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BLOCK 2 BASIC COMBINATORICS 

Have you ever thought about how you can decide whether a given element belongs to 
a collection or not? Or, how a communication engineer can find the total number of 
distinct ways in which a fixed number of dots and dashes can be used for telegraphic 
communication? Or, how we can count the number of primes less than or equal to a 
given number? Problems such as these are what we discuss in this block. The focus of 
this block is a variety of techniques used for counting, that is, combinatorial 
techniques. We use them to study the problem of determining the size, and in some 
cases also the structure, of various sets that arise in such diverse applications as games 
theory, probability, and algorithm analysis.  
 
This block consists of four units. The first unit deals with sets, relations and functions. 
In this we discuss the basic concepts moreover we also expose you to different 
representations of sets, including the Venn diagram invented by the English Priest and 
logician John Venn (1834-1923). Then we consider operations on sets, different types 
of relations, functions and operations and functions.  
 
In second unit we deal with permutations and combinations, the binomial and 
multinomial theorems, and combinatorial probability. In this context, you might find it 
interesting to note that the notion of permutation can be found in the Hebrew work 
“Sefer Yetzirah” (i.e., The Book of Creation). This is a manuscript written by a mystic 
some time between 200 and 600 A.D. Also, the ‘binomial theorem’, which everybody 
is so familiar with, first appeared in the work of Euclid (300 B.C.) What is of further 
historical interest is that Blaise Pascal (1623-1662), published in the 1650s a treatise 
dealing with the relationships among binomial coefficients, combinations, and 
polynomials. These results were used by Jakob Bernoulli (1645-1705) to prove the 
general form of the binomial theorem. 
 
The third unit of this block deals with the pigeonhole principle and the principles of 
inclusion and exclusion. The latter principle has an interesting history, being found in 
different manuscripts under such names as the “Sieve Method” or the “Principle of 
Cross Classification”. A set-theoretic version of this principle, which concerned itself 
with set unions and intersection, is found in “Doctrine of Chances” (1718), a text on 
probability theory by Abraham De Moivre (1667-1754). Somewhat earlier, in 1713, 
Pierre Remond de Montmort (1678-1719) used the idea behind the principle in his 
solution of the problem of derangements. 
 
On the other hand, the pigeonhole principle has no clear-cut mathematical origin. This 
is also known as the Dirichlet-drawer principle, after the famous German 
mathematician Dirichlet (1805-1859).  
 
In the fourth, and last, unit of this block, we discuss partitions of natural numbers. We 
consider efficient techniques for counting the number of ways of distributing a finite 
number of objects into a finite number of containers, usually called boxes. It was 
Leonard Euler (1707-1783) who advanced the study of partitions of integers in his 
1740 volume opus, “Introduction in Analysin Infinitorum”. 
 
Before we end, a note of advice! If you really want to get to grips with the content of 
this block, you must attempt the Miscellaneous Exercises given at the end of the 
block. Doing this, will help you understand the underlying reasoning better, and hence 
appreciate the theory of combinatorics. 
 
 
 
 
 
 



NOTATIONS AND SYMBOLS 
 
 
∩    Intersection of two Sets 
∪    Union of two Sets 
⊆    Subsets 
⊇    Contains 
~   Set difference 
∀    For all 
∃   There exists 
φ  Empty Set 
N   Set of natural numbers 
R   Set of real numbers 
Z   Set of integers 
n!   n(n −1)...2.1 

P(n,r)   
)!(

!
rn

n
−

 

C(n,r)   
!)!(

!
rrn

n
−

 

P(n;r1,r2,…rk)  
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!
21 krr
n

 

 
n(A),|A|   The cardinality  of the set A 
P(X)   The power set of the set X 
P(A)   The probability of the event A 
Pn   The number of partitions of the natural number n 
P    The number of partitions of n with exactly k parts k

n

Pn(k)   The number of partitions of n with no part larger than k 
S (n m)  The Stirling number of the second kind m

n ≥
[x]n   x(x-1)(x-2)….(x-n+1), i.e., falling factorial  
Dn The number of derangements of n objects. 
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UNIT 1 SETS, RELATIONS AND 

FUNCTIONS 
Structure          Page No. 

1.0 Introduction   5 
1.1 Objectives  5 
1.2 Introducing Sets  5 
1.3 Operations on Sets   9 

1.3.1 Basic Operations         
1.3.2 Properties Common to Logic and Sets   

1.4 Relations  13 
1.4.1 Cartesian Product   
1.4.2 Relations and their types   
1.4.3 Properties of Relations   

1.5 Functions  16 
1.5.1 Types of Functions   
1.5.2 Operations on Functions   

1.6 Summary  22 
1.7 Solutions / Answers  22 

1.0 INTRODUCTION 

In common parlance, we find people using the words given in the title of this unit. Do 
they have the same meaning in mathematics? You’ll find this out by studying this 
unit. You will also see how basic the concept of ‘set’ and ‘function’ or to any area of 
mathematics and subjects depend on mathematics.  
 
In this unit we will begin by introducing you to various kinds of sets. You will also 
study operations like, ‘union’ and ‘intersection’. While doing so you will see in what 
way Venn diagrams are a useful tool for understanding and working with sets.  
 
Next we will discuss what a relation is, and expose you to some important types of 
relations. You will come across while studying banking, engineering, information 
technology and computer science, of course mathematics. As you will see in your 
study of computer science, an extensive use of functions is made in problem-solving. 
 
Finally, we lead you detailed discussion of functions. Over here we particularly focus 
on various points of functions and fundamental operations on functions. 

1.1 OBJECTIVES 

After studying this unit, you should be able to: 

• explain what a set , a relation or a function is 
• give examples and non-examples of sets, relations and functions 
• perform different operations on sets 
• establish relationships between operations on sets and those on statements in logic 
• use Venn diagrams  
• explain the difference between a relation and a function. 
• describe different types of relations and functions. 
• define and perform the four basic operations on functions 
 

 1.2 INTRODUCING SETS   

In our daily life we encounter collections, like the collection of coins of various 
countries, a collection of good students in a class, a collection of faculty members of 
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Basic Combinatorics IGNOU, etc. In the first of these examples, it is easy for anybody anywhere to tell 

whether an object belongs to this collection or not. If we take the collection of coins of 
a country, then a coin will be in the collection if it is a coin of that country, not 
otherwise. The criterion for being a member of the collection is objective and clear. 
However, if we take the collection of all good students, it is very difficult to say 
whether a person belongs to this collection or not because the characteristic good is 
not very clearly defined. In this case the collection is not ‘well-defined’, while the  
previous collection is ‘well-defined’. Similarly, the collection of all the IGNOU 
students is well-defined.  
 
Definition: A set is a well-defined collection. The objects belonging to a set are called 
elements or members of that set.  
 
We write the elements of a set within curly brackets. For instance, consider the set A 
of stationary items used by Nazia. We write this as 

A = {pen, pencil, eraser, sharpener, paper} 

Another example is the set 

B =  {Lucknow, Patna, Bhopal, Itanagar, Shillong}  
of the capitals of 5 states of India. 
 
Note that A and B are well-defined collections. However, the collection of short 
people is not well-defined, and therefore, it is not a set. 
 
Also note that the elements of a set don’t have to appear ‘similar’. For example, 
{pen,Lucknow,4} is a set consisting of 3 clearly defined elements. 
 
As you have seen, we usually, denote sets by capital letters of the English alphabet. 
We usually denote the elements by small letters a,b,x,y …. If x is an element of a set 
A, we write this as x∈A (read as ‘x belongs to A’). If x is not an element of A, we 
write this as x∉A (read as ‘x does not belong to A’). 
 
There are three ways of representing sets: ‘Set-builder form’, ‘Tabular form’ and the 
pictorial representation through Venn diagrams. 
 
In the ‘Set-builder form’, or ‘property method’ of representation of sets, we write 
between brackets { } a variable x,which stands  for each of the elements of the set 
which have  the properties p(x), and separate x and p(x) by a  symbol ‘:’ or ‘|’ (read 
as ‘such that’). So the set looks like {x: p(x)} or {x | p(x)}. 
 
For instance, the set {x | x is a white flower} is the set of all white flowers, or {x: x is 
a natural number and 2<x<11}is the set of natural numbers lying between 2 and 11. 
 
In ‘Tabular form’, or the ‘listing method’, the elements of a set are listed one by one 
within the brackets { }, each  separated from the other by a comma, as in the examples 
A and B given above. 

The accepted convention for writing a set by the listing method is that elements will 
not be repeated. For example, in the set A= {4,2,8,2,6}, 2 is repeated, which is not 
necessary.So we will write A ={4,2,8,6}. 
 
We shall introduce you to Venn diagrams a little later. For now, let us consider a few 
more sets. 
 
Definition: A set with no element is called the empty(or null, or void) set, and is 
denoted by φ  or{}. 
For example A = {x:x is an integer  between 13  and 17  which is divisible by 6}, has 
no element, i.e., A is the empty set. 
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Definition: A set having a finite number of elements is called a finite set. 
 
For example, {1,2,4,6} is a finite set because it has four elements,φ , the null set, is 
also a finite set because it has zero number of elements; the set of stars in the sky is 
also a finite set. 
  
Definition: A set having infinitely many elements is called an infinite set. 
 
For example, the set N of natural numbers is infinite. Similarly, Q , Z, R and C, the 
set of rational numbers and complex numbers, respectively, are infinite set. 
 
B= The set of all strengthness in a given plane. 
 
Now try the following exercises. 
 

E1)  How would you represent the set of all students who have offered the IGNOU 
course? 

 
E2)  Explain, with reason, whether or not  

 i)  the collection of all good teachers is a set 

 ii) the set of points on a line is finite. 
 
E3) Represent the set of all integers by the listing method. 

When we deal with several sets, we need to understand the nature of the elements of 
those sets, whether the elements of two given sets have some elements in common or 
not, and so on. These questions involve concepts, which we now define. 
 
Definition: A set A is said to be a subset of a set B if each element of A is also an 
element of B. In this case B is called a superset of A. If A is a subset of B, we 
represent this by A⊆B. 
 
As a statement in logic we represent this situation as,  

A ⊆ B [x ∈ A ⇒ x ∈ B] ⇔
 
‘B contains A’ or ‘B is a superset of A’ is represented by B⊇A.  
If A is not a subset of B, we represent this by A ⊈ B. 
 
For example, if A ={4,5,6} and B ={4,5,7,8,6}, then A⊆ B. But if C = {3,4} then  
C ⊈ B. 
 
Remark: If A B and B C, then A C. ⊆ ⊆ ⊆
 
Definition: Two sets A and B are equal if every element of A belongs to B and every 
element of B belongs to A. We represent this by A=B. 

 (1834 -1923) 
Fig 1: John Venn

For example, if A= {1,2,3}, B ={2,3,1}, then A B and B⊆A, so that A = B. ⊆
 
Definition: A set A is said to be a proper subset of a set B if A is a subset of B and A 
and B are not equal. We represent this by A⊂ B.  

For example, if A ={4,5,6} and B = {4,5,7,8,6}, then A B; and if           
A={Java, C, C++, Cobol} and B={Java, C++}, then A

⊂
⊃ B.  

 
Note: A set can have many subsets and many supersets. For example A={1,2,3,4,5}, 
B= {2,3,4,5,6,7}, and C= {2,3}, then for C, A and B can be used as supersets. 
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Basic Combinatorics Similarly, if X= {Ram, Rani, Sita, Gita}, Y= {Rani}, and Z= {Sita}, then Y and Z 

both are subsets of X. 
 
Definition: The power set of a set A is the set of all the subsets of A, and is denoted 
by P(A). 

Mathematically, P(A) = { x:x A}. ⊆
 
Note that φ ∈P(A) and A∈P(A) for all sets A. 

For example, if A={1}, then P(A)= {φ ,{1}} and  
if A= {1,2}, then P(A)={φ , {1}, {2}, {1,2}} 

Similarly, if A = {1,2,3}, then P(A) = {φ ,{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}. 
 
Definition: Any set which is a superset of all the sets under consideration is known 
as the universal set. This is usually denoted by Ω , S or U. 
 
For example, if A = {1,2,3}, B = {3,4,6,9} and C = {0,1}, then we can take  
U = {0,1,2,3,4,5,6,7,8,9} or U= N, or U=Z as the universal set. 
 
Note that the universal set can be chosen arbitrarily for a given problem. But once 
chosen, it is fixed for the discussion of that problem.  
 
Theorem 1: If A is a set with n elements, then |P(A)| = 2n. 
 
Proof: We shall prove this by mathematical induction. 
For this, we first check if it is true for n= 1.Then assuming that it is true for n = m, we 
prove it for the case n = m +1. It will, then, follow that the result will be true ∀ n ∈N. 
 
Step I: If   A  = 1, then P(A) = 2=21. 
 
Step II: Assume that the theorem holds for all sets A of cardinality k, i.e. if ׀A׀ = k, 
then A has 2k subsets.  
 
Step III: Now consider any set A = {x1, x2, x3,…,xk, xk+1}, with k+1 elements. 
Consider its subset B= {x1, x2, x3,…,xk }. Now B has 2k subsets, each being a subset of 
A. Now, take any such subset {x i ,x i ,…,x }of B. Then {x i ,x ,…,x ,x 1 2 ir 1 i2 ir k+1} is a 
subset of A that is not a subset of B. So, for each of the 2k subsets of B, we attach xk+1 
to it to get 2k more subsets of A. 

