no common factors. 

This implies a = 5 b ⇒ a2 = 5b2 ⇒ a5 2 ⇒ a5 . 

Therefore, by definition, a = 5c for some c ∈ Z.  
Therefore, a2  = 25c2. 
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Elementary Logic So 25c2 = 5b2 ⇒ 5c2 = b2 ⇒ b5 2 ⇒ b5 . 

 
But now we find that 5 divides both a and b, which contradicts our earlier assumption 
that a and b have no common factor. 
Therefore, we conclude that our assumption that 5  is rational is false, i.e, 5  is 
irrational. 

*** 
 
We can also use the method of contradiction to prove an implication r ⇒ s.  Here we 
can use the equivalence ~ (r → s) ≡ r ∧ ~ s.  So, to prove r ⇒ s, we can begin by 
assuming that r ⇒ s is false, i.e., r is true and s is false. Then we can present a valid 
argument to arrive at a contradiction. 
 

Consider the following example from plane geometry. 
 

Example 6: Prove the following: 
If two distinct lines L1 and L2 intersect, then their intersection consists of exactly one 
point. 
 

Solution: To prove the given implication by contradiction, let us begin by assuming 
that the two distinct lines L1 and L2 intersect in more than one point.  Let us call two 
of these distinct points A and B.  Then, both L1 and L2 contain A and B. This 
contradicts the axiom from geometry that says ‘Given two distinct points, there is 
exactly one line containing them.’. 
 

Therefore, if L1 and L2 intersect, then they must intersect in only one point. 
 

*** 
 
The contradiction rule is also used for solving many logical puzzles by discarding all 
solutions that educe to contradictions. Consider the following example. 
 

Example 7: There is a village that consists of two types of people – those who always 
tell the truth, and those who always lie. Suppose that you visit the village and two 
villagers A and B come up to you.  Further, suppose 
A says, “B always tells the truth,” and 
B says, “A and I are of opposite types”. 
What types are A and B ? 
 

Solution: Let us start by assuming A is a truth-teller. 
 ∴ What A says is true. 
 ∴ B is a truth-teller. 
 ∴ What B says is true. 
 ∴ A and B are of opposite types. 

 
This is a contradiction, because our premises say that A and B are both truth-tellers. 
 ∴ The assumption we started with is false. 
 ∴ A always tells lies. 
 ∴ What A has told you is lie. 
 ∴ B always tells lies. 
 ∴ A and B are of the same type, i.e., both of them always lie. 
                                                            

*** 
Here are a few exercises for you now.  While doing them you would realize that there 
are situations in which all the three methods of proof we have discussed so far can be 
used. 
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E9) Use the method of proof by contradiction to show that 
 ii) For x ∈ R, if x3 + 4x = 0, then x =0 
 
E10) Prove E 9(ii) directly as well as by the method of contrapositive. 
 
E11) Suppose you are visiting the village described in Example 7 above. Another 

two villagers C and D approach you. C tells you, “Both of us always tell the 
truth,” and D says,  “C always lies.” What types are C and D? 

There can be several 
ways of proving a 
statement. 

Let us now consider the problem of showing that a statement is false. 
 

2.3.3 Counterexamples 

Suppose I make the statement ‘All human beings are 5 feet tall.’. You are quite likely 
to show me an example of a human being standing nearby for whom the statement is 
not true. And, as you know, the moment we have even one example for which the 
statement (∀x)p(x) is false [i.e.,(∃x) (~p(x)) is true], then the statement is false. 
 

An example that shows that a statement is false is a counterexample to such a 
statement.  The name itself suggests that it is an example to counter a given statement. 
 

A common situation in which we look for counterexamples is to disprove statements 
of the form p → q needs to be an example where p ∧ ~ q.  Therefore, a 
counterexample to p → q needs to be an example where p ∧ ~ q is true, i.e., p is true 
and ~ q is true, i.e., the hypothesis p holds but the conclusion q does not hold. 
 

For instance, to disprove the statement ‘If n is an odd integer, then n is prime.’, we 
need to look for an odd integer which is not a prime number. 15 is one such integer.  
So, n = 15 is a counterexample to the given statement. 
  

Notice that a counterexample to a statement p proves that p is false, i.e., ~ p is true. 
 
Let us consider another example. 
 

Example 8: Disprove the following statement: 

(∀ a ∈ R) (∀ b ∈ R) [(a2 = b2 ) ⇒ (a =b)]. 
 

Solution:  A good way of disproving it is to look for a counterexample, that is, a pair 
of real numbers a and b for which a2 = b2 but a ≠ b. Can you think of such a 
pair? What about a = 1 and b = -1? They serve the purpose. 

 
In fact, there are infinitely many counterexamples. (Why?) 

 
*** 

Now, an exercise! 
 

E12) Disprove the following statements by providing a suitable counterexample. 
 i) ∀ x ∈ Z, x ∈Q \ N. 
 ii) (x+y)n = xn + yn ∀ n ∈ N, x, y ∈ Z. 
 iii) f : N → N is 1-1 iff f is onto. 
 (Hint: To disprove p ⇔ q it is enough to prove that p ⇔ q is false or q ⇒ p is 
 false.) 

There are some other strategies of proof, like a constructive proof, which you must 
have come across in other mathematics courses.  We shall not discuss this method 
here. 
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Elementary Logic Other proof-related adjectives that you will come across are vacuous and trivial. 

 
A vacuous proof make use of the fact that if p is false, the p → q is true, regardless of 
the truth value of q. So, to vacuously prove p → q, all we need to do is to show that p 
is false. For instance, suppose we want to prove that ‘If n > n + 1 for n ∈ Z, then n2  = 
0.’.   
 
Since ‘n . n + 1’ is false for every n ∈ Z, the given statement is vacuously true, or true 
by default. 
 
Similarly, a trivial proof of p → q is one based on the fact that if q is true, then p → q 
is true, regardless of the truth value of p.  So, for example, ‘If n > n + 1 for n ∈ Z, 
then n + 1 > n’ is trivially true since n + 1 > n ∀ n ∈ Z. The truth value of the 
hypothesis (which is false in this example) does not come into the picture at all. 
 
Here’s a chance for you to think up such proofs now! 
 

E13) Give one example each of a vacuous proof and trivial proof. 
 
And now let us study a very important technique of proof for statements that are of the 
form p(n), n ∈ N. 
 

2.4 PRINCIPLE OF INDUCTION 

In a discussion with some students the other day, of them told me very cynically that 
all Indian politicians are corrupt. I asked him how he had reached such a conclusion.  
As an argument he gave me instances of several politicians, all of whom were known 
to be corrupt. What he had done was to formulate his general opinion of politicians on 
the basis of several particular instances. This is an example of inductive logic, a 
process of reasoning by which general rules are discovered by the observation of 
several individual cases. Inductive reasoning is used in all the sciences, including 
mathematics.  But in mathematics we use a more precise form. 
 
Precision is required in mathematical induction because, as you know, a statement of 
the form (∀ n ∈N)p(n) is true only if it can be shown to be true for each n in N. (In the 
example above, even if the student is given an example of one clean politician, he is 
not likely to change his general opinion.) 
 
How can we make sure that our statement p(n) is true for each n that we are interested 
in?  To answer this, let us consider an example. 

Suppose we want to prove that 1+2+3+……+n = 2
)1( +nn

 for each n ∈ N.  Let  us 

call p(n) the predicate ‘1+2+…+n =  2
)1( +nn

. Now, we can verify that it is true for a 

few values, say, n = 1, n = 5, n = 10, n = 100, and so on.  But we still can’t be sure 
that it will be true for some value of n that we haven’t tried. 
 
But now, suppose we can show that if p(n) is true for some n,n = k say, then it will be 
true for n = k + 1. Then we are in a very good position because we already know that 
p(1) is true. And, since p(1) is true, so is p(1+1), i.e., p(2), and so on. In this way we 
can show that p(n) is true for every n ε N. So, our proof boils down to two steps, 
namely, 
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Methods of Proof ii) Proving that whenever p(k) is true, then p(k+1) is true, where k ∈ N. 

 
This is the principle that we will now state formally, in a more general form.  
       
Principle of Mathematical Induction (PMI): Let p(n) be a predicate involving a 
natural number n. Suppose the following two conditions hold: 

i) p(m) is true for some m ε N; 
ii) If p(k) is true, then p(k+1) is true, where k(≥m) is any natural number. 
 
Then p(n) is true for every n ≥ m. 
 
Looking at the two conditions in the principle, can you make out why it works? 
(As a hint, put m = 1 in our example above.) 
 
Well, (i) tells us that p(m) is true. Then putting k = m in (ii), we find that p(m + 1) is 
true.  Again, since p(m+1) is true, p(m+2) is true, and so on. 
 
Going back to the example above, let us complete the second step. We know that p(k) 

is true, i.e.,1 + 2+…+k =
2

)1( +kk
. We want to check if p( k + 1) is true. So let us find 

1 + 2+… + (k + 1) =    (1+2+…+k) + (k+1) 

   =      
2

)1( +kk
 + ( k + 1), since p(k) is true 

   =      
2

)2)(1( ++ kk
 

So, p( k + 1) is true. 
 
And so, by the principle of mathematical induction, we know that p(n) is true for 
every n ∈ N.  
 
What does this principle really say? It says that if you can walk a few steps, say m 
steps, and if at each stage you can walk one more step, then you can walk and 
distance. It sounds very simple, but you may be surprised to know that the technique 
in this principle was first used by Europeans only as late as the 16th century by the 
Venetian F. Maurocylus (1494-1573). He used it to show that 1+3+ … +(2n – 1) = n2. 
Pierre de Fermat (1601 – 1665) improved on the technique and proved that this 
principle is equivalent to the following often-used principle of mathematics. 
 
The Well-ordering Principle: Any non-empty subset of N contains a smallest element. 
 
You may be able to see the relationship between the two principles if we reword the 
PMI in the following form. 
 
Principle of Mathematical Induction (Equivalent form): Let S ⊆ N be such that 

The term ‘mathematical 
induction’ was first used by 
De Morgan. 

i) m ∈ S 
ii) For each k ∈ N, k ≥ m, the following implication is true: K ∈ S ⇒ k  1 ∈ S. 

         Then S = {m,m + 1, m + 2, …}. 
 

Can you see the equivalence of the two forms of the PMI? If you take  
S = { n ∈ N  p(n) is true } then you can see that the way we have written the 
principle above is a mere rewrite of the earlier form. 
 
Now, let us consider an example of proof using PMI. 
 
Example 9: Use mathematical induction to prove that 
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   12 + 22 + 32 + … + n2 = 
6
n

 (n + 1) (2n + 1) ∀ n ∈ N. 
Note that p(n) is a 
predicate, not a 
statement, unless we 
know the value of n. 

Solution: We call p(n) the predicate 

 12 + 22 + 32 + … + n2 = 
6
n

 (n + 1) (2n + 1). 

Since we want to prove it for every n ∈ N, we take m = 1. 
 

Step 1:   p(1) is 12 = 
6
1

 ( 1 + 1) ( 2 + 1), which is true 

Step 2:   Suppose for an arbitrary k ∈ N, p(k) is true, i.e., 

               12 + 22 + …+ k2 = 
6
k

(k + 1) (2k + 1) is true. 