You can see that this covers all the subsets of A.  

So the number of subsets of A=2k +2k =  2.2k   =  2k+1 .      
Hence the theorem.  
 
Now try these exercises.  
 

E4)  Give two proper subsets and two supersets of the set of vowels of the English 
alphabet. 

 
E5)  Find the power set of the set A ={a,e,i,o,u}. 
 
E6)  For which set A, is P(A) = 1 ? 
 
E7)  If A B, is P(A) ⊆  P(B)? Why?  ⊆
E8)  P(A) = P(B) ⇒ A = B. True or false? Why? 
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Let us conclude this section with the pictorial representation of sets. You know that 
the pictorial representation of any object helps in understanding the object. This is 
why a pictorial representation of sets, known as a Venn diagram, helps in 
understanding and dealing with sets. 
 
The English priest and logician John Venn invented the Venn diagram. Through Venn 
diagrams we can easily visualize the abstract concept of a set and operations on sets. 
In this diagram, the universal set is usually represented by a rectangle and its subsets 
are shown as circles or other closed geometrical figures inside this rectangle. 
 
For example, A = {Lucknow, Patna, Bhopal, Itanagar, Shillong} can be represented 
using a Venn diagram as in Fig. 2. Here U could be any superset of A.  

 

A 

U
*Lucknow, 
*Patna, 
*Bhopal, 
*Itanagar, 
*Shillong 

 

 
 

 
 
 

Fig. 2: A Venn diagram 

Now that you are familiar with basic definitions related to sets, let us discuss some 
basic operations that can be performed on sets. This is when we shall appeal to Venn 
diagrams very often, as you will see. 
 

1.3 OPERATIONS ON SETS 

Let us now study sets obtained by applying operations on sets. We will cover four 
operations here, namely, union of sets, intersection of sets, complement of sets and 
symmetric difference. While studying them you will see how useful a Venn diagram 
can be for proving results related to these operations. In this section we will also look 
at some rules that are common to operations on sets and operations on statements, 
which you studied in Block 1. 

1.3.1 Basic Operations 

In this sub-section we shall define each of the operations one by one. 
 
Definition: The union of two sets A and B is the set of all those elements which are 
either in A or in B or in both A and B. This set is denoted by A B, and read as ‘A 
union B’. 

∪

Symbolically, A B= {x:x ∈  A or x ∈  B} ∪
 
For example, if A = {x: x is a stamp} and B = {4,5}, then   

A B= {x:x is a stamp or a natural number lying between 3 and 6}. ∪
 
And A={Ram, Mohan, Ravi} and B={Ravi, Rita, Neetu}, 
then A∪ B={Ram, Mohan, Ravi, Rita, Neetu}. 
 
If A⊆B, then A B = B, and vice versa. This can be shown immediately using a 
Venn diagram, as in Fig.3.(a), where A is shown as the square contained in the circle 
representing B. In Fig.3(b), A B is shown when A and B have some elements in 
common, and in Fig.3(c), we depict A∪ B when A and B have no element in 
common. 

∪

∪
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(a)           (b)                         (c) 
 

Fig. 3: Venn diagram for union 
 
Definition: The intersection of sets A and B is the set of all the elements which are 
common to both A and B. This set is denoted by A ∩  B, and read as ‘A intersection 
B’. 

Symbolically, A∩ B  = {x :x ∈A and x∈B}; 
For example A  = {1,2,3} and B = {2,1,5,6}, then A∩ B  ={1,2}. 
Again if A= {1} and B = {5} then A∩ B = { } or φ .   
 
Remark: For any two sets A and B, A∩ B A  A B and A B B  A B.  ⊆ ⊆ ∪ ∩ ⊆ ⊆ ∪
 
What is A B if A⊆B? Do you agree that it is A? Let us use a Venn diagram to 
check this (see Fig.4(a)). If A and B have some elements in common, then the Venn 
diagram for A B looks like Fig 4.(b), and if A and B have no element in common,  
then the Venn diagram will be as in  Fig.4(c). 

∩

∩

 

  

 

 

 

(a)  (b)     (c) 
 

Fig. 4: Venn diagram for intersection of sets  
 
Definition: The difference of two sets A and B is the set of all those elements of A 
which are not elements of B. Sometimes, we call this set the relative component of B 
in A. It is denoted by A~B or A\B, and is read as ‘A complement B’. 

Symbolically, A~B = {x : x ∈A and x∉B} and 
                       B ~A = {x : x ∈B and x∉A} 
 
For example, if A = {4,5,6,7,8,9} and B = {3,5,2,7}, then A ~ B = {4,6,8,9} and  
B ~ A = {3,2}. From this example it is clear that A ~ B ≠ B ~ A. In fact, this is usually 
the case. So, the difference of sets is not a commutative operation. 
 
In Fig.5(a), A B, so that A~B=⊆ φ . 
 
In Fig.5(b) we show A~B when A⊇B, and in Fig.5(c) we show A~B when  neither 
A⊆B nor B⊆A. 
 
In Fig. 5(d), we show A~B when A and B are disjoint. 
 
 

A 

B 

U 

 

U

BA

 
A B

U

U

A 

A∩ B

B

U U

B

A 

A B 
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          (b) 

U 

A~B = φ  

B 

A 

U 

A 

B 

 
 

(a)  (b) 

 
        

 
 
 (c)  (d)   

B A 

U U 

B A 

 
 
 

        (c)            (d)  

Fig. 5: A ~ B in different situation is the shaded portion. 
 
There is one particular ‘difference’ that shows up very often, which we now define. 
Definition: The complement of a set A, is the set U \ A, and is denoted by Aʹ or Ac.   
For example, U={Physics, Chemistry, Mathematics} and A={Mathematics}, then the  
complement of A is Aʹ= {Physics, Chemistry}. 
 
The Venn diagram showing the complement of  Á is the set of those elements of the 
universal set U which are outside A (see Fig.6). 
 

Aʹ ́ U 

A 

 
 
 
 
 
 
 
 

     Fig. 6: Venn diagram for Aʹ. 
 
Definition: The symmetric difference of two sets A and B is the set of all those 
elements which are in A or in B, but not in both. It is denoted by AΔB. 

i.e., A  B =(A~B)  (B~A). Δ ∪
 
Note that A  B = B  A, i.e. the symmetric difference is commutative. Δ Δ
 
For example A= {1,2,3,4,5} and B= {3,5,6,7}, then  A~ B= {1,2,4},and B~A = {6,7} 
∴     A B={A~B) (B~A)  = {1,2,4,6,7} Δ ∪
 
Now you may try these exercises. 
  

E 9)  Make a Venn diagram for A B for each of the situations i) A ⊆B, ii) A ⊈ B,  Δ
 iii) B ⊈ A and A B∩ φ≠ ; iv) A∩ B=φ . 
  
E10)  Let A= {Math, Physics, Science}, B={Computer,Math,Chemistry}, C={Math}. 

Find A (B C). ∪ ∩
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Basic Combinatorics E11)  If A = {1,2,3,4,5,6}, B={4,5,6,7,8,9},find  i) A~ B, ii) B~ A, iii) A Δ  B. 

 
E12) For which sets A and B would A~B = B~A ? 
 
E13) Write a program in C to perform E 10. 
 
E14) Under what conditions can A∩ B = A∪ B ? 

While discussing these operations, you may be wondering that they seem to satisfy 
properties very similar to those of propositional logic covered in Block 1 of this 
course.You are right!  Let us look at this aspects now. 
 
1.3.2 Properties Common to Logic and Sets 

Before looking into the properties we shall first present a very useful principle to you. 
This will allow you to see how one property can be proved in several situations 
simultaneously. 
 
Duality Principle: The ‘duality principle’ is very convenient for dealing with 
theorems about sets. Basically if any theorem is given to you, by applying the duality 
principle you can get another theorem (the dual of the previous one). In any statement 
involving the union and intersection of sets, we can get from one of the statements to 
the other by interchanging ∩ with ∪  andφ with U.  
 
For example, the dual of A (B∪ ∩ C) is A∩ (B C) and the dual of U∪∪ φ =U is 
U∩ φ  =φ . So, for example what is true for A (B∪ ∩ C) will be true for A∩ (B C) 
too. This is why if the first property in each of the pairs below is proved the second 
one follows immediately. 

∪

For any universal set U and subsets A, B and C of U, the following properties hold. 

i) Associative properties: 
 Union: A∪ (B C)= (A∪ B) ∪  C ∪
 Intersection: A ∩ (B∩ C) = (A∩ B) ∩ C 
 
ii) Commutative properties: 
 Union: A∪ B= B∪ A  
 Intersection: A∩ B = B∩ A. 
 
iii) Identity: 
 Union: A∪ φ = A  
 Intersection: A∩ U=A. 
 
iv) Complement: 
 Union: A∪ A′ = U 
 Intersection: A∩  A′ = φ  
 
v) Distributive properties: 
 Union: A∪ (B∩ C) = (A B)∪ ∩ (A C) ∪
 Intersection: A∩ (B C) = (A∪ ∩ B) (A∪ ∩ C) 
 
De Morgan’s Laws:  

For any two sets A and B the following laws known as De Morgan’s laws, hold 

1. (A B)′  = A′∪ ∩ B ′, and Fig. 7: Augustus De 
Morgan (1806–1871) 2. (A B)′  = A′∪ B′  ∩
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De Morgan’s laws can also be expressed as  

1. A ~ (B C) = (A~ B)  (A~ C) ∪ ∩

2. A ~ (B C)= (A~ B) ∪  (A~ C) ∩

Each of the properties above corresponds to a related property for mathematical 
statements in logic (which we have covered in Unit 2 and Unit 3 of Block 1 of this 
course). 

) 

 
Now try these exercises. 
 

E15)  Find the dual of  

i) A ∩ (B C) = (A B) C, and ii) (A B) ∩ ∩ ∩ ∪ ∩ (A∪ C). 

E16) Draw a Venn diagram to represent A∪ (B∩ C). 
 
E17)  Check whether  (A B)∩ C = A∪ (B∩ C) or not using a Venn diagram. ∪

Let us now focus on subsets of a particular kind of product of sets. 
 

1.4 RELATIONS 

Sometimes we need to establish relations between two or more sets. For example, a 
software development company has a set of specialists in different technology 
domains, or a company gets some projects to develop. Here the company needs to 
establish a relation between professionals and the project in which they will 
participate. To solve this type of problem the following concepts are required. 

1.4.1 Cartesian product  

Very often we deal with several sets at a time, and we need to study their combined 
action. For instance, combinations of a set of teachers and a set of students. In such a 
situation we can take a product of these sets to handle them simultaneously. To 
understand this product let us first consider the following definitions. iff is short for ‘if 

and only if’.  
Definition: An ordered pair, usually denoted by (x,y), is a pair of elements x and y 
of some sets. This is ordered in the sense that (x,y) ≠ (y,x) whenever x≠ y,that is , the 
order of  placing of the element in the pair matters. 
 
Any two ordered pairs (x,y)  and  ( a,b) are equal  iff x = a and y = b. 
 
For example if, A= {a,b,c}and B= {x,y,z},then  
A × B = {a,b,c} × {x,y,z} = {(a,x), (a,y),(a,z),(b,x),(b,y),(b,z),(c,x),(c,y), (c,z)},and 
B × A = {x,y,z} × {a,b,c} =  {(x,a),(x,b),(x,c),(y,a),(y,b),(y,c),(z,a),(z,b),(z,c)}. 
 
Now let us think about how B × A can be represented geometrically? For instance 
what is the geometric view of  {2} × R ? This is the line x =2 given in Fig.8(a).  
 
Now, after seeing geometric representation of  {2} × R, can you tell what {1,3}×{2,3} 
= {(1,2),(3,2),(1,3),(3,3) }looks like? You will get four points in the first quadrant, as 
shown in Fig.8(b). 
 
 
 

 
 
 
 
 
         

Fig. 8(a): {2} × R,  i.e., x = 2.     Fig.8(b): {1,3}×{2,3} 
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Basic Combinatorics Now, you know that the multiplication of numbers is commutative. Is the Cartesian 

product of sets also commutative? For instance, is {1}×{2}={2}×{1}? No, because  
(1,2) ≠ (2,1). So, A×B≠ B×A usually. 
 

We can extend the definition of A × B to define the Cartesian product of n sets A1, 
A2, ….,An   as follows. 
A1 ×A2×A3 ×…×,An= {(x1,x2,x3,…,xn)}: x1∈A1,∧ x2 ∈A2∧ x3 ∈A3∧ …, ∧ xn 
∈An}. 
The element (x1,x2,…,xn) is called an n-tuple. For instance, the 3–tuple (1,1,3) ∈  
{1} × {1,2} × {2,3}. 
 
Now you may try some exercises. 
 

E18) If X= {a,b,c} and Y={1,2,3},find  
i) X × X , ii) X × Y, and iii) X ×φ . 

E19)  Under what conditions on A and B is A×B = B×A ? 

E20)  Give the geometric representation of  R ×{2}. 

With what you studied in this sub-section, you now have the background to discuss 
relations. 
 