Step 3:   To check if the assumption in step 2 implies that p(k + 1) is true. Let’s see. 

   P(k + 1) is 12 + 22 + …+ k2  + (k + 1)2  = 
6

1+k
 (k + 2) (2k + 3) 

 ⇔ (12 + 22 + …+ k2) + (k + 1)2    
6

1+k
(k + 2)  (2k + 3) 

 ⇔ 
6
k

(k + 1) (2k + 1) + (k + 1)2 = 
6

1+k
 (k + 2) (2k + 3), 

     since p(k) is true. 

 ⇔ 
6

1+k
[k(2k + 1) + 6(k + 1)] = 

6
1+k

 (k + 2) (2k + 3) 

 ⇔ 2k2  + 7k + 6 = (k + 2) (2k + 3), dividing throughout by 
6

1+k
, 

                which is true. 
                So, p(k) is true implies that p(k + 1) is true. 
 
So, both the conditions of the principle of mathematical induction hold. Therefore, its 
conclusion must hold, i.e., p(n) is true for every n ε N. 
 

*** 
 
Have you gone through Example 9 carefully? If so, you would have noticed that the 
proof consists of three steps: 
 
Step 1:   (called the basis of induction): Checking if p(m) is true for some m ∈ N. 
Step 2:   (called the induction hypothesis): Assuming that p(k) is true for an arbitrary 
  k ∈ N, k ≥ m. 
Step 3:   (called the induction step): Showing that p(k + 1) is true, by a direct or an 
  indirect proof. 
 
Now let us consider an example in which m ≠ 1. 
 
Example 10: Show that 2n  > n3 for ≥ 10. 
 
Solution: We write p(n) for the predicate ‘2n > n3’. 
 
Step 1: For n = 10, 210 =1024, which is greater that 103. Therefore, p(10) is true. 
Step 2: We assume that p(k) is true for an arbitrary k ≥ 10. Thus, 2k > k3.  
Step 3: Now, we want to prove that 2k+1 > (k + 1)3 . 

 2k+1 = 2.2k > 2.k3 , by our assumption 

                       > ( 1 + 
10
1

)3 .k3, since 2 > ( 1 + 
10
1

)3 
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 ≥ (1 + 
k
1

)3  .k3, since ≥ 10 

 = (k + 1)3.  
 
Thus, p(k + 1) is true if p(k) is true for k≥ 10. 
 
Therefore by the principle of mathematical induction, p(n) is true ∀ n ≥ 10. 

 
*** 

 
Why don’t you try to apply the principle now? 
 

E14) Use mathematical induction to prove that 

 1 + 
4
1

 + 
9
1

+ …+ 2

1
n

 ≤ 2 - 
n
1
∀ n ∈ N. 

E15) Show that for any integer n > 1, 
1

1
+ 

2
1

+… +
n

1
 > n . 

 (Hint:  The basis of induction is p(2).). 
 
Before going further a note of warning!  To prove that p(n) is true ∀ n ≥ m, both the 
basis of induction as well as the induction step must hold. If even one of these 
conditions does not hold, we cannot arrive at the conclusion that p(n) is true ∀ n ≥ m. 
 
For example, suppose p(n) is (x + y)n ≤ xn+yn  ∀ x,y ∈ R. Then p(1) is true. But Steps 
2 and 3 do not hold. Therefore, p(n) is not true for every n ∈ N. (Can you find a value 
of n for which p(n) is false?) 
 
As another example, take p(n) to be the statement ‘ 1 + 2 + … +n < n’.  Then, if p(k) 
is true, so is p(k + 1) (prove it!).  But the basis step does not hold for any m ∈ N.  
And, as you can see, p(n) is false. 
 
Now let us look at a situation in which we may expect the principle of induction to 
work, but it doesn’t. Consider the sequence of numbers 1,1,2,3,5,8,…. These are the 
Fibonacci numbers, named after the Italian mathematician Fibonacci. Each term in 
the sequence, from the third on, is obtained by Fibonacci. Each term in the sequence, 
from the third term on, is obtained by adding the previous 2 terms. So, if an is the nth 
term, then a1 = 1, a2 = 1, and an = an-1 + an-2 ∀ n≥ 3. 
 
Suppose we want to show that an < 2n ∀ n ∈ N using the  PMI.  Then, if p(n) is the 
predicate an< 2n , we know that p(1) is true.  
 
Now suppose we know that p(k) is true for an arbitrary k ∈ N, i.e., ak < 2k. We want to 
show that  ak+1 < 2k+1, i.e., ak + ak-1 < 2k+1. But we don’t know anything about ak-1 . So 
how can we apply the principle of induction in the form that we have stated it? In such 
a situation, a stronger, more powerful, version of the principle of induction comes in 
handy. Let’s see what this is. 
 
Principle of Strong Mathematical Induction: Let p(n) be a predicate that involves a 
natural number n. Suppose we can show that 

i) p(m) is true for some m ∈ N, and 
ii) Whenever p(m), p(m +1), …, p(k) are true, then p(k + 1) is true, where  

 k ≥ m. 
 
Then we can conclude that p(n) is true for all natural numbers n ≥ m. 
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induction step we are making more assumptions, i.e., that p(n) is true for every n lying 
between m and k, not just that p(k) is true. 

 
Let us now go back to the fibonacci sequence. To use the strong form of the PMI, we 
take m = 1. We have seen that p(1) is true. We also need to see if p(2) is true.  This is 
because we have to use the relation an = an-1 + an-2, which is valid for n ≥ 3.  

 
Now that we know that both p(1) and p(2) are true, let us go the next step.  In step 2, 
for an arbitrary k≥ 2, we assume that p(n) is true for every n such that  1 ≤ n ≤ k, i.e., 
an < 2n for 1 ≤ n ≤ k.  

In using the strong 
form we often need to 
check Step 1 for more 
than one value of n. 

 
Finally, in Step 3, we must show that p( K + 1) is true, i.e., ak+1 < 2 k+1. Now 
 

 ak+1  =  ak 
 <   2k + 2k-1, by our assumption in Step 2. 
 =  2k-1 ( 2 + 1) 
 < 2k-1 .22  
  =  2k+1 
  P(k + 1) is true. 
  P(n) is true ∀ n ∈ N. 

 
Though the “strong” form of the PMI appears to be different from the “weak” from, 
the two are actually equivalent.  This is because each can be obtained from the other.  
So, we can use either form of mathematical induction.  In a given problem we use the 
form that is more suitable. For instance, in the following example, as in the case of the 
one above, you would agree that it is better to use the strong form of the PMI. 
 
Example 11: Use induction to prove that any integer n ≥ 2 is either a prime or a 
product of primes. 
 
Solution: Here p(n) is the predicate ‘n is a prime or n is a product of primes.’. 
 
Step 1: (basis of induction) : since 2 is a prime, p(2) is true. 
Step 2: (induction hypothesis):  Assume that p(n) is true for any integer n such that 

2 ≤ n ≤ k, i.e., p(3), p(4),…, p(k) are true. 
Step 3: (induction step): Now consider p(k +1). If k + 1 is a prime, then p(k + 1) is 

true. If k + 1 is not a prime, then k + 1 = rs, where 2 ≤ r ≤ k and 2 ≤ s ≤ k. 
But, by our induction hypothesis, p(r) is true and p(s) is true. Therefore, r 
and s are either primes or products of primes. And therefore, k + 1 is a 
product of primes. So, p(k + 1) is true. 

 
Therefore, p(n) is true ∀ n ≥ 2. 

*** 
 
Why don’t you try some exercises now? 
 

E16)   If a1, a2, … are the terms in the Fibonacci sequence, use the weak as well as 
 the strong forms of the principle of mathematical induction to show that  

 an >  
2
3
∀n ≥ 3.  Which form did you find more convenient? 

 
E17)   Consider the following “proof” by induction of the statement. ‘Any n marbles 

 are of the same size.’, and say why it is wrong. 
Basis of induction : For n = 1, the statement is clearly true. 
Induction hypothesis: Assume that the statement is true for n = k. 
 Induction step: Now consider any k + 1 marbles 1,2, …, k + 1. By the 
 induction hypothesis the k marbles 2,3,…,k + 1 are of the same size. 
 Therefore, all the k + 1 marbles are of the same size.Therefore, the given 
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E18) Prove that the following result is equivalent to the principle of mathematical 

induction (strong form): 
 Let S ⊆ N such that 

i) m ∈ S 
ii) If m, m + 1, m + 2, …, k are in S, then k + 1 ∈ S. 
Then S = {n ∈ N n ≥ m}. 

 

E19) To prove that n
i

n

i
21

1

≤∑
=

-1 ∀ n ∈ N, which form of the principle of 

 mathematical induction would you use, and why?  Also, prove the inequality. 
 

With this we come the end of our discussion on various techniques of proving of 
disproving mathematical statements.  Let us take a brief look at what you have read in 
this unit. 
 

2.5 SUMMARY 

In this unit, you have studied the following points. 

1. What constitutes a proof of a mathematical statement, including 4 commonly used 
rules of inference, namely, 

i) law of detachment (or modus ponen) : [(p → q) ∧p] ⇒ q 
ii) law of contraposition (or modus tollens) : [(p → q) ∧ ~ q] ⇒ ~ p 
iii) disjunctive syllogism : [(p → q) ∧ (q → r)] ⇒ (p → r) 

 
2. The description and examples of a direct proof, which is based on modus ponens. 
 
3. Two types of indirect proofs : proof by contrapositive and proof by 
 contradiction. 
 
4. The use of counterexamples for disproving a statement. 
 
5. The “strong” and “weak” forms of the principle of mathematical induction, and 

their equivalence with the well-ordering principle. 
 

2.6 SOLUTIONS/ ANSWERS 

E1) For example, 
 
  Theorem: (x + y)2= x2+ 2xy + y2 for x, y ∈ R. 
 
  Proof: for x, y ∈ R, (x + y)2 = ( x + y) ( x + y) (by definition of ‘square’) 

 (x + y) ( x+ y) = x(x +y) + y( x + y) (by distributivity, and by definition of 
 addition and multiplication of algebraic terms). 

 
 Therefore, (x + y)2 = x2 + 2xy + y2 (using an earlier proved statement that a =b 
 and b = c implies that a = c). 
 
E2) No, not unless it has been proved to be true 
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E3)                                                                   premises             conclusion 
                                                                               ↓                          ↓ 

p q r ~ r q ∨ ~ r p → q ∨ ~ r q → p p → r 
T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

F 
T 
F 
T 
F 
T 
F 
T 

T 
T 
F 
T 
T 
T 
F 
T 

T 
T 
F 
T 
T 
T 
T 
T 

T 
T 
T 
T 
F 
F 
T 
T 

T 
F 
T 
F 
T 
T 
T 
T 

 
The premises are true in Rows 1, 2, 4, 7, 8. So, the argument will be valid if the 
conclusion is also true in these rows. But this does not happen in Row 2, for instance. 
Therefore, the argument is invalid. 
 
E4) i) Let p : The eraser is white, 
 q : Oxygen is a metal. 
 Then the argument is  
 p ∨ q 

 ~ 
q

 
p

 Its truth table is given below. 
 
conclusion     premises 

        ↓                  ↓ 
 

 
 
 
 
 

p q ~ p p∨ q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

T 
T 
T 
F 

All the premises are true only in the third row. Since the conclusion in this row is also 
true, the argument is valid. 

 
ii) The argument is ( p → q) ∧ (q → r) ⇒  (p → r) 

where p: Madhu is a ‘sarpanch’, 
q : Madhu heads the ‘Panchayat’. 
r : Madhu decides on property disputes. 
This is valid because, whenever both the premises are true, so is the conclusion 
(see the following table.) 

 
                               premises     conclusion 
                                          ↓       ↓             ↓   
                     P q r p → q q → r p → r 

T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

T 
T 
F 
F 
T 
T 
T 
T 

T 
F 
T 
T 
T 
F 
T 
T 

T 
F 
T 
F 
T 
T 
T 
T 
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Methods of Proof iii) The argument is [(p ∨ q) ∧ (q → r) ∧ ~ r] ⇒ q 

 Where p: Munna will cook. 
 q: Munni will practise Karate. 
 r: Munna studies. 
 
 This is not valid, as you can see from Row 4 of the following truth table. 

 
   conclusion              premises 

↓ ↓                 
↓  

p Q r ~ r p ∨ q Q → r 
T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

F 
T 
F 
T 
F 
T 
F 
T 

T 
T 
T 
T 
T 
T 
F 
F 

T 
F 
T 
T 
T 
F 
T 
T 

 
 
 
                         
 
 
 
 
 
 

 
E5) We need to prove p ⇒ q, where 
 p: x ∈ R such that x2 = 9, and 
 q: x = 3 or x = -3. 

 Now, x2 = 9 ⇒ 2x = ± 9 ⇒ x = ±3. 
  
 Therefore, p is true and (p ⇒ q) is true, allows us to conclude that q is        
          True. 
 
E6) If f is not surjective, then f is not a 1-1 function from X into itself. 
 
E7) We want to prove ~ q ⇒ ~ p, where 
 p: x ∈ Z such that x2 is even, 
 q: x is even. 
 Now, we start by assuming that q is false, i.e., x is odd. 
 Then x = 2m + 1 for some m ∈ Z. 
 Therefore, x2 = 4m2 + 4m + 1 = 2(2m2 + 2m) + 1 
 Therefore,  x2 is odd, i.e., p is false. 
 Thus, ~ q ⇒ ~ p, and hence, p ⇒ q. 
 
E8) i) This is on the lines of Example 5. 
 ii) Let us assume that x3 + 4x = 0 and x≠ 0. Then x(x2 + 4) = 0 

and x ≠ 0. Therefore, x2 + 4 = 0, i.e., x2 = -4. But x ∈ R and x2 = -4 is a 
contradiction. Therefore, our assumption is false. Therefore, the given 
statement is true. 

 
E9) Direct proof: x3 + 4x = 0 ⇒ x(x2 + 4) = 0 
 ⇒ x = 0 or x2 + 4 = 0 
 ⇒ x = 0, since x2 ≠ -4 ∀ x ∈ R. 
 Proof by contrapositive: Suppose x ≠ 0.  Then x(x2 + 4) ≠ 0 for any  
          x ∈ R.  
 x3 + 4x ≠ 0 for every x ∈ R. 
 So we have proved that ‘For x ∈ R, x ≠ 0 ⇒ x3 + 4x ≠ 0.’. 
 That is, ‘For x ∈ R, x3  4x = 0 ⇒ x =0.’. 
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Elementary Logic E10) Suppose C tells the truth. Therefore, D always tells the truth. Therefore, C 

always lies, which is a contradiction. Therefore, C can’t be a truth-teller, i.e.,  C 
is a liar. Therefore, D is a truth-teller. 

 
E11) i) What about x = 1? 
  
 ii) Take n= 2, x = 1 and y = -1, for instance. 

  
 iii) Here we can find an example f such that f is 1-1 but not onto, or such that 
 f is onto but not 1-1. 

 Consider f: N → N : (f(x) = x + 10. Show that this is 1-1, but not surjective. 
 
E12) i)  Theorem: The area of every equilateral triangle of side a and perimeter 
  2a is divisible by 3. 

 
 Proof: Since there is no equilateral triangle that satisfies the hypothesis, the 

proposition is vacuously true. 
 
 ii) Theorem: If a natural number c is divisible by 5, then the perimeter of 

 the equilateral triangle of side c is 3c. 
 
Proof: Since the conclusion is always true, the proposition is trivially true. 

 
E13) Let p(n) be the given predicate. 
 

 Step 1: p(1) : 1≤2 –1, which is true. 
 
Step 2: Assume that p(k) is true for some k ≥ 1, i.e., assume that 1 +  

                        
4
1

 + … + 2

1
k

 ≤ 2 - 
k
1

. 

 
 Step 3: To show that p(k + 1) is true, consider 

  1 + 
4
1

 + … + 2

1
k

 + 2)1(
1
+k

 = ( 1 + 
4
1

 + … + 2

1
k

) + 2)1(
1
+k

 

                                                    ≤ (2 - 
k
1

) + 2)1(
1
+k

, by step 2. 

 Now,  (2 -
k
1

) + 2)1(
1
+k

 ≤ 2 - 
)1(

1
+k

 

 iff 2)1(
1
+k

 ≤ 
k
1

- 
)1(

1
+k

 

 iff k ≤ k + 1, which is true. 

 Therefore, (2 -
)1(

12
)1(

1)1
2 +

−≤
+

+
kkk

 

 
 Therefore, p(k + 1) is true. 
 Thus, by the PMI, p(n) is true ∀ n ∈ N. 
 

E14) p(2) : ,2
2

1
1

1
>+  which is true. 

 Now, assume that p(k) is true for some k ≥ 2. Then 
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 ,
1

1
1

11...
2

1
1

1
+

+>
+

++++
k

k
kk

 since p(k) is true. 

                           = 1
1

)1(
+

+

+

k
kk

 

               > ,1+k  since kk >+1 . 
 Hence p(k + 1) is true. 
 P(n) is true ∀ n ≥ 2. 
 
E15) We shall apply the strong form of the PMI here. 

 Let p(n) : an > 
2
3

. 

  
 Step 1: p(3) and p(4) are true. 

 
Step 2: Assume now that for k ∈ N, ≥ 3, p(n) is true for every n such that 3 ≤ n 
≤ k. 
 
Step 3: We want to show that p(k + 1) is true. Now 

 ak+1 = ak + ak-1 > 
2
3

2
3
+ , by step 2 

                                     >
2
3

. 

             p(k + 1) is true.  
 Thus, p(n) is true ∀ n ≥ 3. 
 

In this case, you will be able to use the weak form conveniently too since  

ak > 
2
3

 is enough for showing that p(k + 1) is true. 

 
Thus, in this case the weak form is more appropriate since fewer 
assumptions give you the same result. 

 
E16)  The problem is at the induction step. The first marble may be a different size 

from the other k marbles. So, we have not shown that p(k+1) is true whenever 
p(k) is true. 

 
E17)  With reference to the statement of the strong form of the PMI, let  

S = { n ∈ N  p(n) is true }. 
Then you can show how the form in this problem is the same as the statement 
of the strong form of the PMI. 

 

E18) Let p(n) : .121
−≤

=

n
i

n

ii
∑  

 
The weak form suffices here, since the assumption that p(k) is true is enough to 
prove that p(k + 1) is true.  We don’t need to assume that p(1), p(2),…,p(k – 1) 
are also true to show that p(k + 1) is true.  Let’s prove that p(n) is true ∀ n ∈ N. 

 
Now, p(1) : 1 ≤ 2 – 1, which is true. 
Next, assume that p(k) is true for some  k ∈ N. 
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Then ,

1
1)12(

1
11...

2
1

1
1

+
+−≤

+
++++

k
k

kk
 since p(k) is true. 

Now 2 112
1

11 −+≤
+

+− k
k

k  

 

⇔ 2( 
1

1)1
+

≥−+
k

kk  

⇔ 2( k + 1 - 1)1( ≥+kk  
⇔ 1 ≥ 0, which is true. 

        
 p(k + 1) is true. 
        
 p(n) is true ∀ n ∈ N. 
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UNIT 3 BOOLEAN ALGEBRA AND CIRCUITS 

Structure         

3.0 Introduction    
3.1 Objectives  
3.2  Boolean Algebras   
3.3  Logic Circuits    
3.4  Boolean Functions  
3.5  Summary  
3.6 Solutions/ Answers 
 
3.0 INTRODUCTION 

This unit is very closely linked with Unit 1. It was C.E.Shannon, the founder of 
information theory, who observed an analogy between the functioning of switching 
circuits and certain operations of logical connectives. In 1938 he gave a technique 
based on this analogy to express and manipulate simple switching circuits 
algebraically. Later, the discovery of some new solid state devices (called electronic 
switches or logic gates) helped to modify these algebraic techniques and, thereby, 
paved a way to solve numerous problems related to digital systems algebraically.  

          Fig. 1: Claude Shannon
In this unit, we shall discuss the symbolic logic techniques which are required for the 
algebraic understanding of circuits and computer logic. In Sec. 3.2, we shall introduce 
you to Boolean algebras with the help of certain examples based on objects you are 
already familiar with. You will see that such algebras are apt for describing operations 
of logical circuits used in computers. 
  
In Sec. 3.3, we have discussed the linkages between Boolean expressions and logic 
circuits.  
 
In Sec. 3.4, you will read about how to express the overall functioning of a circuit 
mathematically in terms of certain suitably defined functions called Boolean 
functions. In this section we shall also consider a simple circuit design problem to 
illustrate the applications of the relationship between Boolean functions and circuits.  
 
Let us now consider the objectives of this unit.  
 

3.1 OBJECTIVES 

After reading this unit, you should be able to: 

• define and give examples of Boolean algebras, expressions and functions;  
• give algebraic representations of the functioning of logic gates;  
• obtain and simplify the Boolean expression representing a circuit;  
• construct a circuit for a Boolean expression; 
• design and simplify some simple circuits using Boolean algebra techniques. 
 

3.2 BOOLEAN ALGEBRAS  

Let us start with some questions: Is it possible to design an electric/electronic circuit 
without actually using switches(or logic gates) and wires? Can a circuit be redesigned, 
to get a simpler circuit with the help of pen and paper only?  
 
The answer to both these questions is `Yes'. What allows us to give this reply is the 
concept of Boolean algebras. Before we start a formal discussion on these types of 
algebras, let us take another look at the objects treated in Unit 1.  
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Elementary Logic As before, let the letters p, q, r,. . . denote statements (or propositions). We write S for 
the set of all propositions. As you may recall, a tautology T (or a contradiction F ) is 
any proposition which is always true (or always false, respectively). By abuse of 
notation, we shall let T denote the set of all tautologies and F denote the set of all 
contradictions. Thus,  

T  ≤ S, F  ≤ S.  
 
You already know from Unit 1 that, given two propositions p and q, both p ^ q and p v 
q are again propositions. And so, by the definition of a binary operation, you can see 
that both ∧ (conjunction) and  ∨ (disjunction) are binary operations on the set S, 
where we are writing ∧ (p, q) as p ∧ q and v (p, q) as p ∨ q ∀ p, q ∈ S.  
 
Again, since ~ p is also a proposition, the operation ~ (negation) defines a unary 
function ~: S → S. Thus, the set of propositions S, with these operations, acquires an 
algebraic structure.  
 