1.4.2 Relations and their Types 

We often speak of relations which hold between two or more objects, e.g., discrete 
mathematics is one of the courses in  the IGNOU MCA Ist semester, Nehru wrote 
Freedom of India, Chennai is the capital of Tamil Nadu. These are the relations in 
everyday situations. In these examples some sort of connections between pairs of 
objects are shown, and hence they express a relation between the pairs of objects.  
 

Definition: A relation between two sets A and B is a subset of A × B. Any subset 
of A × A is a relation on the set A. 
 
For instance, if A ={1,2,3} and B = {p,q}, then the subset {(1,p),(2,q),(2,p)} is a 
relation on A × B. And {(1,1), (2,3)} is a relation on A. 
 

Also, R= {(x,y) ∈  N × N : x > y} is a relation on N, the  set of natural numbers, 
since R  N × N. ⊆
 

If  R A ×B,. we write ⊆ x Ry if and only if (x,y) ∈R( xRy is read as ‘x is related to y’). 
 
Theorem 2: The total number of distinct relations between a finite set A and a finite 
set B is 2mn, where m and n are the number of elements in A and B, respectively. 
 
For example, R1 = N × L, where  L is set of straight lines, in this relation we can give 
different ordering of the straight lines.  
If the relation R2 = {1,2,3} × { l1,l2}, then line l1 and l2 can get three different 
ordering.  
 

Proof: The number of elements of A × B is mn. Therefore, the number of elements of 
the power set of A× B is 2mn (See Theorem 1). Thus, A × B has 2mn different subsets. 
Now every subset of A× B is a relation from A to B, by definition. Hence the number 
of different relations from A to B is 2mn.  
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Sets, Relations and 
Functions As you have seen, any and every subset of A×A is a relation on A. However, some 

relations have special properties. Let us consider these types one by one. 
 
1.4.3 Properties of Relations  

Reflexive Relations: A relation R on a set A is called a reflexive relation if 
(a,a)∈R∀ a∈  A. 
 
In other words, R is reflexive if every element in A is related to itself. 
Thus, R is not reflexive if there is at least one element a ∈  A such that (a,a) ∉ R. 
 
For example, if A= {1,2,3,4}, then the relation R1= {(1,1), (2,2), (3,3), (4,4)} in A is 
reflexive because for x ∈  A,(x,x) ∈  R1. However, R2= {(1,1), (2,1), (4,4)} is not 
reflexive since 2 ∈  A, but (2,2) ∉R2. 
 
Symmetric Relations: A relation R on a set A is called a symmetric relation if  
(a,b) ∈  R ⇒  (b,a) ∈  R.Thus, R is symmetric if bRa holds whenever aRb holds. 
 
A relation R in a set A is not symmetric if there exist two distinct elements a, b ∈  A, 
such that aRb, but not  bRa. 
 
For example, if L is the set of all straight lines in a plane, then the relation R in L, 
defined by ‘x is parallel to y’, is symmetric, since if a straight line a is parallel to a 
straight line b, then b is also parallel to a. Thus, (a,b) ∈  R (b,a) ⇒ ∈  R. 
 
However, if R is the relation on N defined by ‘xRy iff x–y>0’, then R is not 
symmetric, since, 4−2>0 but 2−4 ⊁ 0.Thus, (4,2) ∈  R but (2,4) ∉ R.  
 
Transitive Relations: A relation R on a set A is called a transitive relation if 
whenever (a,b) ∈  R and (b,c)∈ R, then (a,c)∈R for a,b,c ∈A .  
Thus, [(a,b),∈R,(b,c)∈  R (a,c)∈R] , a,b,c∈A⇒  R is transitive. ⇒ ∀
 
A relation R in a set A is not transitive if there exist elements a,b,c ∈A, not 
necessarily distinct, such that (a,b) ∈  R, (b,c) ∈  R but (a,c) ∉ R. 
 
For example, if L is the set of all straight lines in a plane and R is the relation on L 
defined by ‘ x is parallel to y’ then if a is parallel to b and b is parallel to c, then a is 
parallel to c. Hence R is transitive. However, the relation ‘xSy’on L defined by ‘iff x 
intersects y’ is not transitive. 
 
Also, the relation R on A, the set of all Indians, defined by ‘xRy iff x loves y’, is not a 
transitive relation. 
 
Equivalence Relations: A relation R on a set A is called an equivalence relation if 
and only if  

(i) R is reflexive, i.e., for all a ∈  R, (a, a) ∈  R, 

(ii) R is symmetric, i.e., (a, b) ∈  R ⇒  (b, a) ∈  R, for all a, b ∈  A, and 

(iii) R is transitive, i.e., (a, b) ∈  R and (b, c) ∈  R  (a, c) ⇒ ∈  R, for all a, b, c ∈  A. 
 
One of the most trivial examples of an equivalence relation is that of ‘equality’.  
For any elements a,b,c in a set A, 

(i) a = a, i.e., reflexivity 

(ii) a = b  b = a, i.e., symmetricity ⇒

(iii) a = b and b = c  a = c , i.e., transitivity. ⇒
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Now let us see if ‘xRy iff ’ ‘x≤y’ gives an equivalence relation on R.  Basic Combinatorics 

(i) x x, i.e., (x,x) ≤ ∈R, i.e., R is reflexive. 

(ii) However, 2≤3 but 3 ≰ 2. So, R is not symmetric. 
 
Thus, R is not an equivalence relation. 
 
Now you may try these exercises. 
 

E 21)  Let A be the set of all people on Earth. A relation R is defined on the set A by 
  ‘aRb if and only if a loves b’ for a,b ∈  A.  

  Examine if R is i) reflexive, ii) symmetric, iii) transitive. 

Now we shall study a particular kind of relation, which is very useful in mathematics, 
as well as in computer science, as you will soon see. 
 

1.5 FUNCTIONS 

A function is a special kind of relation. If we take the example of the set A of students 
of IGNOU, and the set B of their enrolment numbers. Now consider R = {(a,b)∈ AxB 
| b is enrollment number of a },this is a relation between A and B. It is a ‘special’ 
relation, ‘special’ because to each a ∈A∃  ! b such that aRb. We call such a relation a 
function from A to B.  
 
Let us define this term formally. 
 
Definition: A function from a non-empty set A to a non-empty set B is a subset R 
of AxB such that for each a ∈A∃a unique b∈B such that (a,b)∈R. So, this relation 
satisfies the following two conditions: 

(i) for each a ∈A, there is some b∈B such that  (a,b) ∈R  

(ii) if (a,b) ∈R and (a,b´) ∈R then b = b´. 

We usually present functions as a rule associating elements of one set with another. 
So, let us present the definition again, with this view. 
 
Definition: Let A and B be non-empty sets. A function (or a mapping) f from A to B 
is a rule that assigns to each element x in A exactly one element y in B. We write this 
as f: A  B, read it as ‘f is a function from A to B’. 
 
Note that  

( i ) to each  a ∈A, f assigns an element of B; and  

( ii) to each  a ∈A, f assigns only one element of B.  
 
So, for example, suppose A ={1,2,3}, B= {1,4,9,11} and f assigns to each member in 
A its square values. Then f is a function from A to B. But if A={1,2,3,4}, 
B={1,4,9,10} and f is the same rule, then f is not a function from A to B since no 
member of B is assigned to the element 4 in A. 
 
Note that the former example, 11∈B, but there is no element in A which is assigned 
to 11. This does not matter. It is not necessary that every element of B be related to 
some element of A.  
 
Functions are not restricted to sets of numbers only. For instance, let A be the set of 
mothers and B be the set of human beings. Then the rule that assigns to every mother 
her eldest child is a function. But the rule that assigns to each mother her children is 
not a function because it does not relate a unique element of B to each element of A. 
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Sets, Relations and 
Functions 

Now, given a function, we have certain sets and terms that are associated with it. Let 
us give them some names.  
 
Definitions: Let f be a function from A to B. The set A is called the domain of the 
function f and B is called the co-domain of f. The set {f(x)| x ∈A} is called the 
range of f, and is also denoted by f(A). 
 
Given an element x∈A, the unique element of B to which the function f associates, it 
is denoted by f (x) and is called the f-image (or image) of x or the value of the 
function f for x. We also say that f maps x to f(x). The element x is referred to as the 
pre-image of f (x).  
 
For example, if A = {1,2,3,4}, B = {1,8,27,64,125}, and the rule f assigns to each 
member in A its cube, then f is a function from A to B. The domain of f is A, its 
codomain is B and its range is {1,8,27,64}. 

Can you tell what will be the domain and codomain for rule f : f(x) = 
x1

x
−

 ? 

You can see that 1–x = 0, if x = 1, in this case f(x) will be undefined. 
Domain of f can be taken as R~{1}and codomain can be R. 
 
Remark: Each element of A has a unique image, and each element of B need not 
appear as the image of an element in A. Further, more than one element of A can have 
the same image in B. 
 
Let us look at some examples of functions, and non-functions now. 
 
i) If b is be a fixed element of B, then f: A B : f(x)= b ∀ x ∈A is called a constant 
function.  
 
Note that if b=0, then f is called the zero map, and is denoted by 0. 
 
ii) f : A  A : f(x) = x x ∈A is called the identity function , and is denoted by I. ∀
   
iii) Consider A= {1,2,3,4}, B= {1,4,5} and the rule f which associates 1 1, 2  4, 
3 5, 4 5. Then f is a function from A to B. 
 
 
 

 
 
 

4.   

1.

6. 

5. 

7. 

A 
f 

2. 

1. 

3. 

4. 

B

 
 

Fig.11: The rule f is a function 
 
iv) The function f from R to Z, defined by the rule that f maps any real number x to 
the greatest integer less than or equal to x. is known as the greatest integer function 
or the floor function. We denote this function’s action by f(x)=[x], where [x] is the 
greatest integer x.  ≤
 
For example, if x = 0.6 then f(x) =[x]=0, if x= 2.3 then f(x)=[x]=2, and if  x = –5, then 
[x]ʹ= –5 . 
 
v) Function f: R R: f(x)=│x│is known as the modulus (or absolute value) function, 
where │x│is the absolute value of x. 
 
For example, if x=10 then f(x)=│x│=10 and if x= –10, then f(x)=|x|=10. 
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Basic Combinatorics vi) Now take, A={a,b,c} and B={1,2,3,4,5}. Consider the rule f which associates  

a 1, a  3, b 2, c 3. This is not a function from A to B because, elements 1 and 3 
∈  B are assigned to the same element a ∈A. 
 A B  
 
 
 
 
 
 

 
 

Fig.9: The rule f is not a function 
 
vii) Consider A= {1,2,3}, B= {1,4,5,6,7} and the rule f which associates 1 1, 2  1, 
2 4. Here f is not a function from A to B since no member of B is assigned to the 
element 3∈A. 
 
 
 
 
 
 

 

a

b

c

1. 

2. 

3. 

1

2

3

7. 

6. 

5. 

A B 

4. 
1. 

f 

5. 

4. 

f 

 
 

Fig.10: The rule is not a function 
 
Now you may try these exercises. 
 

E22) Let A= {a,b,c,d}, B= {1,2,3} and R= {(a,2), (b,1), (c,2), (d,1)}. Is R a function? 
 Why. 
 
E23) Every function is a relation. Is every relation a function? Why?  
 
E24) Consider the following pseudocode. 

1. read(n) 
2. while n >1 do 
3. begin 
4. if  n is even then n := n div 2 
5. else n := 2n + 1; 
6. end 
 
Write a function of n that describes the operations performed. 

 
E25)  If A= {1,2,3,4}, B = {2,3,4,5,6,7} and the rule f assigned to each member 
 in A is f(x)= x + 1, then find the domain and range of f.  

Now let us discuss some types of functions. 
  

1.5.1 Types of Functions 

Here we shall look at different types of mappings. 
 ‘Surjective’ comes from 

the French word ‘sur’, 
meaning ‘on top of ’. 

Onto Mapping: A mapping f: A  B is said to an onto (or surjective) mapping if 
f(A)= B, that is, the range and co-domain coincide. In this case we say that f maps A 
onto B. 
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Sets, Relations and 
Functions 

For example,  f: Z  Z : f(x) = x+1, x∈Z, then every element y in the co-domain Z 
has a pre-image y–1 in the domain Z. Therefore,  f(Z) = Z ,and f is an onto mapping. 
 
Injective Mapping: A mapping f: A  B is said to be injective (or one-one) if the 
images of distinct elements of A under f  are distinct, i.e., if x1 ≠ x2 in A, then  
f(x1)  f(x≠ 2) in B. This is briefly denoted by saying f is 1–1. 
 
For example f: R  R be defined by f(x) = 2x+1, x∈R, then for x1 ,x2 ∈R (x1≠ x2) 
we have f(x1) f(x≠ 2). So, f is 1–1. 
 
Bijective Mapping: A mapping f: A  B is said to be  bijective (or one-one onto,) if 
f is both injective and surjective, i.e., one-one as well as onto. 
 
For example, f: Z  Z  : f(x) = x+2, x∈Z  is both injective and surjective. So, f is 
bijective. 
There is a particular kind of bijective function that we use very often. Let us define 
this. 
 
Definition: A bijective mapping f : A  A is said to be a permutation on the set A. 
Let A = {a1,a2,…,an}, and  f  be a bijection from A onto A that maps ai to f(ai), then  
we write f as  

f = . So, the identity mapping I= . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
))...f(af(a )f(a

a.  . .aa
n21

n               1  2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n2       1

n2       1

...aaa

...aaa

 
Now, associated with a bijective function, we get another function very naturally, 
which we now define. 
 
Definition: Let f: A  B be a bijective mapping. Then the mapping g : B  A which 
associates to each element b ∈  B the unique element a ∈  A, such that f(a) = b, is 
called the inverse mapping of the mapping f: A  B. We denote this function g by f–1. 
 
Note that a function f is invertible iff f –1 exists iff f is bijective.  
Hence, if f: A B is a one-one onto mapping, then f -1 : B A exists, and is also  
1-to-1. 

Note the inverse of the permutation f =  is the permutation 

. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n21

n21

...bbb
...aaa

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n21

n21

...aaa
...bbb

 
For example, A= R~{3} and B= R~(1}, and the function f: A  B is defined by 

f(x)=
3x
2x

−
−

.  

 
We can see that f is a one–to–one function. 
∴  f inverse exists. 
 
To get f –1(x) the following steps are required; 

1. Replace f(x) by y in the equation describing the function. You will get  

y =  
3x
2x

−
−

. 

 
2. Interchange x and y. In other words, replace every x by y, and vice versa. You  

will get x =  
3y
2y

−
−

.  
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Basic Combinatorics 3. Solve for y.  

 
4. Replace y by f- –1(x).  

By applying these steps we get f –1 (x)= 
1x
23x

−
−

. 

Now try these exercises.  
 

E26)  Explain why f : Z  Z: f(x) = x2 is onto? Domain and range of f is Z. 
 
E27)  Which of the following kind of function would you use to provide photo 

identity numbers?  Why? 

 i) Constant function, ii) oneـtoـone function, and iii) identity function. 

E28) Find f inverse of rule f : f(x) = x3–3. 

Now we can see how different operations like addition, subtraction, multiplication and 
division can be applied on functions. 

1.5.2 Operations on Functions 
If given whose domains ranges are subsets of the real numbers, we define the 
function f+g by (f + g)(x) to be the function whose value at x is the sum of f(x) and 
g(x). Symbolically,  

(f + g)(x) = f(x) + g(x). This is called pointwise addition of f and g. 
 
The domain of f+g is the intersection of the domains of f and g since to compute               
(f + g)(x) it is necessary and sufficient to compute both f(x) and g(x).  
 
Other operations on functions are defined similarly:  

• (fg)(x) = f(x)g(x) (pointwise multiplication)  
• f p (x) = (f(x))p for any real exponent p with the domain of f p consisting of those 

points for which the p-th power of f(x) makes sense. 
• (f/g)(x) = f(x)/g(x), for g(x) ≠ 0 (pointwise multiplication)  
 
For example, if f(x) = 3 sin (x) and g(x) = x2, then  

(f+g)(x) = 3 sin(x) + x2 

(fg)(x)   = 3 sin(x)*x2 

(f-g)(x)  = 3 sin(x) – x2 

(f/g)(x)  = 3 sin(x) / x2 

 

The domains of both f and g are all real numbers, but the domain of f/g is                         
{ x | x 0}.  ≠
 
Now let us consider two functions f and g from A= {1,2} to, B= {1,2,3,4}, where 
f={(1,1),(2,4)}. Let g be defined by the rule g(x)= x2 where the domain of g is the set 
{1,2}. Here both have the same domain. Since f and g assign the same image to each 
element in the domain, they have the same effect throughout. This is why we treat 
them as the same, or equal. 
 
Definition: If f and g are two functions defined on the same domain A and if f(a)= 
g(a) for every a ∈A, then the functions f and g are equal, i.e., f = g. 
 
For example f(x) = x2+5, where x is a real number, and g(x) = x2+5, where x is a 
complex number. Then the function f is not equal to the function g since they have 
different domains although f(x)= x2+5= g(x ∈∀x R). By this example we can 
conclude that even if f(a)= g(a), f and g may not be the same. 
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Sets, Relations and 
Functions 

So far, the operations you have seen are the same as those for member systems. 
However, there is yet another operation on functions which we now define. 

Definition: Let f and g be the operation of combining two functions by applying them 
one after the other. That is, the composition of f(x) and g(x), denoted by, fog . 

For example, consider f : R R : f(x) = (x→ 3 + 2x )3 
.
  We can write it as the 

composition of g and h, where the value of f(x) can be obtained by first calculating x3 
+ 2x and then taking its third power . We can write g for first or inside function g(x) = 
x3 + 2x.  We write h for the second function : h(x) = x3 . The use of the variable x is 
irrelevant, we could as well write h(y) = y3 for y ∈ R. We can see that goh(x) = g(x3 + 
2x) = (x3 + 2x)3  = f(x).  

In general (fο g) (g≠ ο f).  

For example, if, f(x) = x2 and g(x) = x+1, then (fο g)(x) = (x + 1)2 and (gο f)(x) = 
x2+1. 
Here we can see that fο g g≠ ο f.  
 
Let us see another example, where f(x) = x2, g(x) = x +1, h(x) = x3  

Then, fο (gο h) (x) = (x3 +1)2 and (fο g) ο h (x) = (x3+1)2. Here we can see fο (gο h) 
= (fο g) ο h. 
 
Now let us see how you can get product of two permutations f and g of the same set, 

Let f= and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
… )f(a)f(a    )f(a

a    ...a        a
n21

n 21

g = . Then fg=  is itself a  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)g(a )...g(a )g(a

a ...a      a
n21

n21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)]f[g(a )]...f[g(a )]f[g(a

a     ...a          a
n21

n2.1

permutation. 
 

For example if, f= , g= then  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
132
321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
312
321

fg= and gf=  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
231
321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
123
321

 
Note that fο g g≠ ο f. Thus the multiplication of permutations is not commutative 
in general. 
 
However, the multiplication of permutations is associative. For example, if f= 

, g= , h= be the permutations on  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2431
4321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1432
4321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3124
4321

A = {1,2,3,4}, then 
 

fg= ,gf= , gh= ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3142
4321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1243
4321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1243
4321

 

f(gh)= ,(fg)h= .  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1432
4321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1432
4321

 
Here we can see the multiplication of permutation is commutative.  
 
Now try these exercises. 
  

E 29) Let f(x) = 1/x and g(x) = x3 + 2. Find the following functions, where x ∈R.  
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Basic Combinatorics i) (f + g)(x)  

ii) (f - g)(x)  

iii) (fg)(x)  

iv) (f/g)(x)  

E30)  Let f(x) = 1+x  1x −≥∀ and g(x) = x3 ∈∀x R. Define the following 
functions. Also give their domains.   

          i)  (f + g)  

ii) (f – g) 

   iii) (fg)  

iv) (f/g)  

 v) (fο g) 

With this we have come to the end of this unit. Let us now summaries what we have 
covered in this unit. 
 

1.6 SUMMARY 

In this unit we have covered the following points: 

1. We introduced basic concepts related to sets and   different ways of representing 
them. 

 
2. We worked at different operations on sets and there Venn diagram 

representations. 
 
3. We explored some properties common to operations on sets and logical 

statements. 
 
4. In the process we also documented the duality principle. 
 
5. We defined relations as a Cartesian product of sets and looked at several examples 

and type of relations. 
 
6.  We defined a function as a particular kind of relation. Then we studied different 

types of functions as well as basic operations on functions. In the process we 
considered permutations and their product. 

 

1.7 SOLUTIONS / ANSWERS 

E1) A={x:x is a student of IGNOU.} 
 
E2) i) The collection of all good teachers is not a set because this collection is not  

well-defined. The characteristic ‘good’ cannot be measured objectively. 

ii) The set of points on a line is not finite because infinitely many points make a 
straight line. 

 
E3) {…, –3, –2, –1,0,1,2,3,…}. 
 
E4) Set of vowels of English alphabet V={a,e,i,o,u}. Two subsets of set V are 

V1={a,e}, and V2={i,o}. Two supersets of V are V3={a,b,c,…,z}, and 
V4={a,c,d,e,i,o,u,…,z}. 
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E5) Powerset of A={a,e,i,o,u} is  

{φ ,{a},{e},{i},{o},{u},{a,e},{a,i},{a,o},{a,u},{e,i},{e,o},{e,u},{i,o},{i,u}, 
{o,u},{a,e,i},{a,i,o},{a,o,u},{e,i,o},{i,o,u},{i,o,u},{a,e,i,o},{e,i,o,u},{a,e,i,o,u}. 

 
E6) For empty set A={ } or φ , P(A)=1 
 
E7) If A B, then P(A)  P(B) because every subset of A is a subset of B. ⊆ ⊆
 
E8) If P(A) =P(B) then A∈P(A)= P(B)= A B. Similarly, B A. Therefore A = B.  ⊆ ⊆
 
 
E9) 
 
 
 
 

        
 

 
  

U B A 

 Fig.12: The Shaded portion is AΔ B 
 
 You can try them for the other situations. We are showing in Fig. 12 for the 

second situation. 
 
E10) A (B C) = {Math, Physics, Science}= A. ∪ ∩
 
E11) i)  A ~B ={1,2,3} 

 ii)   B ~A ={7,8,9} 

 iii) AΔB ={1,2,3,7,8,9} 

E12) Only if A and B are φ . 
 
E13) Write separate functions to find A~B, B~A and AΔB with passing sets A and 

B as argument, return the resultant set. 
 
E14) A B can be equal to A B if either A⊆B or B A. ∩ ∪ ⊆
 
E15) i) Dual of A (B C) = (A∩ B)∩ C is A (B C) = (A∪ B)∪ C. ∩ ∩ ∪ ∪

        ii) Dual of (A B) (A C) is (A B)∪ (A∪ ∩ ∪ ∩ ∩ C). 

 

E16) 

 

 

 

 

   

A B U 

C 

A∪ (B∩ C) 
                 
 Fig.13: The lined portion represents A (B C) ∪ ∩
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E17) Basic Combinatorics 

 

 

 

 

 

     Fig.14(a)                                                           Fig.14(b) 
   

 

A B

(A B)∪ ∩ C

C

U A B

(A (B∩ C) ∪
C 

U

 Shaded area in Fig.14 (a) and Fig.14(b) are not same so (A B) C is not 
equal to (A (B

∪ ∩
∪ ∩ C).   

 
E18) i)   X Χ X={(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)}. 

 ii) X Χ Y={(a,1), (b,1), (c,1), (a,2), (b,2), (c,2), (a,3), (b,3), (c,3)}.  
 iii) X Χφ = φ . 

 
E19) A Χ B = B Χ A iff A = B. 
 
E20)  The geometric diagram for RΧ{2} 

  will be the line parallel to Y axis.  

 See Fig.15. 

 
Fig.15: y=2  

E21) i) For a ∈A, aRa is reflexive because every one loves herself or himself. 

 ii) R is not symmetric because if a loves b then b need not love a, i.e., aRb 
does not always imply bRa. Thus R is not symmetric. 

 iii) R is not transitive, because if a loves b and b loves c then a need not love c; 
i.e., if aRb and bRc, aRc need not be. Thus, R is not transitive.  

 Hence, R is reflexive but is neither symmetric nor transitive. 
 
E22) R is a function because each element of A is assigned to a unique element of B.  
 
E23) Not every relation is a function. For example, this relation does not satisfy the 

property that, 

a) Each element of A must have assigned one element in B. 

b) If a∈A is assigned b∈B and a∈A is assigned bʹ∈B then b = bʹ . 

 That is why relations those who don’t satisfy above properties are not a function 
 
E24) We can see that the code has no effect on the value of n  0.In the While loop, 

the value of n is halved whenever it is even. If n becomes odd before reaching 1, 
the second part of the while loop is invoked, and n remains odd and increases 
forever. 

≤

 This shows that f : N N is the function defined by f(n)=
⎪
⎩

⎪
⎨

⎧ =

otherwise  undefined 
2, ofpower  a isn  if 1,

0.n if 0
 

E25) The domain of f is {1,2,3,4} and range of f is {2,3,4,5}. 
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E26) Function f(x) = x2 is one-to-one because for every value of x, x2 will be a 
number that is different for different x. Hence, f(x) = x2 is one-one mapping. 

 
E27) One-to-one function will be used for providing identity card number, because 

each person must have unique identity numbers. 
 
E28) Step 1: y = x3–3 

 Step 2: x = y3–3 

 Step 3: y = 3 3x +  

 Step 4: f –1(x) = 3 3x + . 
 

E29) i)  (f+g) (x)= 
x
1

+ x3 +2 

 ii) (f−g) (x)= 
x
1
− (x3 +2) 

 iii) (f.g) (x)= ⎟
⎠
⎞

⎜
⎝
⎛

x
1

 (x3 +2) 

 iv) (f/g) (x)= 
)2(

1
3 +xx

∈∀x R. 

 
E30)  i) (f+g) (x) = 1+x  +x3   1x −≥∀

 ii) (f-g) (x) = 1+x  –x3 1x −≥∀  

 iii) (f.g) (x) = 1+x  x3 1x −≥∀  

 iv) (f/g) (x) = 1+x  /x3 0x1,x ≠−≥∀  

 v)   (fο g)(x) = f(x3) = 13 +x 1x −≥∀ . 
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2.0 INTRODUCTION 

Let us start with thinking about how to assess the efficiency of a computer 
programme. For this we would need to estimate the number of times each procedure is 
called during the execution of the programme. How would we do this? The theory of 
combinatorics helps us in this matter, as you will see while studying this unit.   
 