As is clear from Sec.1.3, under these three operations, the elements of S satisfy  
associative laws, commutative laws, distributive laws and complementation laws.  
 
Also, by E19 of Unit 1, you know that p ∨ F  = p and p ∧ T  = p, for any proposition p. 
These are called the identity laws. The set S with the three operations and properties 
listed above is a particular case of an algebraic structure which we shall now define.  In the NCERT textbook, ‘+’ 

and ‘.’ are used instead of 
‘∨’  and ‘∧’ , respectively.  

Definition: A Boolean algebra B is an algebraic structure which consists of a set X 
(≠ Ø) having two binary operations (denoted by ∨ and ∧), one unary operation 
(denoted by ' ) and two specially defined elements O and I (say), which satisfy the 
following five laws for all x, y, z ∈ X.  
 
B1. Associative Laws:   x ∨ (y ∨ z) = (x ∨ y) ∨ z,  
     x ∧ (y ∧ z) = (x ∧ y) ∧ z  

 
B2. Commutative Laws:  x ∨ y = y ∨ x,  
     x ∧ y = y ∧ x  

 
B3. Distributive Laws:              x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),  
     x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)  

 
B4. Identity Laws:                     x ∨ O = x,  
                                                     x ∧ I = x  
 
B5. Complementation Laws:    x ∧ x' = O,  
     x ∨ x'= I.  
 
We write this algebraic structure as B = (X, ∨, ∧, ' , O, I), or simply B, if the context 
makes the meaning of the other terms clear. The two operations ∨ and ∧ are called the 
join operation and meet operation, respectively. The unary operation ' is called the 
complementation. 
 
From our discussion preceding the definition above, you would agree that the set S of 
propositions is a Boolean algebra, where T and F  will do the job of  I and O, 
respectively. Thus, (S, ∧, ∨, ~, F , T ) is an example of a Boolean algebra. 
  
We give another example of a Boolean algebra below.  
 
Example 1: Let X be a non-empty set, and P (X) denote its power set, i.e., P (X) is the 
set consisting of all the subsets of the set X. Show that P (X) is a Boolean algebra.  
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Circuits Solution: We take the usual set-theoretic operations of intersection (∩), union (∪), 

and complementation ( c ) in P (X) as the three required operations. Let ø and X play 
the roles of O and I, respectively. Then you can verify that all the conditions for (P 

(X), ∪, ∩, c , Φ, X) to be a Boolean algebra hold good. 
 
For instance, the identity laws (B4) follow from two set-theoretic facts, namely, `the 
intersection of any subset with the whole set is the set itself' and `the union of any set 
with the empty set is the set itself'. On the other hand, the complementation laws (B5) 
follow from another set of facts from set theory, namely, `the intersection of any 
subset with its complement is the empty set' and `the union of any set with its 
complement is the whole set'.  

*** 
Yet another example of a Boolean algebra is based on switching circuits. For this, we 
first need to elaborate on the functioning of ordinary switches in a mathematical way. 
In fact, we will present the basic idea which helped the American, C.E.Shannon, to 
detect the connection between the functioning of switches and Boole's symbolic logic.  
 
You may be aware of the functioning of a simple on-off switch which is commonly 
used as an essential component in the electric (or electronic) networking systems. A 
switch is a device which allows the current to flow only when it is placed in the ON 
position, i.e., when the gap is closed by a conducting rod. Thus, the ON position of a 
switch is one state of a switch, called a closed state. The other state of a switch is the 
open state, when it is placed in the OFF position. So, a switch has two stable states. 

 x= 1

x= 0
Fig. 2: OFF-ON position 

There is another way to talk about the functioning of a switch. We can denote a switch 
by x, and use the values 0 and 1 to depict its two states, i.e., to convey that x is open 
we write x = 0, and to convey that x is closed we write x = 1 (see Fig.2).  
 
These values which denote the state of a switch x are called the state-values  
(s.v., in short) of that switch.  
 
We shall also write x′ for a switch which is always in a state opposite to x. So that,  

x is open → x' is closed and x is closed → x' is open.  
 

Table 1: s.v. of x' The switch x' is called the invert of the switch x. For example, the switch a' shown in 
Fig.3 is an invert of the switch a. x x' 

0 
1 

1 
0 

  
Table 1 alongside gives the state value of x' for a given state value of the switch x. 
These values are derived from the definition of x' and our preceding discussion. 
 

a b

a' b

 
 
  
 

Fig. 3: a` is the invert of a. 
 
Note that the variable x that denotes a switch can only take on 2 values, 0 and 1. Such 
a variable (which can only take on two values) is called a Boolean variable. Thus, if 
x is a Boolean variable, so is x'. Now, in order to design a circuit consisting of several 
switches, there are two ways in which two switches can be connected: parallel 
connections and series connections (see Fig.4).  

Do you see a connection 
between Table 1 above and 
Table 10, Unit 1 ? 

  a 

b 

 
 a b
 
 
 (i) Parallel Connection   (ii) Series Connection 
 

Fig. 4: Two ways of connecting switches 
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Elementary Logic From Fig.4(i) above, you can see that in case of a parallel connection of switches a 
and b (say), current will flow from the left to the right extreme if at least one of the 
two switches is closed. Note that ‘parallel’ does not mean that both the switches are in 
the same state.  
 
On the other hand, current can flow in a series connection of switches only when both 
the switches a and b are closed (see Fig.4 (ii) ).  
 
Given two switches a and b, we write a par b and a ser b for these two types of  
connections, respectively.  
 
In view of these definitions and the preceding discussion, you can see that the state 
values of the connections a par b and a ser b, for different pairs of state values of 
switches a and b, are as given in the tables below.  

 
Table 2: State values of a par b and a ser b. 

 
 

 
 
 
 

 

s.v. 
of a 

s.v. 
of b 

s.v. of 
a par b 

0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
1 

s.v. 
of a 

s.v. 
of b 

s.v. of 
a ser b 

0 
0 
1 
1 

0 
1 
0 
1 

0 
0 
0 
1 

We have now developed a sufficient background to give you the example of a  
Boolean algebra which is based on switching circuits.  
 
Example 2: The set S = {0, 1} is a Boolean algebra.  
 
Solution: Take ser and par in place of ∧and ∨, respectively, and inversion( ' )  
instead of ~ as the three required operations in the definition of a Boolean algebra,. 
Also take 0 for the element O and 1 for the element I in this definition.  
Now, using Tables 1 and 2, you can check that the five laws B1-B5 hold good. Thus, 
(S, par, ser,', 0, 1) is a Boolean algebra.  

*** 
A Boolean algebra whose underlying set has only two elements is very important in 
the study of circuits. We call such an algebra a two-element Boolean algebra, and 
denote it by B. From this Boolean algebra we can build many more, as in the 
following example. 
  
Example 3: Let Bn = B × B × · · · × B = {(e1 , e2 , . . . , e n ) | each ei = 0 or 1}, for n ≥1, 
be the Cartesian product of n copies of B. For ik , jk ∈ {0, 1} (1 ≤ k ≤ n), define 
  

(i1 , i2 , . . . , in ) ∧ (j1 , j2 , . . . , jn )  =  (i1 ∧ j1 , i2 ∧ j2 , . . . , in ∧ jn ) ,  
(i1 , i2 , . . . , in ) ∨ (j1 , j2 , . . . , jn )  =  (i1 ∨ j1 , i 2 ∨ j2 , . . . , in ∨ jn ) , and  

 (i1 , i2 , . . . , in )' =  (i'1 , i'2 , . . . , i' n ) .  
 
Then Bn is a Boolean algebra, for all n ≥ 1. 
  
Solution: Firstly, observe that the case n = 1 is the Boolean algebra B.  
Now, let us write 0 = (0, 0, . . . , 0) and I = (1, 1, . . . , 1), for the two elements of Bn 
consisting of n-tuples of 0's and 1's, respectively. Using the fact that B is a Boolean 
algebra, you can check that Bn , with operations as defined above, is a Boolean algebra 
for every n ≥1.  

*** 
 
The Boolean algebras Bn , n ≥ 1, (called switching algebras) are very useful for the 
study of the hardware and software of digital computers.  
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We shall now state, without proof, some other properties of Boolean algebras, which 
can be deduced from the five laws (B1-B5).  
 
Theorem 1: Let B  = (S, ∨, ∧,  ٰ, O, I) be a Boolean algebra. Then the following laws 
hold ∀x, y ∈ S. 
  
a) Idempotent laws : x ∨ x = x, x ∧ x = x.  
b)  Absorption laws : x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x.  
c)  Involution law : (x' )' = x.  
d)  De Morgan’s laws : (x ∨ y)' = x' ∧ y'  , (x ∧ y)'  = x' ∨ y'. 
  
In fact, you have already come across some of these properties for the Boolean  
algebras of propositions in Unit 1. In the following exercise we ask you to verify 
them.  
 

E1) a) Verify the identity laws and absorption laws for the Boolean algebra  
(S, ^, v, ~, T , F) of propositions.  

 b) Verify the absorption laws for the Boolean algebra  
(P(X),∪,∩, c ,Φ, X).  

In Theorem 1, you may have noticed that for each statement involving ∨ and ∧, there 
is an analogous statement with ∧ (instead of  ∨) and ∨ (instead of ∧). This is not a 
coincidence, as the following definition and result shows.  
 
Definition : If p is a proposition involving ~, ∧ and ∨, the dual of p, denoted by pd, is 
the proposition obtained by replacing each occurrence of ∧ (and/or ∨) in p by ∨ 
(and/or ∧, respectively) in pd .  
For example, x ∨ (x ∧ y) = x is the dual of x ∧(x ∨ y) = x.  
 
Now, the following principle tells us that if a statement is proved true, then we have 
simultaneously proved that its dual is true.  
 
Theorem 2 (The principle of duality): If s is a theorem about a Boolean algebra, 
then so is its dual sd .  
It is because of this principle that the statements in Theorem 1 look so similar.  
 
Let us now see how to apply Boolean algebra methods to circuit design.  
 
While expressing circuits mathematically, we identify each circuit in terms of some 
Boolean variables. Each of these variables represents either a simple switch or an 
input to some electronic switch.  
 
Definition: Let B  = (S, ∨, ∧, ', O, I) be a Boolean algebra. A Boolean expression in 
variables x1, x2 , . . . , xk (say), each taking their values in the set S is defined 
recursively as follows:  
 
i)  Each of the variables x1  , x2 , . . . , xk , as well as the elements O and I of the 

Boolean algebra B  are Boolean expressions.  
 
ii)  If  X1 and X2 are previously defined Boolean expressions, then X1 ∧ X2 , X1 ∨ X 

2 and X'1 are also Boolean expressions. 
  
For instance, x1 ∧ x'3 is a Boolean expression because so are x1 and x'3 , Similarly,  
because x1 ∧ x2 is a Boolean expression, so is (x1 ∧ x2 ) ∧ (x1 ∧ x'3 ).  
 
If X is a Boolean expression in n variables x1 , x2 , . . . , xn (say), we write this as  
X = X(x1 , . . . , xn ) .  
In the context of simplifying circuits, we need to reduce Boolean expressions to  
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Elementary Logic simpler ones. `Simple' means that the expression has fewer connectives, and all the 
literals involved are distinct. We illustrate this technique now.  
 
Example 4: Reduce the following Boolean expressions to a simpler form.  
  
 (a) X(x1, x2 ) = (x1 ∧ x2 ) ∧ (x1 ∧ x'2 );  
 (b) X(x1 , x2 , x3 ) = (x1 ∧ x2 ) ∨ (x1 ∧ x2 ∧ x3 ) ∨ (x1 ∧ x3 ).  
 
Solution: (a) Here we can write  
(x1 ∧ x2 ) ∧ (x1 ∧ x'2 )  = ((x1 ∧ x2 ) ∧ x1 ) ∧ x'2    (Associative law)  
                                    = (x1 ∧ x2) ∧ x'2   (Absorption law)  
                                    = x1 ∧ (x2 ∧ x'2 )    (Associative law)  
                                    = x1 ∧ O                              (Complementation law)  
                                    = O.                                     (Identity law) 
 
Thus, in its simplified form, the expression given in (a) above is O, i.e., a null  
expression.  
 
(b) We can write  
 (x1 ∧ x2 ) ∨ (x1 ∧ x'2 ∧ x3 ) ∨ (x1 ∧ x3 )  
 = [x1 ∧ {x2 ∨ (x'2 ∧ x3}] ∧ (x1 ∧ x3 )   (Distributive law)  
 = [x1 ∧{(x2 ∨ x'2 ) ∧ (x2 ∨ x3 )}] ∧ (x1 ∧ x3 )              (Distributive law)  
 = [x1 ∧ {I ∧ (x2 ∨ x3 )}] ∧ (x1 ∧ x3 )                           (Complementation law)  
 = [x1 ∧ (x2 ∨ x3 )] ∧ (x1 ∧ x3 )                                     (Identity law)  
 = [(x1 ∧ x2 ) ∨ (x1 ∧ x3 )] ∧ (x1 ∧ x3 )                          (Distributive law)  
 = [(x1 ∧ x2 ) ∧ (x1 ∧ x3 )] ∨ [(x1 ∧ x3 ) ∧ (x1 ∧ x3 )]    (Distributive law)  
 = (x1 ∧ x2 ∧ x3 ) ∨ (x1 ∧ x3 )                                       (Idemp.,& assoc. laws)  
 = x1 ∧ [(x2 ∧ x3 ) ∨ x3 ]                                               (Distributive law)  
 = x1 ∧ x3                                                                      (Absorption law)  
Thus, the simplified form of the expression given in (b) is (x1 ∧ x3 ).  

 
*** 

 
Now you should find it easy to solve the following exercise.  
 

E2)  Simplify the Boolean expression  
 X(x1 , x2 , x3 ) = (x1 ∧ x2 ) ∨ ((x1 ∧ x2 ) ∧ x3 ) ∨ (x2 ∧ x3 ).  
 
With this we conclude this section. In the next section we shall give an important 
application of the concepts discussed here.  
 

3.3 LOGIC CIRCUITS 

If you look around, you would notice many electric or electronic appliances of daily 
use. Some of them need a simple switching circuit to control the auto-stop (such as in 
a stereo system). Some would use an auto-power off system used in transformers to 
control voltage fluctuations. Each circuit is usually a combination of on-off switches, 
wired together in some specific configuration. Nowadays certain types of electronic 
blocks (i.e., solid state devices such as transistors, resistors and capacitors) are more 
in use. We call these electronic blocks logic gates, or simply, gates. In Fig. 5 we have 
shown a box which consists of some electronic switches (or logic gates), wired 
together in a specific manner. Each line which is entering the box from the left 
represents an independent power source (called input), where all of them need not 
supply voltage to the box at a given moment. A single line coming out of the box 
gives the final output of the circuit box. The output depends on the type of input. 
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Input
power
lines

Output lead 
 
 
 
 

Fig. 5: A Logic circuit 
 
This sort of arrangement of input power lines, a circuit box and output lead is basic 
to all electronic circuits. Throughout the unit, any such interconnected assemblage of 
logic gates is referred to as a logic circuit.  
 
As you may know, computer hardwares are designed to handle only two levels of 
voltage, both as inputs as well as outputs. These two levels, denoted by 0 and 1, are 
called bits (an acronym for binary digits). When the bits are applied to the logic gates 
by means of one or two wires (input leads), the output is again in the form of voltages 
0 and 1. Roughly speaking, you may think of a gate to be on or off according to 
whether the output voltage is at level 1 or 0, respectively. 

Table 3:Outputs of AND-gate 

x1 x2 x1 ∧ x2 

0 
1 
0 
1 

0 
1 
1 
1 

0 
0 
0 
1 

 
Three basic types of logic gates are an AND-gate, an OR-gate and a NOT-gate. We 
shall now define them one by one.  
 
Definition : Let the Boolean variables x1 and x2 represent any two bits. An AND-gate 
receives inputs x1 and x2 and produces the output, denoted by x1 ∧ x2 , as given in 
Table 3 alongside.  
 
The standard pictorial representation of an AND-gate is shown in Fig.6 below.  
 x1

x2
x1 ∧  x2 

 
 

Fig. 6: Diagrammatic representation of an AND -gate 
 
 From the first three rows of Table 3, you can see that whenever the voltage in any one 
of the input wires of the AND-gate is at level 0, then the output voltage of the gate is 
also at level 0. You have already encountered such a situation in Unit 1. In the 
following exercise we ask you to draw an analogy between the two situations. 
 

E3) Compare Table 3 with Table 2 of Unit 1. How would you relate x1 ∧ x2 with p ∧ 
q, where p and q denote propositions?  

Let us now consider another elementary logic gate.  
 
Definition : An OR-gate receives inputs x1 and x2 and produces the output, denoted 
by x1 ∨ x2, as given in Table 4. The standard pictorial representation used for the 
OR-gate is as shown in Fig.7.  
 x1

x2

x1 ∨  x2 
 

 
Fig. 7: Diagrammatic representation of an OR-gate 

 
From Table 4 you can see that the situation is the other way around from that in Table 
3, i.e., the output voltage of an OR-gate is at level 1 whenever the level of voltage in 
even one of the input wires is 1. What is the analogous situation in the context of 
propositions? The following exercise is about this. 
  
Table 4: Output of an OR-gate. 
53 

x1 x2 x1 ∨ x2 
0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
1 
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 E4)  Compare Table 4 with Table 1 of Unit 1. How would you relate x1 ∨ x2 with p ∨ 

q, where p and q are propositions?  

 And now we will discuss an electronic realization of the invert of a simple switch  
 about which you read in Sec. 3.2.  
 
Definition : A NOT-gate receives bit x as input, and produces an output denoted by 
x', as given in Table 5. The standard pictorial representation of a NOT-gate is shown 
in Fig. 8 below. Table 5: Output of a 

NOT-gate  
x x′ 

 x x' 
0 
1 

1 
0 

 
Fig. 8: Diagrammatic representation of NOT-gate 

 
If you have solved E5 and E6, you would have noticed that Tables 3 and 4 are the 
same as the truth tables for the logic connectives ∧ (conjunction) and ∨(disjunction). 
Also Table 3 of Unit 1, after replacing T by 1 and F by 0, gives Table 5. This is why 
the output tables for the three elementary gates are called logic tables. You may find 
it useful to remember these logic tables because they are needed very often for 
computing the logic tables of logic circuits. 
  
Another important fact that these logic tables will help you prove is given in the 
following exercise. 
 

E5) Let B = {0, 1} consist of the bits 0 and 1. Show that B is a Boolean algebra, i.e., 
that the bits 0 and 1 form a two-element Boolean algebra.  

As said before, a logic circuit can be designed using elementary gates, where the 
output from an AND-gate, or an OR-gate, or a NOT-gate is used as an input to other 
such gates in the circuitry. The different levels of voltage in these circuits, starting 
from the input lines, move only in the direction of the arrows as shown in all the 
figures given below. For instance, one combination of the three elementary gates is 
shown in Fig.9. 
 
 
 
 
 
 
 
  

Fig. 9: A logic circuit of elementary gates. 
 
Now let us try to see the connection between logic circuits and Boolean expressions. 
We first consider the elementary gates. For a given pair of inputs x1 and x2 , the output 
in the case of each of these gates is an expression of the form x1 ∧ x2 or x1 ∨ x2 or x' .  
 
Next, let us look at larger circuits. Is it possible to find an expression associated with a 
logic circuit, using the symbols ∧, ∨ and ' ? Yes, it is. We will illustrate the technique 
of finding a Boolean expression for a given logic circuit with the help of some 
examples. But first, note that the output of a gate in a circuit may serve as an input to 
some other gate in the circuit, as in Fig. 9. So, to get an expression for a logic circuit 
the process always moves in the direction of the arrows in the circuitry. With this in 
mind, let us consider some circuits.  
 
Example 5: Find the Boolean expression for the logic circuit given in Fig.9 above.  
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Solution: In Fig.9, there are four input terminals. Let us call them x1 , x2 , x3 and x4 . 
So, x1 and x2 are inputs to an OR-gate, which gives x1 v x2 as an output expression 
(see Fig. 9(a) ).  
 
Similarly, the other two inputs x3 and x4 , are inputs to an AND-gate. They will give x3 
∧ x4 as an output expression. This is, in turn, an input for a NOT-gate in the circuit. 
So, this yields (x3  ∧ x4 )' as the output expression. Now, both the expressions x1 ∨ x2 
and (x3 ∧ x4 )' are inputs to the extreme right AND-gate in the circuit. So, they give (x1 
∨ x2 ) ∧ (x3 ∧ x4 )' as the final output expression, which represents the logic circuit.  
  x 1 

x 2 

x 3 
x 4 

x 1 ∨  x2 

x 3   ∧  x 4 (x 3    ∧  x 4 ) ′ 

(x1 ∨  x2) ∧  (x3  ∧  x4)′ 

 
 
 
 
 
 
 

Fig. 9 (a) 
 
                                                             *** 
You have just seen how to find a Boolean expression for a logic circuit. For more 
practice, let us find it for another logic circuit.  
 
Example 6: Find the Boolean expression C for the logic circuit given in Fig. 10.  
 
 x1

x2
A

x3

B

C

 
 
 
 

 
Fig. 10 

 
Solution: Here the first output is from an OR-gate, i.e., A is x1 ∨ x2 . This, in turn, 
serves as the input to a NOT-gate attached to it from the right. The resulting bit B is 
(x1 ∨ x2 )' . This, and x3 , serve as inputs to the extreme right AND-gate in the circuit 
given above. This yields an output expression (x1∨ x2 )' ∧ x3 , which is C, the required 
expression for the circuit given in Fig.10.  
                                                         

*** 
 
Why don't you try to find the Boolean expressions for some more logic circuits now?  
 

E6) Find the Boolean expression for the output of the logic circuits given below.  
  
 x1

x2

x3

 
x1
x2

 
 
 
 (a)      (b) 

So far, you have seen how to obtain a Boolean expression that represents a given 
circuit. Can you do the converse? That is, can you construct a logic circuit 
corresponding to a given Boolean expression? In fact, this is done when a circuit 
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Elementary Logic designing problem has to be solved. The procedure is quite simple. We illustrate it 
with the help of some examples.  
 