Combinatorics deals with counting the number of ways in which objects can be 
arranged according to some pattern (listing). Mostly, it deals with a finite number of 
objects and a finite number of ways of arranging them. Sometimes an infinite number 
of objects and infinite number of ways in which they can be arranged are also 
considered. However, in this unit and block, we shall restrict our discussion to a finite 
number of objects.   
 
We start our discussion in Sec. 2.2, with two counting principles. These principles 
help us in counting the number of ways in which a task can be done when it consists 
of several subtasks, and there are many possible ways of doing the subtasks.  
 
In Sec. 2.3 we look at arrangements of objects in which the order matters. Such 
arrangements are called permutations. Here we look at various linear and circular 
permutations, and how to count their number in a given situation.  
 
In Sec. 2.4, we consider arrangements of objects in which the order does not matter.  
Such arrangements are called combinations. We will consider situations that require 
us to count combinations. You will see that most of these situations require us to 
apply the multiplication principle also.  
 
In the next section, Sec. 2.5, we consider binomial and multinomial coefficients. We 
see how they are related to the objects studied in Sec. 2.4.  
 
Finally, in Sec. 2.6, we consider the applications of what we have presented in the rest 
of the unit, for finding the probability of the occurrence of an event. As you will see, 
this application is natural, since we use similar counting arguments for obtaining 
discrete probabilities. This discussion will be useful for you, for instance, in coding 
theory as well as in designing reliable computer systems.  
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We continue our study of combinatorics in the next unit. We also have a section of 
miscellaneous exercises at the end of the block of which several are based on this unit.  
Doing these exercises, and every exercise given in the unit, will help you achieve the 
following objectives of this unit.  



 
Basic Combinatorics 2.1 OBJECTIVES 

After going through this unit, you should be able to:  

• explain the multiplication and addition principles, and apply them; 
• differentiate between situations involving permutations and those involving 

combinations;  
• perform calculations involving permutations and combinations; 
• prove and use formulae involving binomial and multinomial coefficients; 
• apply the concepts presented so far for calculating combinatorial probabilities. 
 

2.2 MULTIPLICATION AND ADDITION 
PRINCIPLES 

Let us start with considering the following situation: Suppose a shop sells six styles of 
pants. Each style is available in 8 lengths, six waist sizes, and four colours. How many 
different kinds of pants does the shop need to stock? 

There are 6 possible types of pants; then for each type, there are 8 possible length 
sizes; for each of these, there are 6 possible waist sizes; and each of these is available 
in 4 different colours. So, if you sit down to count all the possibilities, you will find a 
huge number, and may even miss some out!  However, if you apply the multiplication 
principle, you will have the answer in a jiffy!   

So, what is the multiplication principle? There are various ways of explaining this 
principle. One way is the following:  

Suppose that a task/procedure consists of a sequence of subtasks or steps, say, Subtask 
1, Subtask 2,…, Subtask k. Furthermore, suppose that Subtask 1 can be performed in 
n1, ways, Subtask 2 can be performed in n2 ways after Subtask 1 has been performed, 
Subtask 3 can be performed in n3 ways after Subtask 1 and Subtask 2 have been 
performed, and so on. Then the multiplication principle says that the number of 
ways in which the whole task can be performed is n1.n2….nk.  

Let us consider this principle in the context of boxes and objects filling them. Suppose 
there are m boxes. Suppose the first box can be filled up in k(1) ways. For every way 
of filling the first box, suppose there are k(2) ways of filling the second box. Then the 
two boxes can be filled up in k(1).k(2) ways. In general, if for every way of filling the 
first (r − 1) boxes, the rth box can be filled up in k(r) ways, for r = 2,3,…, m, then the 
total number of ways of filling all the boxes is k(1).k(2)… k(m).   

So let us see how the multiplication principle can be applied to the situation above 
(the shop selling pants). Here k(1) = 6, k(2) = 8, k(3) = 6 and k(4) = 4. So, the 
different kinds of pants are 6 × 8 × 6 × 4 = 1152 in number. 

Let’s consider one more example.  
 
Example 1: Suppose we want to choose two persons from a party consisting of 35 
members as president and vice-president. In how many ways can this be done? 
 
Solution: Here, Subtask 1 is ‘choosing a president’. This can be done in 35 ways.  
Subtask 2 is ‘choosing a vice-president’. For each choice of president, we can choose 
the vice-president in 34 ways. Therefore, the total number of ways in which Subtasks 
1 and 2 can be done is 35 × 34 = 1190.  

* * * 
There is another fundamental principle called the addition principle. This is applied 
in situations like the following one:  
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Suppose that a task consists of performing exactly one subtask from among a 
collection of disjoint (mutually exclusive) subtasks, say, Subtask 1, Subtask 2,…., 
Subtask k. (i.e., the task is performed if either Subtask 1 is performed, or Subtask 
2,…, or Subtask k is performed.) Further, suppose that Subtask i can be performed in 
ni ways, i = 1,2,…, k. Then, the number of ways in which the task can be performed is 
the sum n1+n2+…+nk. 
 
Let us consider an example of its application.  
 
Example 2: There are three political parties, P1, P2 and P3.  The party P1 has 4 
members, P2 has 5 members and P3 has 6 members in an assembly. Suppose we want 
to select two persons, both from the same party, to become president and vice-
president. In how many ways can this be done?  
 
Solution: From P1, we can do the task in 4 × 3 = 12 ways, using the multiplication 
principle. From P2, it can be done in 5 × 4 = 20 ways. From P3 it can be done in 6 × 5 
= 30 ways. So, by the addition principle, the number of ways of doing the task is      
12 + 20 + 30 = 62.  

  
* * * 

 
Though both these principles seem simple, quite a number of combinatorial 
enumerations can be done with them. For instance, what we see from Example 2 is 
that the addition principle helps us to count all possible arrangements grouped into 
mutually exclusive and exhaustive classes.   
 
Why don’t you try a few exercises that involve the use of these principles now? 
 

E1) Give a situation related to computing in which the addition principle is used, 
and one in which the multiplication principle is used.  

 
E2) Find the number of words of length 4, meaningful or not, made with the letters 

a,b,…, j.  
 
E3) If n couples are at a dance, in how many ways can the men and women be 

paired for a single dance? 
 
E4) How many integers between 100 and 999 consist of distinct even digits? 
 
E5) Consider all the numbers between 100 and 999 that have distinct digits. How 
 many of them are odd? 

Let us now consider certain arrangements of objects, in which the order in which they 
are arranged matters.  
 

2.3 PERMUTATIONS 

Suppose we have 15 books that we want to arrange on a shelf.  How many ways are 
there of doing it? Using the multiplication principle, you would say - 

n! denotes ‘n factorial’, 
which means  
n × (n − 1) × . × 2 × 1  
for any n∈N.) 15 × 14 × 13 × ….. 2 × 1 = 15!  

Each of these arrangements of the books is a permutation of the books. Let us define 
this term formally.  
 
Definition: An arrangement of a set of n objects in a given order is called a 
permutation of the objects (taken altogether at a time).   
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Basic Combinatorics An ordered arrangement of the n objects, taking r at a time, (where r ≤ n) is called a 

permutation of the n objects taking r at a time.  The total number of such 
permutations is denoted by P(n,r).   
 
As an example, let us consider picking out books, three at a time, from the shelf of 15 
books. The first book can be chosen in 15 ways, the next in 14 ways, and the third in 
13 ways. So the multiplication principle tells us that the total number of permutations 
of the 15 books taken 3 at a time is P(15,3) = 15 × 14 × 13.  
 
Again, consider the permutations of a,b,c,d, taken 2 at a time. These are ab, ba, ac, ca, 
ad, da, bc, cb, bd, db, cd, dc. (Note that ab and ba are considered different even though 

 

30
Other notations used for
n n
they consist of the same two objects.) Or, we can argue combinatorically as above:  
The first letter can be chosen in 4 ways, and then the next letter can be chosen. We 
can list out all the cases in 3 ways. So, the total number of permutations are P(4,2) = 4 
× 3 = 12.   

P(n,r) are Pr, nPr. ,Pr

 
Now, is there a formula for finding the value of P(n,r)? This is what the following 
theorem tells us.    
 
Theorem 1: The number of permutations of n objects, taken r at a time, where  0 ≤ r ≤ 

n, is given by P(n,r) =  
)!rn(

!n
−

    

 
Consider r boxes arranged in a line. Choose one object out of n and place it in the first 
box. This can be done in n ways. Then from the remaining (n−1) objects choose one 
and place it in the second box. The first two boxes can be filled in n(n − 1) ways. We 
continue this operation till the rth box is filled. So, by the multiplication principle, the 
total number of ways of doing this is n(n − 1) (n − 2) …(n − r+1).    

P(n,r) = n(n −1)…(n−r+1).  
 = n(n −1)…( (n − r + 1)( (n − r)( (n − r − 1)…3.2.1 
 = (n −r)…( (n − r − 1) …3.2.1 

 = n!/(n − r)! 
 
Proof: In particular, Theorem 1 tells us that the number of permutation of n objects, 
taken all at a time, is given by  We define 0! = 1 

P(n,n) = n! 
 
and P(n, 0) = 1  ∀n∈N. 
 
So, for example, by Theorem 1 we can find  

P(6,4) = 6.5.4.3 = 6!/(6 − 4)! And P(6,0) = 1.  
 
Why don’t you try some exercises now? 
 

E6) If m and n are positive integers, show that (m+n)! ≥ m! + n!.  
 
E7) How many 3-digit numbers can be formed from the 6 digits 2,3,5,7,8,9 if 

repetitions are not allowed?  How many of these numbers are less than 400?  
How many are even? 

 
E8) How many ways are there to rank n candidates for the job of chief engineer?  In 

how many rankings will Ms. Sheela be in the second place.   

 



 
Combinatorics – An 

Introduction 
In defining the concept of permutation we assumed that the objects were 
distinguishable. What does this mean, and what happens if we remove this 
assumption? Let’s see.  
 
2.3.1 Permutation of Objects Not Necessarily Distinct 

We have shown that there are P(n,r) ways to choose r objects from a set of n distinct 
objects and arrange them in linear order.  Here we consider the same problem with 
the relaxed condition that some of the objects in the collection may not be 
distinguishable. 

For example, we consider permutations of the letters of the word DISTINCT. Here 
there are 8 letters of which 2 are I, 2 are T, and three are 4 other different letters. To 
count the permutations in such a situation, we have the following result.    
 
Theorem 2: Suppose there are n objects classified into k distinct types, with m1 
identical objects of the first type, m2 identical objects of the second type,…, and mk 
identical objects of the kth type, where m1+m2+...+mk = n. Then the number of distinct 

arrangements of these n objects, denoted by P(n; m1, m2,..mk) is .
!m!...m!m

!n

k21
 

 
Proof: Let x be the number of such permutations. If the objects of Type i are 
considered distinct, then they can be arranged amongst themselves in m1! ways, where 
i = 1,2,…, k. Therefore, by the multiplication principle, the total number of 
permutations of these n distinct objects, taken all at a time, is xm1!m2!…mk!.     
 
But this is precisely n! when there are n distinct objects.   
 
Hence, xm1!m2!…mk! = n!, that is, x = n!/m1!m2!…mk!  
 
So for example, this result tells us that the number of distinct 8 letter words, not 
necessarily meaningful, that we can make from the letter of the word “DISTINCT” is 

.14
!1!1!1!1!2!2

!8
=  

  
Here are some related exercises.  
 

E9) How many permutations are there of the letters, taken all at a time, of the words 

  (i) ASSESSES, (ii) PATTIVEERANPATTI?                                     
 
E10) How many licence plates can be made if each should have 3 letters of the 

English alphabet with no letter repeated?  What will be the answer if the letters 
can be repeated? 

So far, we have considered permutations of objects as linear arrangements of objects; 
this means that we visualize arrangements of objects in a line.  But there is a variant in 
which the objects are arranged along the circumference of a circle.  Let us consider 
that now. 
 
2.3.2 Circular Permutation   

Consider an arrangement of 4 objects, a,b,c,d as in Fig. 1.  We observe the objects 
in the clockwise direction.  On the circumference there is no preferred origin, and 
hence the permutations abcd, bcda, cdab, dabc will look exactly alike. So, each 
linear 
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•
•
a 

•

•

c 
Fig. 1

a cb

d 

••d 

 
 
 
 
permutation, when treated as a circular permut
objects are placed in a circular arrangement, ea
times.  So, if we consider all the n! permutatio
will be indistinguishable from the (n−1) others
objects in the same order.  So the number of di
= (n−1)!. Thus, we have shown that the numb
things, taken all at a time, is (n−1)!. 
 
Let us consider some examples.  
 
Example 3: In how many distinct ways is it po
table?   
 
Solution: Clearly we need the number of circu
answer is 7! = 5040.  

* * * 
 
Example 4: In the preceding question, what w
among the eight persons  

(i)    must not sit in adjacent seats? 

(ii)   must sit in adjacent seats 
 
Solution: To answer (i), let us first solve (ii) fr
of cases in which the pair of persons sit togeth
one unit, then we have the circular permutation
that this is the answer for (ii).)  But even as a u
Hence the required answer is 2(6!). Now to an
possibilities from the total number of ways of 
= 3600.   