Example 7: Construct the logic circuit represented by the Boolean expression  
(x'1 ∧ x2 ) ∨ (x1 ∨ x3 ), where xi (1 ≤ i ≤ 3) are assumed to be inputs to that circuitry.  
Solution: Let us first see what the portion (x'1 ∧ x2 ) of the given expression 
contributes to the complete circuit. In this expression the literals x′1 and x2 are  
connected by the connective ∧ (AND). Thus the circuit corresponding to it is as 
shown in Fig.11(a) below, by the definitions of NOT-gate and AND-gate. 
 
  
 x1

x2

x′1

x′1 ∧ x2

 x1
x3

x1 ∨ x3
 
 

a)       (b) 
Fig. 11: Logic circuits for the expressions x'1 ∧ x2 and   x1 ∨ x3. 

 
Similarly, the gate corresponding to the expression x1 v x3 is as shown in Fig.11(b) 
above. Finally, note that the given expression has two parts, namely, x'1 ∧ x2 and  
x1 ∨ x3 , which are connected by the connective ∨ (OR). So, the two logic circuits 
given in Fig.11 above, when connected by an OR-gate, will give us the circuit shown 
in Fig. 12 below. 
 
 
 
 
 
 
 
 

 

x1 ∨ x3

x1

x3

x′1∧ x2

(x′1 ∧ x2) ∨ (x3  ∨ x3)

x′1

Fig.12: Circuitry for the expression (x'1 ∧ x2 ) ∨ (x1 ∨ x3 ) 
 
This is the required logic circuit which is represented by the given expression.  
 
                                                         *** 
 
Example 8: Given the expression (x'1 ∨ (x2 ∧ x'3 )) ∧ (x2 ∨ x'4 ), find the 
corresponding circuit, where xi (1 ≤ i ≤4) are assumed to be inputs to the circuitry.  
 
Solution: We first consider the circuits representing the expressions x2 ∧ x' 3 and  
x2 ∨ x'4 . They are as shown in Fig.13(a).  
 
 
 
 
 
 

x2 ∨ x′4
x2

x′4

x2 ∨ x′3
x2

x′3
x′3

x3

x′4
x4

x′1

x3

x2

x′3
x2 ∧ x′3

x′1 ∨ (x2 ∧ x′3)
x1

 (a)   (b)    (c) 
 

Fig. 13: Construction of a logic circuitry. 
 
Also you know that the literals x'3 and x'4 are outputs of the NOT-gate. So, these can 
be represented by logic gates as shown in Fig.13(b). Then the circuit for the part x'1 ∨ 
(x2 ∧ x'3 ) of the given expression is as shown in Fig.13(c). You already know how to 
construct a logic circuit for the expression x2 ∨ x'4 .  
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Finally, the two expressions (x'1 ∨ (x2 ∧ x'3 )) and (x2 ∨ x'4 ) being connected by the 
connective ∧ (AND), give the required circuit for the given expression as shown in 
Fig.14.  
 
 
 
 
 
 
 
 

 

x1
x′1

x3

x4

x2

x′3

x′4
x2 ∨ x′4

(x′1 ∨ (x2 ∧ x′3)) ∧ (x2 ∧ x′4)
x′1 ∨ (x2 ∧ x′3)

x2 ∨ x′3

 
Fig. 14: Circuitry for the expression (x'1 ∨ (x2 ∧ x'3 )) ∧ (x2 ∨ x'4 ). 

 
*** 

 
Why don't you try to solve some exercises now?  
 

E7)  Find the logic circuit corresponding to the expression x'1∧ (x2 ∨ x'3 ) .  
 
E8)  Construct the logic circuit and obtain the logic table for the expression  
 x1 ∨ (x'2 ∧ x3 ).  

So far we have established a one-to-one correspondence between logic circuits and 
Boolean expressions. You may wonder about the utility of this. The mathematical 
view of a circuit can help us understand the overall functioning of the circuit. To 
understand how, consider the circuit given in Fig.10 earlier.  
 
You may think of the inputs bits x1 , x2 , and x3 as three variables, each one of which 
is known to have two values only, namely, 0 or 1, depending upon the level of voltage 
these inputs have at any moment of time. Then the idea is to evaluate the expression 
(x1 ∨ x2 )' ∧ x3 , which corresponds to this circuit, for different values of the 3-tuple 
(x1 , x2 , x3 ).  
 
How does this evaluation help us to understand the functioning of the circuit? To see 
this, consider a situation in which the settings of x1 , x2 and x3 at a certain stage of the 
process are x1 = x3 = 0 and x2 = 1. Then we know that x1 ∨ x2 = 0 ∨ 1 = 1 (see the 
second row of Table 3 given earlier). Further, using the logic table of a NOT-gate, we 
get (x1 ∨  x2 )' = 1'  = 0. Finally, from Table 3, we get (x1 ∨ x2 )' ∧ x3 = 0 ∧ 1 = 0. 
Thus, the expression (x1 ∨ x2 )' ∧ x3 has value 0 for the set of values (0, 1, 0) of input 
bits (x1 , x2 , x3 ). Thus, if x 1 and x 3 are closed, while x2 is open, the circuit 
remains closed.  
 
Using similar arguments, you can very easily calculate the other values of the 
expression (x1 ∨ x2 )' ∧ x3 in the set  

{0,1}3 = {(x1 , x2 , x3 ) | xi = 0 or 1, 1 ≤ i ≤ 3}  
 
of values of input bits. We have recorded them in Table 6.  
 
Observe that the row entries in the first three columns of Table 6 represent the  
different values which the input bits (x1 , x2 , x3 ) may take. Each entry in the last  
column of the table gives the output of the circuit represented by the expression  
(x1 ∨ x2)' ∧ x3 for the corresponding set of values of (x1 , x2 , x3 ). For example, if  
(x1 , x2 , x3 ) is (0,1,0), then the level of voltage in the output lead is at a level 0  
(see the third row of Table 6).  
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You should verify that the values in the other rows are correct. 

 
 
 
 

Table 6: Logic table for the expression (x1 ∨ x2)' ∧ x3 . 
 
 
 
 
 
 
 
 
 
 
 

x1 x2 x3 x1  v x2 (x1  v x2) (x1  v x2)´ ^ x3 
0 
0 
0 
1 
0 
1 
1 
1 

0 
0 
1 
0 
1 
1 
0 
1 

0 
1 
0 
0 
1 
0 
1 
1 

0 
0 
1 
1 
1 
1 
1 
1 

1 
1 
0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 

Table 6 is the logic 
table for the circuit 
given in Fig. 10. 

 
Why don't you try an exercise now?  
 

E9)  Compute the logic table for the circuit given in E6(b) above.  

 
You have seen how the logic table of an expression representing a circuit provides a 
functional relationship between the state (or level) of voltage in the input terminals 
and that in the output lead of that logic circuitry. This leads us the concept of Boolean 
functions, which we will now discuss.  
 

3.4 BOOLEAN FUNCTIONS  

In the last section you studied that an output expression is not merely a device for 
representing an interconnection of gates. It also defines output values as a function of 
input bits. This provides information about the overall functioning of the 
corresponding logic circuit. So, this function gives us a relation between the inputs to 
the circuit and its final output .  
 
This is what helps us to understand control over the functioning of logic circuits from 
a mathematical point of view. To explain what this means, let us reformulate the logic 
tables in terms of functions of the input bits.  
 
Let us first consider the Boolean expression  

X(x1 , x2 ) = x1 ∧ x'2,  
 
where x1 and x2 take values in B = {0, 1}. You know that all the values of this  
expression, for different pairs of values of the variables x1 and x2 , can be calculated 
by using properties of the Boolean algebra B. For example,  
 

0 ∧ 1'  = 0 ∧ 0 = 0 ⇒ X(0, 1) = 0. 
  
Similarly, you can calculate the other values of X(x1, x2 ) = x1 ∧ x'2  over B.  
 
In this way we have obtained a function f : B2 → B, defined as follows:  

f(e1 , e2 ) = X(e1 , e2 ) = e1 ∧ e'2 , where e1 , e2 ε {0, 1}.  
 
So f is obtained by replacing xi with ei in the expression X(x1 , x2 ). For example,  
when e1 = 1, e2 = 0, we get f(1, 0) = 1 ∧ 0' = 1.  
 
More generally, each Boolean expression X(x1 , x2 , . . . , xk ) in k variables, where  
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each variable can take values from the two-element Boolean algebra B, defines a  
function f : Bk → B : f(e1 , . . . , ek ) = X(e1 , . . . , ek ).  
 
Any such function is called a Boolean function.  
Thus, each Boolean expression over B = {0, 1} gives rise to a Boolean function.  
In particular, corresponding to each circuit, we get a Boolean function.  
Therefore, the logic table of a circuit is just another way of representing the Boolean 
function corresponding to it.  
 
For example, the logic table of an AND-gate can be obtained using the function ∧ :  
B2 → B : ∧ (e1 , e2 ) = e1 ∧ e2 .  
 
To make matters more clear, let us work out an example.  
 
Example 9: Let f : B2 → B denote the function which is defined by the Boolean 
expression X(x1 , x2 ) = x'1 ∧ x'2 . Write the values of f in tabular form.  
 
Solution: f is defined by f(e1 , e2 ) = e'1 ∧ e'2  for e1 , e2 ∈ {0, 1}. Using Tables 3, 4 and 
5, we have  

f(0, 0) = 0' ∧ 0'  = 1 ∧ 1 = 1,  f(0, 1) = 0' ∧ 1'  = 1 ∧ 0 = 0,  
f(1, 0) = 1' ∧ 0'  = 0 ∧1 = 0,  f(1, 1) = 1' ∧ 1'  = 0 ∧ 0 = 0.  

 
We write this information in Table 7.  
 

Table 7: Boolean function for the expression x′1 ^ x′2 . 
 

e1 e2 e'1 e'2 f(e1, e) = e'1 ∧ e'2 
0 
0 
1 
1 

0 
1 
0 
1 

1 
1 
0 
0 

1 
0 
1 
0 

1∧1=1 
1∧0=0 
0∧1=0 
0∧0=0 

 
 
 
 
 
 

*** 
Why don't you try an exercise now?  
 

E10) Find all the values of the Boolean function f : B2  → B defined by the Boolean 
expression (x1 ∧ x2 ) ∨ (x1 ∧ x'3 ).  

Let us now consider the Boolean function g : B2 → B, defined by the expression  
X(x1 , x2 ) = (x1 ∨ x2 )'.  
Then g(e1 , e2 ) = (e1∨e2 )' , e1 , e2 ε B.  
 
So, the different values that g will take are  

g(0, 0) = (0 ∨ 0)' = 0'  = 1,   g(0, 1) = (0 ∨ 1)'= 1'  = 0,  
g(1, 0) = (1 ∨ 0)' = 1'  = 0,   g(1, 1) = (1 ∨1)' = 1' = 0.  

 
In tabular form, the values of g can be presented as in Table 8.  
 