* * * 
 
Example 5: Suppose there are five married co
sit about a round table so that neither two men
number of such circular arrangements.  
 
Solution: Five females can be made to sit abou
One male can be seated in between two female
they can be made to sit in 5! ways. By the mul
ways of such seating arrangements is 4! × 5! =

 

* * * 
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Example 6: Consider seven people seated about a round table.  How many circular 
arrangements are possible if at least one of them will not have the same neighbours in 
any two arrangements? 
 
Solution:  The two distinct arrangements in Fig. 2 show that each has the same 
neighbours.   
 

d

e

a a 

•b 

c 

e ••

•

 
 
 
 
 
 
 
 d 

 
 

2  
 

Hence, the total number of circular arrangements = (7−1)! ×

 
* * * 

 
You may try the following exercise.  
 

E11) If there are 7 men and 5 women, how many circular a
in which women do not sit adjacent to each other? 

Permutations apply to ordered arrangement of objects. Wha
matter? Let’s see.  
 

2.4 COMBINATIONS 

Let’s begin by considering a situation where we want to cho
faculty members from a group of seven faculty members.  I
can this be done?  Here order doesn’t matter, because choos
as choosing F2, F1, F3, and so on.  (Here Fi denotes the ith fa
every choice of members, to avoid repetition, we have to di

number would be .
!4!3

!7
!3

567
=

××  

 
More generally, suppose there are n distinct objects and we
where r ≤ n, where the order of the objects in the selection
called a combination of n things taken r at a time.  The num
is represented by nCr, nCr, C  or C (n, r).  We will use 
conformity with the notation P(n, r) for permutations.  We r
to emphasize the fact that only choice is involved but not o

)(, n
r

n
r

 
In the example that we started the section with, you saw tha

combinations was 7!/3!4!, i.e., .
!3

)3,7(P   In fact, this relation

P(n, r) is true in general. We have the following result.   
 
Theorem 3: The number of combinations of n objects, take
0 ≤ r ≤ n is given by  

  
•

•

b

c 
 •
 •
•
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C(n, r) = 
!r)!rn(

!n
!r

)r,n(P
−

= . 

 
Proof: C(n, r) counts the number of ways of choosing r out of n distinct objects  
without regard to the order. Any one of these choices is simply a subset of r objects of 
the set of n objects we have. Such a set can be ordered in r! ways. Thus, to each 
combination, there corresponds r! permutations. Hence there are r! times as many 
permutations as there are combinations. Hence, by the multiplication principle, we get  

P(n, r) = r! C(n,r)   
 

Therefore, C(n,r) = .
!r)!rn(

!n
!r

)r,n(P
−

=  

 
Using Theorem 3, we can very quickly find out, for instance, how many ways there 

are of choosing 2 rooms out of 20 rooms offered. This is C(20,2) = .190
!2!18

!20
=  

 
Now, to find C(20,2), I took a short cut.  I cancelled 18! From the number and 

denominator.  In practice, I only needed to calculate .
12
1920

×
×  This practice is useful, 

in general, i.e.,  we use the identity C(n, r) = 
factorsr)...1r(r
factorsr)...1n(n

−
−  for calculations. In 

fact, sometimes r is much larger than n − r, in which case we cancel r!. This is also 
what the following result suggests.   
 
Theorem 4: C(n, r) = C(n, n − r), for 0 ≤ r ≤ n, n∈N.  
 
Proof 1: For every choice of r things from n things, there uniquely corresponds a 
choice of n − r things from those n objects, which are the unchosen objects. This one-
to-one correspondence shows that these numbers must be the same. This proves the 
theorem.   

Proof 2: C(n, r) = ).rn,n(C
)!rnn()!rn(

!n
!r)!rn(

!n
−=

−−−
=

−
 

 
Because of these two theorems we have, for instance, 

C(n, n) = C(n, 0) = P(n, 0) = 1.  C(n, 1), and = C(n, n−1) = P(n, 1) = n.  

 
The numbers C(n, r) are also called the binomial coefficients as they occur as the 
coefficients of xr in the expansion of (1+x)n in ascending powers of x, as you will see 
in Sec. 1.5.  At this stage, let us consider some examples involving C(n, r).   
 
Example 7:  Evaluate C(6, 2), C(7, 4) and C(9, 3).  
 

Solution: C(6, 2) = .  84
1.2.3
7.8.9)3,9(Cand,35

1.2.3
5.6.7)4,7(C,15

1.2
5.6

=====

 
Example 8:  Find the number of distinct sets of 5 cards that can be dealt from a deck 
of 52 cards.  
 
Solution: The order in which the cards are dealt is not important. So, the required  

number is C(52, 5) = .  960,598,2
12345

4849505152
!47!5

!52
=

××××
××××

=
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Example 9: Suppose a valid computer password consists of 8 characters, the first of 
which is the digit 1, 3 or 5. The rest of the 7 characters are either English alphabets or 
a digit.  How many different passwords are possible? 
 
Solution: Firstly, the initial character can be chosen in C(3, 1) ways. Now, there are 
26 alphabets and 10 digits to choose the rest of the characters from, and repetition is 
allowed. So, the total number of possibilities for these characters is (26+10)7.  
 
Therefore, by the multiplication principle, the number of passwords possible are  
C(3, 1).367. 
 
Here are some exercises now.  
 

E12) At a certain office, a committee consisting of one male and one female worker 
is to be constituted from among 12 men and 15 women workers.  In how many 
distinct ways can this be done?   

 
E13) In how many ways can a prize winner choose any 3 CDs from the ‘Ten Best’ 

list? 
 
E14)  How many different 7-person committees can be formed, each containing 3 

women and 4 men, from a set of 20 women and 30 men? 

So far we have been considering combinations of distinct objects. Let us now look at 
combinations in which repetitions are allowed. We start with considering the 
following situations.    
 
Suppose five friends stop at a sweet shop where each of them has one of the 
following: a samosa, a dosa, and a vada.  The order of consumption does not matter.  
How many different purchases are possible?   
 
Let s, t, and d represent samosa, dosa, vada, respectively.  In the following table we 
have listed some possible ways of purchasing these.  For instance, the second row 
represents the possibility that all 5 friends order only dosas.   
 
 

                   
  

s d v 

x x xxx 

xxx xxxx xx 
 
 
 
These orders can also be represented by x’s and   ’s. For instance, the first row can 
be written as xxxxx.  So, any order will consist of five x’s and two ’s.   
 
Conversely, any sequence of five x’s and two ’s represents an order.  So, there is a 1-
to-1 correspondence between the orders placed and sequences of five x’s and two ’s.  
But the number of such sequences is just the number of distinct ways of placing 2’s 
in 7 possible places.  This is C(7,2).   
 
More generally, if we wish to select with repetition, r out of n distinct objects, we are 
considering all arrangements of r of one kind (say x’s) and n − 1 of the other kind (say 
’s) (because (n − 1) ’s are needed to separate n types).    
 
The following result gives us the total number of such possibilities.  
 
Theorem 5: Let n and r be natural numbers. Then the number of solutions in natural 
numbers, to the equation x1 + x2 + … + xn = r, is C(n + r − 1,r).  Equivalently, the 
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allowed, is C(n + r − 1,r). 
 
Proof: Any string will consist of r objects and n − 1 bars, to denote the n different 
categories in which these objects can fall.  So, it will be a string of length n + r − 1, 
containing exactly r stars and n − 1 bars. The total number of such strings is the 
number of ways we can position (n − 1) bars in r different places. This  is C(n + r − 
1,r). 
 
Now we demonstrate how such strings correspond to solution of the equation x1 + …+ 
xn = r.   
 
n − 1 bars in the string divide the string into n substrings of stars. The number of stars 
in these n substrings are the values of x1, x2,…, xn. Since there are r stars altogether, 
the sum is r. Therefore, is a one-to-one correspondence between the strings and the 
solutions, and the theorem is proved.  
 
Let us consider examples of the use of this result.  
 
Example 10: In how many ways can a prize winner choose three books from a list of 
10 best sellers, if repeats are allowed? 
 
Solution: Here, note that a person can choose all three books to be the same title.  
Applying Theorem 5, the solution is C(10 + 3 − 1, 3) = C(12, 3) = 220.  
 

* * * 
 

Example 11: Determine the number of integer solutions to the equation 
x1 + x2 + x3 + x4 = 7, where xi ≥ 0 for all  i = 1,2,3,4.  
 
Solution: The solution of the equation corresponds to a selection, with repetition, of 
size 7 from a collection of size 4.  Hence, there are C(4 + 7 − 1, 7) = 120 solutions.  
(n = 4, r = 7 in Theorem 5.) 

 
* * * 

 
So, from this sub-section, we see the equivalence of the following:  

(a) The number of integer solutions of the equation x1 + x2 + … + xn = r, xi ≥ 0, 1≤ i 
≤ n.  

 
(b) The number of selections, with repetition, of size r from a collection of size n.  
 
(c) The number of ways r identical objects can be distributed among n distinct 

containers.    
 
Why don’t you try some exercises now? 
 

E15) A student in a college hostel is allowed four fruits per day.  There are 6 
different types of fruits from which she can choose what she wants.  For how 
many days can a student make a different selection? 

 
E16) An urn contains 15 balls, 8 of which are red and 7 are black.  In how many 

ways can: 

i)  5 balls be chosen so that all 5 are red? 

 ii) 7 balls be chosen so that at least 5 are red? 
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In this section we have considered choosing r objects, with repetition, out of n objects, 
regardless of order.  What happens when order comes into the picture?  Let’s consider 
an example.  
 
Example 12: A box contains 3 red, 3 blue and 4 white socks.  In how many ways can 
8 socks be pulled out of the box, one at a time, if order is important? 
 
Solution: Let us first see what happens if order isn’t important. In this case we count 
the number of solutions of r+b+w = 8, 0 ≤ r, b ≤ 3, 0 ≤ w ≤ 4.  To apply Theorem 5, 
we write x = 3 − r, y = 3 − b, z = 4 − 10.  
 
Then we have x+y+z = 10 − 8 = 2, and the number of solutions this has is C(3+2−1,2) 
= 6. 
 
These 6 solutions are (1, 0, 1) (0, 1, 1), (1, 1, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2).  So, the 
corresponding solutions for (r, b, w) are 

(3, 3, 2), (2, 3, 3), (3, 2, 3), (3, 1, 4), (2, 2, 4), (1, 3, 4).  
 
Now, we consider order. From Theorem 2 we know that the number of ways of 

pulling out 3 red, 3 blue and 2 white socks in some order is .
!2!3!3

!8 This number would 

be the same if you had 2 red, 3 blue and 3 white socks, etc.  By this reasoning and 
considering all different orderings, the number of possibilities is  

.3220
!4!2!2

!8
!4!1!3

!82
!2!3!3

!83 =+





+






  

 
* * * 

 
What we see, via Example 13, is that if we want to find the number of possibilities 
wherein order matters and repetition is allowed them:  
 
Step 1: Find the possibilities when order doesn’t matter, using Theorem 5;  
 
Step 2: Use Theorem 2, to find the possibilities for each solution obtained in Step 1.  
 
Why don’t you try and exercise now? 
 

E17) How many 6-letter words, not necessarily meaningful can be formed from the 

letters of CARACAS? 

Let us now consider why C(n,r) shows up as the coefficients in the binomial 
expansions.  
 

2.5 BINOMIAL COEFFICIENTS 

You must be familiar with expressions like a+b, p+q, x+y, all consisting of two terms.  
This is why they are called binomials. You also know that a binomial expansion 
refers to the expansion of a positive integral power of such a binomial. For instance, 
(a+b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 is a binomial expansion. Consider 
coefficients 1, 5, 10, 10, 5, 1 of this expansion. In particular, let us consider the 
coefficient 10, of a3b2 in this expansion.  We can get this term by selecting a from 3 of 
the binomials and b from the remaining 2 binomials in the product (a+b) (a+b) (a+b) 
(a+b) (a+b). Now, a can be chosen in C(5, 3) ways, i.e., 10 ways. This is the way each 
coefficient arises in the expansion.  
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of (a+b)n.  From the n factors in (a+b)n, we have to select r for a and the remaining (n 
− r) for b.  This can be done in C(n, r) ways.  Thus, the coefficient of arbn−r in the 
expansion of (a+b)n is C(n, r).  
 
In view of the fact that C(n, r) = C(n, n − r), the coefficients of arbn−r and an−rbr  will be  
the same. r can only take the values 0, 1, 2, …, n.  We also see that C(n, 0) = C(n, n) = 
1 are the coefficients of an and bn.  Hence we have established the binomial expansion.   

(a+b)n = an + C(n, 1) an−1b + C(n, 2)an−2b2 + … + C(n, r) an−rbr + … + bn.  
 
In analogy with ‘binomial’, which is a sum of two symbols, we have ‘multinomial’ 
which is a sum of two or more (though finite) distinct symbols. Multinomial 
expansion refers to the expansion of a positive integral power of a multinomial.  
Specifically we will consider the expansion of (a1 +a2 + …+ am)n. For the expansion 
we can use the same technique as we use for the binomial expansion. We consider the 
nth power of the multinomial as the product of n factors, each of which is the same 
multinomial. Every term in the expansion can be obtained by picking one symbol 
from each factor and multiplying them. Clearly, any term will be of the form 

where rm21 r
m

r
2

r
1 a...aa 1, r2,…, are non-negative integers such that r1+r2+…+ rm = n.  Such 

a term is obtained by selecting a1 from r1 factors, a2 from r2 factors from among the 
remaining (n−r1) factors, and so on.  This can be done in  

C(n,r1). C(n−r1,r2).C(n−r1−r2, r3)…C(n−r1−r2−…−rm−1, rm) ways.   

If you simplify this expression, it will reduce to .
!r!...r!r

!n

m21
   

 
So, we see that the multinomial expansion is  

(a1+a2+…+am)n = Σ 
!r!...r!r

!n

m21

m21 r
m

r
2

r
1 a...aa  

where the summation is over all non-negative integers r1, r2,…, rm adding to n. 
 

The coefficient of in the expansion of (am21 r
m

r
2

r
1 a...aa 1+a2+…+ am)n is ,

!r!...r!r
!n

m21
 and 

is called a multinomial coefficient, in analogy with the binomial coefficient. We 
represent this by C(n; r1, r2, …, rm). This is also represented by many authors as 









mrrr

n
,....., 21

. 

 
For instance, the coefficient of x2y2z2t2u2 in the expansion of (x + y + z + t + u)10 is 
C(10; 2, 2, 2, 2, 2) = 10!/(2!)5.  
 
Let us see an example involving such coefficients.  
 
Example 13: What is the sum of the coefficients of all the terms in the expansion of 
(a+b+c)7? 

Solution: The required answer is ,
!t!s!r

!7
∑ where the summation is over all non-

negative integers r, s, t adding to n.  But it is also the value of tsr cba
!t!s!r

!7
∑ for a = b 

= c = 1.  
 
So the answer is (1 + 1 + 1)7 = 37.  

 
 

* * * 
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This short detour was just to give you an idea of the way in which the Cs and Ps can 
be extended.  Let us now consider some identities involving the binomial coefficients.  
We first consider Pascal’s formula.   
 
Theorem 6 (Pascal’s formula): For all positive integers n and all r such that  
1 ≤ r ≤ n, C(n + 1, r) = C(n, r) + C(n, r − 1).  
 
Proof 1: The left hand side of the identity represents the number of ways of choosing 
r things out of (n+1) distinct things. Suppose we select an object from the (n+1) things 
and mark it. Then the number of combinations in which the marked thing is absent is  
C(n, r), as we then  choose r things out of the unmarked n things. The number of 
combinations in which the marked thing is present is C(n, r−1), as we have to choose 
(r − 1),  things out of the unmarked things, and attach the marked thing to it to make  r 
things. Pascal’s formula now follows from the fact that the sum of the last two 
numbers mentioned must be equal to C(n+1, r). 

Proof 2:  C(n, r) + C(n, r − 1) = 
)!1r()!1rn(

!n
!r)!rn(

!n
−+−

+
−

 

 

         ).r,1n(C)r1rn(
)!r1n(!r

!n
+=++−

−+
=  

 
Pascal’s formula gives us a recursive way to calculate the binomial coefficients, since 
it tells us the value of C(n, r) in terms of binomial coefficients with a smaller value of 
n.  Note that we use the fact that C(n, 0) = 1 for all n ≥ 0 to start the recursion, since 
Theorem 6 only applies for 1 ≤ r ≤ n.  This recursive approach allows us to form 
Pascal’s triangle, the display of the binomial coefficients shown in Fig.4.  
 
The n es from 
0 (at  number 
1, for at C(n, 
0) = C he sum 
of the rty the 
Pasca ing the 
count
 

1 

 
The d
edge 
reflec

 

th row of Pascal’s triangle gives the binomial coefficients C(n, r) as r go
the left) to n (at the right); the top row is Row D. This consists of just the
 the case n = 0. The left and right borders are all 1’s, reflecting the fact th
(n, n) = 1 for all n. Each entry in the interior of the Pascal’s triangle is t

 two entries immediately above it to the left and right. We call this prope
l property. For example, each 15 in Row 6 (remember that we are start
 of rows with 0) is the sum of the 10 and the 5 immediately above it.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

 
 
 
 
 

 

 

 1 

 1 1 

 1 2 1 

 1 3 3 1 

 1 4 6 4 1 

 1 5 10 10 5 1 

 1 6 15 20 15 6 1 

 1 7 21 35 35 21 7 1 

 1 8 28 56 70 56 28 8 1 

 1 9 36 84 126 126 84 36 9 1 

 1 10 45 120 210 252 210 120 45 10 1 

1 11 55 165 330 462 462 330 165 55 11 

 
 

Fig. 3: Pascal’s triangle 

iagonals of Pascal’s triangle are also interesting. The diagonal parallel to the left 
but moved one unit to the right reads (from the top down) 1, 2, 3, 4, 5,…, 
ting the fact that C(n, 1) = n for n ≥ 1. The next diagonal to the right, reading 1, 
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Basic Combinatorics 3, 6, 10, 15,…, reflects the fact that differences increase by 1 as we move down the 

diagonal.  
 
Let us now consider some identities involving binomial coefficients.  
 
Identity 1: C(n, 0) + C(n, 1) + C(n, 2) + … + C(n, n − 1) + C(n, n) = 2n 

By setting a = b = 1 in the binomial expansion of (a+b)n, we get this identity. In the 
context of sets, it tells us the number of distinct subset that can be formed from a set 
with n elements.  Note that the number of subsets containing precisely r elements is 
C(n, r). Hence the total number of subsets is  by the identity. So, 
this identity tells us that the number of distinct subsets of a set with n elements is 
2

,2)r,n(C nn
0r =∑ =

n.   
 
Identity 2: C(n, 0) − C(n, 1) + C(n, 2) − … + (−1)n C(n, n) = 0. 

We get this by setting a = 1, b = −1 in the expansion of (a+b)n.   
 
Now, adding the two identities, we get  

2 C(n, r) = 2
evenr
∑ n, i.e., 

evenr
∑ C(n, r) = 2n−1 

 
Similarly subtracting the second identity from the first leads us to the equation  

oddr
∑ C(n, r) = 2n−1.   

 
These two equations tell us that the number of subsets of a set of n elements with an 
even number of elements is equal to the number of subsets with an odd number of 
elements, both being 2n−1.  
 
Why don’t you try to prove some identities now?  
 

E18) Show that C(n, m) C(m, k) = C(n, k) C(n−k, m−k), 1 ≤ k ≤ m ≤ n.  

E19) Prove that C(k, k) + C(k + 1, k) + C(k + 2, k) + … + C(n, k) = C(n+1, k+1) for 
all natural numbers k ≤ n.   

Before ending this section, we just mention another extension of the definition of 
binomial coefficients. So far, we have defined C(n, r) for n ≥ r ≥ 0. We can extend this 
definition for any real number x, and any non-negative integer k, by 

C(x, k) = 
!k

)1kx)...(1x(x +−− . 

This definition coincides with that of C(n, k), when n is a non-negative integer.   
 
So far, in this unit, we have considered various ways of counting different kinds of 
arrangements. These methods are, not surprisingly, helpful in finding the probability 
of an event.  We shall now discuss this.  
 

2.6 COMBINATORIAL PROBABILITY 

Historically, counting problems have been closely associated with probability. The 
probability of getting at least 6 heads on 10 flips of a fair coin, the probability of 
finding a defective bulb in a sample of 25 bulbs if 5 percent of the bulbs from which 
the sample was drawn are defective  all these probabilities are essentially counting 
problems. In fact, Pascal’s triangle (Fig. 4) was developed by Pascal around 1650 
while analysing some gambling probabilities.  

 40



 
Combinatorics – An 

Introduction 
Let us start by recalling some basic facts about probability.  An experiment is a 
clearly defined procedure that produces one of a given set of outcomes.  The set of all 
outcomes is called the sample space of the experiment.    
 
For example, the experiment could be checking the weather to see if it is raining or 
not on a particular day. The sample space here would be {raining, not raining}.   
 
Given an experiment, we can often associate more than one sample space with it.  For 
instance, suppose the experiment is the tossing of two coins.  

i)  If the observer wants to record the number of tails observed as the outcomes, the 
sample space is {0, 1, 2}. 

ii) If the outcomes are the sequence of heads and tails observed, then the sample 
space is {HH, HT, TH, TT}.  

A subset of the sample space of an experiment is called an event. For example, for an 
experiment consisting of tossing 2 coins, with sample space {HH, HT, TH, TT}, the 
event that two heads do not show up is the subset {HT, TH, TT}.  
 
Suppose X is a sample space of an experiment with N out comes. Then, the events are 
all the 2N subsets of X. The empty set φ is called the impossible event, and the set X 
itself is called the sure event.   
 
Now, for the purpose of this course, we will assume that all the outcomes of an 
experiment are equally likely, that is, there is nothing to prefer one case over the 
other. For example, in the experiment of coin tossing, we assume that the coin is 
unbiased. This means that ‘head’ and ‘tail’ are equally likely in a toss. The toss itself 
is considered a random mechanism ensuring ‘equally likely’ outcomes. Of course, 
there are coins that are ‘loaded’, which means that one side of the coin may be heavier 
than the other.  But such coins are excluded from our discussion.  Also, in our 
discussions we shall always assume that our sample space is finite. 
 
Given this background, we have the following definition. We represent the 

number of elements 
of a finite set A, i.e., 
the cardinality of 
A, by n(A) orA.   

Definition: Then the probability of the event A, represented by P(A), is .
)X(n
)A(n   

For instance, the probability that a card selected from a desk of 52 cards is a spade is 

,
52
13  because A is the set of 13 spades in the deck.  

 
From the definition, we get the following statements:  

i) As n (φ) = 0, it follows that P(φ) = 0.    

ii) By definition, P(X) = .1
)X(n
)X(n
=  

iii) If A and B are two events, then n(A∪B) = n(A) + n(B) − n(A∩B).   Therefore, 
P(A∪B) = P(A)+P(B) − P(A∩B). 

iv) (Addition Theorem in Probability) : If A and B are two mutually exclusive 
events, then the probability of their union is the sum of the probabilities of A and 
B.  i.e., if A∩B = φ, then P(A∪B) = P(A) + P(B).  

 [This is a consequence of (i) and (iii) above.] 

v) Suppose A is an event.  Then the probability of Ac (also denoted by A′), the event 
complementary to A, or the event ‘not A’ is 1 − P(A), i.e.,  

  P(Ac) = 1 − P(A).  
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i.e., A∪Ac = X and P(A) + P(Ac) = 1.   

vi) (The generalised addition theorem) : If the events A1, A2,…,Am are pairwise 
disjoint (i.e., mutually exclusive), then P( ).P(A)AU i

i
i

i
∑=    

 
Let us consider some examples from combinatorial probability.   

 
Example 14: A die is rolled once. What are the probabilities of the following events?  

(i)   getting an even number,  

(ii)  getting at least 2, 

(iii) getting at most 2, 

(iv) getting at least 10. 
 
Solution: If we call the events A, B, C and D, then we have X = {1, 2, 3, 4, 5, 6},  
A = {2,4,6}, B = {2,3,4,5,6}, C = {1,2}, and D = φ.   
 
Hence, P(A) = 3/6, P(B) = 5/6, P(C) = 2/6, P(D) = 0. 
  

* * * 
 
Example 15: A coin is tossed n times.  What is the probability of getting exactly r 
heads? 
 
Solution: If H and T represent head and tail, respectively, then X consists of 
sequences of length n that can be formed using only the letters H and T. Therefore, 
n(X) = 2n. The event A consists of those sequences in which there are precisely r Hs.  
So, n(A) = C(n, r).  Hence, the required probability is C(n, r)/2n.  
 

* * * 
 
Example 16: Two dice, one red and one white, are rolled. What is the probability that 
the white die turns up a smaller number than the red die? 
 
Solution: If the number on the red die is x and that on the white die is y, then X 
consists of the 36 pairs (x, y), where x and y can be any integer from {1, 2, 3, 4, 5, 6}.  
 
For the event A, we need x < y.  For x = 1, 2, 3, 4, 5, y can be x + 1, x+2,…, 6, i.e.,     
6 − x in number.  Thus, by the addition principle,  

n(A) =  .1512345)x6(
5

1x
=++++=−∑

=

Hence, P(A) = 15/36 = 5/12.  
 

* * * 
 
Example 17: If a five-digit number is chosen at random, what is the probability that 
the product of the digits is 20? 
 
Solution: If X is the collection of all 5-digit numbers, then n(X) = 9.104 = 90000.  
Now, 20 can be factored in only two ways, viz., 1.1.1.4.5 and 1.1.2.2.5, as the product 
of five factors. Of course, these factors can be permuted to give all possible cases for 
A. The numbers 5, 4, 1, 1, 1 can be permuted in 5!/1!1!3! = 20 ways, and the numbers 
5, 2, 2, 1, 1 can be permuted in 5!/1!2!2! = 30 ways.  
 
So, n(A) = 20 + 30 = 50.  
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Hence, P(A) = 50/90000 = 1/1800. 

 
* * * 

 
Example 18: Suppose A and B are mutually exclusive events such that P(A) = 0.3 and 
P(B) = 0.4.  What is the probability that  

i)   A does not occur? 

ii)  A or B occurs? 

iii) Either A or B does not occur? 
 