Table 8: Boolean function of the expression (x1 v x2) ′ . 
 
 e1 e2 e1 ∨ e2 g(e1, e2) = 

(e1 v e2)' 
0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
1 

1 
0 
0 
0 

 
 
 
 
 
 
 

By comparing Tables 7 and 8, you can see that f(e1 , e2 ) = g(e1 , e2 ) for all  
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What you have just seen is that two (seemingly) different Boolean expressions can 
have the same Boolean function specifying them. Note that if we replace the input 
bits by propositions in the two expressions involved, then we get logically equivalent 
statements. This may give you some idea of how the two Boolean expressions are 
related. We give a formal definition below. 
 
Definition : Let X = X(x1 , x2 , . . . , xk ) and Y = Y(x1 , x2 , . . . , xk ) be two Boolean 
expressions in the k variables x1 , . . . , xk . We say X is equivalent to Y over the 
Boolean algebra B, and write X ≡ Y, if both the expressions X and Y define the same 
Boolean function over B, i.e.,  

X(e1 , e2 , . . . , ek ) = Y(e1 , e2 , . . . , ek ), for all ei ∈ {0, 1}.  
 
So, the expressions to which f and g (given by Tables 7 and 8) correspond are 
equivalent.  
 
Why don't you try an exercise now?  
 

E11)  Show that the Boolean expressions  
X = (x1 ∧ x2 ) ∨ (x1 ∧ x3 ) and Y = x1 ∧ (x2 ∨ x'3 )  

 are equivalent over the two-element Boolean algebra B = {0, 1}.  

So far you have seen that given a circuit, we can define a Boolean function 
corresponding to it. You also know that given a Boolean expression over B, there is a 
circuit corresponding to it. Now, you may ask:  
 
Given a Boolean function f : Bn → B, is it always possible to get a Boolean expression 
which will specify f over B? The answer is `yes', i.e., for every function f : Bn → B (n 
≥ 2) there is a Boolean expression (in n variables) whose Boolean function is f itself.  
 
To help you understand the underlying procedure, consider the following examples.  
 
Example 10: Let f : B2 → B be a function which is defined by  

         f(0, 0) = 1, f(1, 0) = 0, f(0, 1) = 1, f(1, 1) = 1.  
 
Find the Boolean expression specifying the function f.  
 
Solution: f can be represented by the following table.  

 
 
 
 

 
 

 
 
 

We find the Boolean expression according to the following algorithm:  
 
Step 1: Identify all rows of the table where the output is 1: these are the 1st,  
             3rd and 4th rows.  
 
Step 2: Combine the variables in each of the rows identified in Step 1 with `and'. 
 Simultaneously, apply `not' to the variables with value zero in these rows. So, 
 for the  

Input Output 
x1 x2 f(x1, x2) 
0 
1 
0 
1 

0 
0 
1 
1 

1 
0 
1 
1 

In Boolean algebra 
terminology this is known 
as the ‘disjunctive normal 
form’ (DNF) of the 
expression. 

             1st row: x'1 ∧ x'2 ,  
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             4th row: x1 ∧ x2 .  
Step 3:  Combine the Boolean expressions obtained in Step 2 with `or' to get  

 the compound expression representing f:  
 So, f(x1 , x2 ) = (x'1 ∧ x'2 ) ∨ (x'1 ∧ x2 ) ∨ (x1 ∧ x2 ).  

                                                     
*** 

You can complete Example 10, by doing the following exercise.  
 

E12)  In the previous example, show that X(e1 , e2 ) = f(e1 , e2 ) ∀e1 , e2 ∈ B.  
 
E13)  By Theorem 2, we could also have obtained the expression of f in Example  
         10 in `conjunctive normal form' (CNF). Please do so.  

An important remark: To get a Boolean expression for a Boolean function h (say), 
we should first see how many points vi there are at which h(vi ) = 0, and how many 
points vi there are at which h(vi ) = 1. If the number of values for which the 
function h is 0 is less than the number of values at which h is 1, then we shall 
choose to obtain the expression in CNF, and not in DNF. This will give us a shorter 
Boolean expression, and hence, a simpler circuit. For similar reasons, we will prefer 
DNF if the number of values at which h is 0 is more.  
 
Why don't you apply this remark now?  
 

E14) Find the Boolean expressions, in DNF or in CNF (keeping in mind the  
 remark made above), for the functions defined in tabular form below. 

 
 x1 x2 x3 f (x1, x2, x3) 

1 
1 
1 
1 
0 
0 
0 
0 

1 
1 
0 
0 
1 
1 
0 
0 

1 
0 
1 
0 
1 
0 
1 
0 

1 
0 
0 
1 
0 
0 
0 
1 

x1 x2 x3 g (x1, x2, x3) 
1 
1 
1 
1 
0 
0 
0 
0 

1 
1 
0 
0 
1 
1 
0 
0 

1 
0 
1 
0 
1 
0 
1 
0 

1 
1 
0 
1 
0 
0 
1 
1 

 
 
 
 
 
 
 
 

   (a)       (b) 

Boolean functions tell us about the functioning of the corresponding circuit.  
Therefore, circuits represented by two equivalent expressions should essentially do the 
same job. We use this fact while redesigning a circuit to create a simpler one. In fact, 
in such a simplification process of a circuit, we write an expression for the circuit and 
then evaluate the same (over two-element Boolean algebra B) to get the Boolean 
function. Next, we proceed to get an equivalent, simpler expression. Finally, the 
process terminates with the construction of the circuit for this simpler expression. 
Note that, as the two expressions are equivalent, the circuit represented by the 
simpler expression will do exactly the same job as the circuit represented by the 
original expression.  
 
Let us illustrate this process by an example in some detail.  
 
Example 11: Design a logic circuit capable of operating a central light bulb in  
a hall by three switches x1 , x2 , x3 (say) placed at the three entrances to that hall.  
 
Solution: Let us consider the procedure stepwise.  
Step 1: To obtain the function corresponding to the unspecified circuit.  
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Elementary Logic To start with, we may assume that the bulb is off when all the switches are off.  
Mathematically, this demands a situation where x1 = x2 = x3 = 0 implies f(0, 0, 0)= 0, 
where f is the function which depicts the functional utility of the circuit to be 
designed.  
Let us now see how to obtain the other values of f. Note that every change in the state 
of a switch should alternately put the light bulb on or off. Using this fact repeatedly, 
we obtain the other values of the function f.  
 
Now, if we assign the value (1,0,0) to (x1 , x2 , x3 ), it brings a single change in the 
state of the switch x1 only. So, the light bulb must be on. This can be written 
mathematically in the form f(1, 0, 0) = 1. Here the value 1 of f stands for the on state 
of the light bulb.  
Then, we must have f(1, 1, 0) = 0, because there is yet another change, now in the 
state of switch x2 .  
 
You can verify that the other values of f(x1 , x2 , x3 ) are given as in Table 9. 
  
 

Table 9: Function of a circuitry for a three-point functional bulb. 
 

x1 x2 X3 f(x1, x2, x3) 
0 
1 
1 
1 
0 
0 
0 
1 

0 
0 
1 
1 
1 
1 
0 
0 

0 
0 
0 
1 
0 
1 
1 
1 

0 
1 
0 
1 
1 
0 
1 
0 

 
 
 
 
 
 
 
 
 
 

 
 
 
Step 2: To obtain a Boolean expression which will specify the function f. Firstly, 
note that the number of 1's in the last column of Table 9 are fewer than the number of 
0's. So we shall obtain the expression in DNF (instead of CNF).  
 
By following the stepwise procedure of Example 10, you can see that the  
required Boolean expression is given by  
 X(x1 , x2 , x3 ) = (x1 ∧ x'2  ∧ x3 ) ∨ (x'1 ∧ x2 ∧ x'3 ) ∨ (x'1 ∧ x'2 ∧ x3 ) ∨ (x1 ∧ x2 ∧ x3 )   
 
At this stage we can directly jump into the construction of the circuit for this 
expression (using methods discussed in Sec.3.3). But why not try to get a simpler 
circuit?  
 
Step 3 : To simplify the expression X(x1 , x2 , x3 ) given above. Firstly, observe that  

(x1 ∧ x'2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 )  = x1 ∧ [(x'2 ∧ x3 ) ∨ (x2 ∧ x3 )]  
= x1 ∧ [(x'2 ∨ x2 ) ∧ x3 ] 
= x1 ∧ (1 ∧ x3 )  
= x1 ∧ x3 ,  

by using distributive, complementation and identity laws (in that order).  
Similarly, you can see that  

(x'1 ∧ x'2 ∧ x3 ) ∨ (x1 ∧ x3 ) = (x'2 ∨ x1 ) ∧ x3 .  
 
We thus have obtained a simpler (and equivalent) expression, namely,  

X(x1 , x2 , x3 ) = (x'1 ∧ x2 ∧ x'3 ) ∨ [(x'2 ∨ x1 ) ∧ x3 ] ,  
whose Boolean function is same as the function f. (Verify this!)  
 
Step 4: To design a circuit for the expression obtained in Step 3.  
 
Now, the logic circuit corresponding to the simpler (and equivalent) expression  
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obtained in Step 3 is as shown in Fig.15.  
 
 
 
 
 
 
 
 
 

 

  
1 x 

x 2 
x 3 

 
Fig. 15: A circuit for the expression (x'1 ∧ x2 ∧ x'3 ) ∨ ((x'2 ∨ x1 ) ∧ x3 ) 

 
So, in 4 steps we have designed a 3-switch circuit for the hall.  
 

*** 
 
We can't claim that the circuit designed in the example above is the simplest circuit. 
How to get that is a different story and is beyond the scope of the present course.  
 
Why don't you try an exercise now?  
 

E15) Design a logic circuit to operate a light bulb by two switches, x1 and x2 (say).  
 
We have now come to the end of our discussion on applications of logic. Let us 
briefly recapitulate what we have discussed here.  
 

3.5 SUMMARY  

In this unit, we have considered the following points.  
 
1. The definition and examples of a Boolean algebra. In particular, we have 

discussed the two-element Boolean algebra B = {0, 1}, and the switching algebras 
Bn , n ≥ 2.  

2. The definition and examples of a Boolean expression.  
3. The three elementary logic gates, namely, AND-gate, OR-gate and NOT-gate; 
 and the analogy between their functioning and operations of logical connectives.  
4. The method of construction of a logic circuit corresponding to a given Boolean 
 expression, and vice-versa.  
5. How to obtain the logic table of a Boolean expression, and its utility in the 
 understanding of the overall functioning of a circuit.  
6. The method of simplifying a Boolean expression.  
7. The method of construction of a Boolean function f : Bn → B, corresponding to a 
 Boolean expression, and the concept of equivalent Boolean expressions. 
8.  Examples of the use of Boolean algebra techniques for constructing a logic circuit 

which can function in a specified manner. 
 

3.6 SOLUTIONS/ ANSWERS 

E1) a) In E19 of Unit 1, you have already verified the Identity laws. Let us proceed 
to show that the propositions p ∨ (p ∧ q) and p are logically equivalent. It 
suffices to show that the truth tables of both these propositions are the same. 
This follows from the first and last columns of the following table. 
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Similarly, you can see that the propositions p ∧ (p ∨ q) and 

p are equivalent propositions. This establishes the absorption laws for the 
Boolean algebra (S, ∧, ∨ ' , T , F).  

p q  p∧q p ∨ (p ∧q) 
F 
F 
T 
T 

F 
T 
F 
T 

F 
F 
F 
T 

F 
F 
T 
T 

b)  Let A and B be two subsets of the set X. Since A ∩ B ⊆ A, (A ∩ B) U A = 
A. Similarly, as A ⊆ A U B, we have (A U B) ∩ A = A. Thus, both the forms 
of the absorption laws hold good for the Boolean algebra (P(X), U, ∩, c , X, ).  

 
E2)  We can write  

X(x1 , x2 , x3 ) = ((x1 ∧ x2 ) ∨ ((x1 ∧ x2 ) ∧ x3 )) ∨ (x2 ∧ x3 )  
                       = (x1 ∧ x2 ) ∨ (x2 ∧ x3 )    (by Absorption law)  

           = x2 ∧ (x1 ∨ x3 )    (by Distributive law)  
This is the simplest form of the given expression.  

 
E3)  Take the propositions p and q in place of the bits x1 and x2 , respectively. 

Then, when 1 and 0 are replaced by T and F in Table 3 here, we get the  
truth table for the proposition p ∧ q (see Table 2 of Unit 1). 
This establishes the analogy between the functioning of the AND-gate and the 
conjunction operation on the set of propositions.  

 
E4)  Take the propositions p and q in place of the bits x1 and x2 , respectively.  

Then, when 1 and 0 are replaced by T and F in Table 4 here, we get the truth 
table for the proposition p∨q (see Table 1 of Unit 1). 
 This establishes the analogy between the functioning of the OR-gate and the 
disjunction operation on the set of propositions.  

 
E5)  Firstly, observe that the information about the outputs of the three elementary 

gates, for different values of inputs, can also be written as follows:  
       

0 ∧ 0 = 0 ∧1 = 1 ∧ 0 = 0, 1 ∧1 = 1;  (see Table 3)  
       0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1; and (see Table 4)  
       0'  = 1, 1'  = 0.                (see Table 5)  

Clearly, then both the operations # and # are the binary operations on B and ' : 
B → B is a unary operation. Also, we may take 0 for O and 1 for I in the 
definition of a Boolean algebra.  
Now, by looking at the logic tables of the three elementary gates, you can  
see that all the five laws B1-B5 are satisfied. Thus, B is a Boolean algebra.  

 
E6)   a)   Here x1 and x2 are inputs to an OR-gate, and so, we take x1 ∨ x2 as input to 

the NOT-gate next in the chain which, in turn, yields (x1 ∨ x2 )' as the 
required output expression for the circuit given in (a).  
b)  Here x1 and x2 are the inputs to an AND-gate. So, the expression x1 ∧ x2 
serves as an input to the NOT-gate, being next in the chain.  
This gives the expression (x1 ∧ x2 )' which serves as one input to the extreme 
right AND-gate. Also, since x'3  is another input to this AND-gate (coming out 
of a NOT-gate), we get the expression (x1 ∧ x2 )' ∧ x'3 as the final output 
expression which represents the circuit given in (b).  

 
E7)  You know that the circuit representing expressions x1 and x2 ∨ x'3 are as 

shown in Fig.16 (a) and (b) below.  
 

x 1 

x3 x ′ 3 

x2 ∨  x′ 3 x′1
x1
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(a)      (b) 
 

Fig. 16 
 

Thus, the expression x'1 ∨ (x2  ∨ x'3 ), being connected by the symbol ∧, gives 
the circuit corresponding to it as given in Fig.17 below. 
  

 
 x1

x3

x2

x′3
x2 ∨ x′3

x′1 ∧ (x2 ∨ x′3)
x1

 
 
 
 
 

Fig. 17: A logic circuit for the expression x'1 ∧ (x2 ∨ x'3 ) 
 
E8)  You can easily see, by following the arguments given in E9, that the circuit 

represented by the expression x1∨(x'2 ∧ x3) is as given in Fig.18.  
 
 
 
 
 
 
 

Fig. 18 

x3

x2
x′2 ∧ x3

x1 ∨ (x′2 ∧ x3)
x1

x′2

 
The logic table of this expression is as given below. 
 

 x1 x2 x3 x'2 x'2 ∧ x3 X1 ∨ (x'2 ∧ x3) 
0 
0 
0 
1 
0 
1 
1 
1 

0 
0 
1 
0 
1 
1 
0 
1 

0 
1 
0 
0 
1 
0 
1 
1 

1 
1 
0 
1 
0 
0 
1 
0 

0 
1 
0 
0 
0 
0 
1 
0 

0 
1 
0 
1 
0 
1 
1 
1 

 
 
 
  
 
 
 
 
 
E9)  Since the output expression representing the circuit given in E8(b) is found to 

be (x1 ∧ x2 )' ∧ x'3, the logic table for this circuit is as given below. 
  
 

x1 x2 x3 x1 ∧ x2 (x1 ∧ x2)' x'3 (x1 ∧ x2)' ∧ x'3 
0 
0 
0 
1 
0 
1 
1 
1 

0 
0 
1 
0 
1 
1 
0 
1 

0 
1 
0 
0 
1 
0 
1 
1 

0 
0 
0 
0 
0 
1 
0 
1 

1 
1 
1 
1 
1 
0 
1 
0 

1 
0 
1 
1 
0 
1 
0 
0 

1 
0 
1 
1 
0 
0 
0 
0 

 
 
 
 
 
 
 
 
 
E10)  Because the expression (x1 ∧ x2 ) ∨ (x1 ∧ x'3 ) involves three variables, the  
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Elementary Logic corresponding Boolean function, f (say) is a three variable function, i.e. f :  
B3 → B. It is defined by  

f(e1, e2, e3 ) = (e1 ∧ e2 ) ∨ (e1 ∧ e'3 ), e1, e2 and e3 ∈ B.  
 
Now, you can verify that the values of f in tabular form are as given in the  
following table. 
 
  

 
 
 
 
 
 
 
 
  
E11) 
 To show that the Boolean expressions X and Y are equivalent over the  

e 1 e2 E3 e1 ∧ e2 e'3 e1∧ e'3 f(e1, e2, e3) = 
(e1∧ e2) ∨ (e1 ∧ e'3) 

0 
0 
0 
1 
0 
1 
1 
1 

0 
0 
1 
0 
1 
1 
0 
1 

0 
1 
0 
0 
1 
0 
1 
1 

0 
0 
0 
0 
0 
1 
0 
1 

1 
0 
1 
1 
0 
1 
0 
0 

0 
0 
0 
1 
0 
1 
0 
0 

0 
0 
0 
1 
0 
1 
0 
1 

two-element Boolean algebra B = {0, 1}, it suffices to show that the Boolean 
functions f and g (say) corresponding to the expressions X and Y, 
respectively, are the same. As you can see, the function f for the expression X 
is calculated in E10 above.  
Similarly, you can see that the Boolean function g for the expression Y in  
tabular form is as given below.  
 
 x1 x2 x3 x'3 x2 ∨ x'3 G(x1, x2, x3) = 

X1∧ (x2 ∨ x'3) 
0 
0 
0 
1 
0 
1 
1 
1 

0 
0 
1 
0 
1 
1 
0 
1 

0 
1 
0 
0 
1 
0 
1 
1 

1 
0 
1 
1 
0 
1 
0 
0 

1 
0 
1 
1 
1 
1 
0 
1 

0 
0 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 
 

Comparing the last columns of this table and the one given in E10 above,  
you can see that f(e1, e2, e3 ) = g(e1, e2, e3 ) ∀ e1, e2, e3 ∈ B = {0, 1}. Thus,  
X and Y are equivalent.  

 
E12)  Firstly, let us evaluate the given expression X(x1 , x2 ) over the two-element  

Boolean algebra B = {0, 1} as follows:  
X(0, 0) =  (0' ∧ 0' ) ∨ (0' ∧0) ∨ (0 ∧ 0)  

   =     (1 ∧1) ∨ (1 ∧ 0) ∨ (0 ∧ 0)  
                =  1 ∨ 0 ∨ 0 = 1 = f(0, 0);  

X(1, 0)  =  (1' ∧0') ∨ (1' ∧ 0) ∨ (1 ∧ 0)  
=  (0 ∧ 1) ∨ (0 ∧ 0) ∨ (1 ∧ 0)  
=  0 ∨ 0 ∨ 0 = 0 = f(1, 0);  

 
X(0, 1)  =          (0' ∧1' ) ∨ (0' ∧1) ∨ (0 ∧1)  

=  (1 ∧ 0) ∨ (1 ∧1) ∨ (0 ∧ 1)  
=  0 ∨ 1 ∨ 0 = 1 = f(0, 1);  

 
X(1, 1)  =  (1' ∧1') ∨ (1' ∧1) ∨ (1 ∧1)  

=  (0 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧1)  
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Circuits =  0 ∨ 0 ∨ 1 = 1 = f(1, 1).  

It thus follows that X(e1, e2 ) = f(e1, e2 ) ∀ e1 , e2 ∈ B = {0, 1}.  
 
E13)  Step 1: Identify all rows of the table where output is 0: This is the 2nd row.  

Step 2: Combine x1 and x2 with `or' in these rows, simultaneously applying  
`not' to xi if its value is 0 in the row: So, for the 2nd row the expression we 
have is x1 ∨  x2 .  
Step 3: Combine all the expressions obtained in Step 2 with `and' to get the 
CNF form representing f: In this case there is only 1 expression.  
So f is represented by x1 ∨ x2 in CNF.  

 
E14)  a) Observe from the given table that, among the two values 0 and 1 of the 

function f(x1, x2, x3 ), the value 1 occurs the least number of times. Therefore, 
by the remark made after E 13, we would prefer to obtain the Boolean 
expression in DNF. To get this we will use the stepwise procedure adopted in 
Example 10.  
Accordingly, the required Boolean expression in DNF is given by  

X(x1, x2, x3 ) = (x1 ∧ x2 ∧ x3 ) ∧ (x1 ∧ x'2 ∧ x'3 ) ∨ (x'1 ∧ x'2 ∧ x'3 ).  
 b) By the given table, among the two values 0 and 1 of the function the  

points v i at which g(vi ) = 0 are fewer than the points vi at which g(vi) = 1. So 
we would prefer to obtain the corresponding Boolean expression in CNF.  
Applying the stepwise procedure in the solution to E13, the required Boolean 
expression (in CNF) is given by  

X(x1, x2, x3 ) = (x'1 ∨ x2 ∨ x'3 ) ∧ (x1 ∨ x'2 ∨ x'3 ) ∧ (x1 ∨ x'2 ∨ x3). 
 
E15)  Let g denote the function which depicts the functional utility of the circuit to 

be designed. We may assume that the light bulb is off when both the switches 
x1 and x2 are off, i.e., we write g(0, 0) = 0.  
Now, by arguments used while calculating the entries of Table 9, you can  
easily see that all the values of the function g are as given below:  

g(0, 0) = 0, g(0, 1) = 1, g(1, 0) = 1, g(1, 1) = 0.  
Thus, proceeding as in the previous exercise, it can be seen that the Boolean 
expression (in DNF), which yields g as its Boolean function, is given by the 
expression  

X(x1, x2 ) = (x'1 ∧ x2 ) ∨ (x1 ∧ x'2),  
because g(0, 1) = 1 and g(1, 0) = 1.  

 
Finally, the logic circuit corresponding to this Boolean expression is shown  
in Fig. 19.  

 
 
 
 
 

 
 

x1

x2

Fig. 19 
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