Solution:  

i)   This is P(Ac) = 0.7.  

ii)  This is P(A∪B) = 0.7. 

iii) This is P(Ac∪Bc) = P[(A∩B)c] = P(φc) = P(X) = 1 
 

* * * 
 
Try some exercises now.  
 

E20) A,B,C and D are four candidates for a chairperson’s post. Suppose that A is 
twice as likely to be elected as B, B is thrice as likely as C, and C and D are 
equally likely to be elected. What is the probability of election of each 
candidate? 

 
E21) In a ten-question true-false exam, a student must achieve six correct answers to 

pass.  If she selects her answers randomly, what is the probability that she will 
pass? 

There are several other methods for solving combinatorial problems. These will be 
taken up in the next two units.  Let us now summarise what we have covered in this 
unit.  
 

2.7 SUMMARY 

In this unit we have discussed some counting techniques.  Specifically, we have 
covered the following points.  

1. The multiplication and addition principles for counting the number of ways in 
which a task can be completed.  

2. What a permutation is, the derivation of the formula P(n,r) = ,
)!rn(

!n
−

and its 

application for solving problems.  
 
3. The number of distinct arrangement of n objects of which m1 are of Type 1, m2 

are of Type 2,…, mk are of Type k, where m1, m2 +…,mk = n, is  

P(n; m1, m2,…,mk) = .
!m!...m!m

!n

k21
 

 
4. What a circular permutation is, and that the number of such permutations of n 

objects, taken all at a time, is (n−1)! 
 
5.  What a combination is, the derivation of the formula  
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C(n,r) = ,
!r)rn(

!n
!r

)r,n(P
−

= and its application for solving problems.  

 
6. The proof and applications of the fact that the number of ways of choosing r 

objects from a collection of n objects, with repetition allowed, is C(n+r−1,r).  
 
7. Why C(n,r) is called a binomial coefficients, and its analogue for multinomials.  
 
8. Some identities involving C(n,r), including Pascal’s formula  

C(n+1,r) = C(n,r) + C(n,r−1).  
 

9. The use of counting techniques for finding some discrete probabilities.  
 

2.8 SOLUTIONS/ ANSWERS 

E1) For instance, both principles are used to find the number of ways in which 17 
files are stored if there are 3 storage locations of 1000 K each and 10 files are of 
100 K, 5 of 200 K 2 of 500 K.  

 
E2) Here we apply the multiplication principle.  Each letter has 10 possibilities.  

Therefore, the total number of words is 104.  
E3) Suppose we number the men as 1, 2, 3,…, n.  Then the first man can be paired 

with any of the n women, the second can be paired with any from the remaining 
(n − 1) women, and so on.  Hence, the number of ways of pairing is n(n − 1)… 
1 = n!.  

 
E4) By the multiplication principle, the number of integers between 100 and 999 

with all digits even is 4.5.5 = 100 (Note that the first digit cannot be zero, but 
the second and third digits can be 0.)  

 
E5) For a number to be odd the last digit should be odd. So, the last position can be 

filled up in 5 ways. If the middle position is filled up by 0, then the first position 
can be filled up in 8 ways. Thus the number of odd numbers with 0 in the 
middle position and all digits distinct is 40, by the multiplication principle.   

 
If the middle position is filled up by a digit other than 0, then this can be done 
in 8 ways.  Then the first position can be filled up in 7 ways.  So, the number of 
odd numbers with all digits distinct with the middle digit not zero is 5.8.7 = 
280.   
 
Thus, by the addition principle the answer is 40 + 280 = 320. 

 
E6) (m + n)! = (m + n) (m + n − 1) … (m + 1) m!.  

 ⇒ (m + n)! − m! =  ≥ mn + n! ≥ m! [n! + mn − 1] 
 ⇒ (m + n)! − m! – n! ≥ n! (m! − 1) + m! (mn − 1) ≥ 0. 
 
E7) Without repetitions, the number is P(6, 3). For the number to be less than 400, 

the leftmost digit can only be 2 or 3. The rest of the digits can be filled in P(5, 
2) ways. So, the total number of numbers less than 400 will be 2P(5, 2).  
Similarly, the total number of even numbers is 3P(5, 2).  

 
Note: That the addition principle has been used in both cases.  

 
E8) A ranking is an ordering of the n candidates.  This can be done in P(n,n) = n! 

ways.  The total number of rankings in which Sheela is in 2nd place in P(n − 1, n 
− 1) = (n − 1)! 
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E9) In the word ‘ASSESSES’, we have A once, E twice, and S five times.  Thus the 

number of permutations is 8!/1!2!5! = 168.  
In the word ‘PATTIVEERANPATTI’, R, N and V occur once, P, E and I occur 
twice, A thrice and T four times.  Thus the required number of permutations is 
16!/1!1!1!2!2!2!3!4! = 9.10.  

 
E10) By the multiplication principle, the answer is 26.25.24 if the letters cannot be 

repeated, and 26.26.26 if the letters can be repeated.  
 
E11) The seven men can be seated first.  This can be done in 6! ways.  The women 

can sit in between two men.  There are seven such places.  So, the women can 
sit in P(7,5) ways.  Hence the answer is 6! × P(7,5).  

 
E12) This can be done in C(12, 1).C(15,1) ways, i.e., 180 ways.  
 
E13) This can be done in C(10, 3) ways, i.e., 120 ways.  
 
E14) The total number of possibilities is C(20,3).C(30,4) = 31,241,700.   
 
E15) Applying Theorem 5, we get C(9, 4) = 126 days. 
 
E16) i) Be careful! This is not an application of Theorem 5. This is only the  
 number of ways of choosing 5 balls out of 8 balls, i.e. C(8, 5). 
 

             ii) First pick 5 red balls, in C(8,5) ways. Then pick the remaining 2 arbitrarily.  
These 2 can be chosen in C(2+2−1, 2) = 3 ways.  So, the total number of ways 
is C(8, 5) × 3.  

 
E17) We have 2Cs, 3As, 1R and 1S. If order is not a concern, we consider the 

solutions of  

c+a+r+s = 6, 0 ≤ c ≤ 2,  0 ≤ a ≤ 3,  0 ≤ r, s ≤ 1.   
 
 We convert this to the equivalent problem 

x+y+z+t = 1, where x = 2 − c, y = 3 − a, r = 1 − z, s = 1 − t,  
 
 The number of solutions of this is C(4 + 1 − 1, 1) = 4. 
 
 There are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1).  
 
 The corresponding solutions in (c, a, r, s) are (1, 3, 1, 1), (2, 2, 1, 1), (2, 3, 0, 1), 

(2, 3, 1, 0).  
 
 Now order becomes important to us.  Applying Theorem 2, the required number 

is   

.420
!0!1!3!2

!62
!1!1!2!2

!6
!1!1!3!1

!6
=






++  

  
E18) The left side counts the ways to select a group of m people chosen from a set of 

n people and then select a subset of k leaders, say, of this group of m. This can 
also be done by selecting the subset of k leaders from the set of n people first, 
and then selecting the remaining m − k members of the group from the 
remaining n − k people. The number of ways in which this can be done is given 
on the right hand side. Therefore, the identity.  

  
You can also prove this algebraically.  
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Basic Combinatorics E19) One can prove this by induction on the variable n. The base case is trivial, since 
if n = 0, then k = 0 as well, and the equation reduces to C(0, 0) = C(1, 1), which 
is true. The induction step is proved by Pascal’s formula and the induction 
hypothesis.  

 
E20) The relative weightages of A, B, C and D are 6.3, 1, 1, respectively. So, P(A) = 

).D(P
11
1)C(P,

11
3)B(P,

11
6

===  

  
E21) The answer is same as the probability of getting at least 6 heads in 10 tosses of 

a true coin. Hence, the answer is  

C(10, 6)/210 + C(10, 7)/210 + C(10, 8)/210 + C(10, 9)/210 + C(10, 10)/210   
 
 = (210 + 120 + 45 + 10 + 1)/1024 = 193/512.  
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3.0 INTRODUCTION 

In this unit, we continue our discussion of the previous unit on combinatorial 
techniques. We particularly focus on two principles of counting – the pigeonhole 
principle and the principle of inclusion-exclusion.  
 
In Sec. 3.2 you will see how obvious the pigeonhole principle is. Its proof is very 
simple, and amazingly, it has several useful applications.  We shall also include some 
of these in this section.  
 
In Sec. 3.3, we focus on the principle (or formula) of inclusion-exclusion. As you will 
see, this principle tells us how many elements do not fit into any of n categories. We 
prove this result and also give a generalisation. Following this, in Sec. 3.4 we give 
several important applications of inclusion-exclusion.  
 
We shall continue our discussion on combinatorial techniques in the next unit.  
 

3.1  OBJECTIVES 

After studying this unit, you should be able to:  

• prove the pigeonhole principle, and state the generalised pigeonhole principle; 
• identify situations in which these principles apply, and solve related problems; 
• prove the principle of inclusion-exclusion;  
• apply inclusion-exclusion for counting the number of surjective functions, 

derangements and for finding discrete probability.  
 

3.2 PIGEONHOLE PRINCIPLE 

Let us start with considering a situation where we have 10 boxes and 11 objects to be 
placed in them. Wouldn’t you agree that regardless of the way the objects are placed 
in the two boxes at least one box will have more than one object in it?  On the face of 
it, this seems obvious. This is actually an application of the pigeonhole principle, 
which we now state.    
 
Theorem 1 (The Pigeonhole Principle): Let there be n boxes and (n+1) objects.  
Then, under any assignment of objects to the boxes, there will always be a box with 
more than one object in it.   
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Basic Combinatorics This can be reworded as: if m pigeons occupy n pigeonholes, where m > n, then there 
is at least one pigeonhole with two or more pigeons in it.  
 
Proof: Let us label the n pigeonholes 1, 2, …, n, and the m pigeons p1, p2, …, pm.  
Now, beginning with p1, we assign one each of these pigeons the holes numbered 1, 
…, n, respectively. Under this assignment, each hole has one pigeon, but there are still 
(m−n) pigeons left.  So, in whichever way we place these pigeons, at least one hole 
will have more than one pigeon in it. This completes the proof! 

 
Fig. 1 The pigeonhole 
principle 

 
This result appears very trivial, but has many applications.  For example, using it you 
can show that:  

• if 8 people are picked in any way from a group, at least 2 of them will have been 
born on the same weekday.  

• in any group of 13 people, at least two are born in the same month.  
 
Let us consider some examples of its application, in detail.  
 
Example 1: Assuming that friendship is mutual, show that in any group of people we 
can always find two persons with the same number of friends in the group.   
 
Solution: If there are n persons in the group, then let the number of friends the ith 
person has be f(i), i = 1,…, n.  Clearly, f(i) can take values only between 0 and (n − 1).   
 
If some f(i) is 0, it means that the ith person does not have any friends in the group.  In 
this case, no person can be friends with all the other (n − 1) people. So, no f(i) can be 
(n − 1).  So, only one of the values 0 or (n − 1) can be present among the f(i)’s. So, the 
n f(i)’s can take only (n − 1) distinct values. Therefore, by the pigeonhole principle, 
two f(i)’s must be equal. Then the corresponding i’s have the same number of friends 
in the group.   

 
  

* * * 
 
Example 2: Suppose 5 points are chosen at random within or on the boundary of an 
equilateral triangle of side 1 metre. Show that we can find two points at a distance of 
at most ½ metre.  

 
Fig. 2 

 
Solution: Divide the triangle into four equilateral triangles of side ½ m by joining the 
midpoints of the sides by three line segments (see Fig. 2). These four triangles may 
now be considered as boxes and the five points as objects. By the pigeonhole 
principle, at least one of these smaller triangles will have two points in or on it.  
Clearly, the distance between these two points is at most ½ metre.  

 
* * * 

 
Example 3: Given any ten different positive integers less than 107, show that there 
will be two disjoint subsets with the same sum.  
 
Solution: The highest numbers we could be given would be 97, 98, …, 106, which 
add up to 1015.  So, consider pigeonholes marked 0, 1, 2,…, 1015. The set of 10 
positive integers have 210 = 1024 subsets.  Put a subset in the pigeonhole marked with 
the sum of the numbers in the set. The 1024 subsets have to be put in 1016 
pigeonholes.  So, some pigeonhole will have more than one subset with the same sum.   
 
Now, note that two subsets that we get with the same sum, may not be disjoint.  But, 
by dropping the common elements in them, we are left with disjoint subsets with the 
same sum.   

 
* * * 
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Here are some related exercises for you to do.  
 

E1) If 10 points are chosen in an equilateral triangle of side 3 cms., show that we 
can find two points at a distance of at most 1 cm.  

 
E2) On 11 occasions a pair of persons from a group of 5 was called for a function.  

Show that some pair of persons must have attended the function at least twice. 
 
E3) Four persons were found in a queue, independently, on 25 occasions. Show that 

at least on two occasions they must have been in the queue in the same order.  

As you know, mathematics develops through a process of generalisation. You 
know that the principle is valid for n+1 objects and n boxes.  It is natural to ask: what 
if we have, say, 4n+1 objects and 4 boxes?  Can we prove a similar principle?  In fact, 
we can, as given below.  
 
Theorem 2 (The Generalized Pigeonhole Principle): If nm + 1 objects are 
distributed among m boxes, then at least one box will contain more than n objects.   
 
This can be reworded as: Let k and n be positive integers.  If k balls are put into n 
boxes, then some box contains at least [k/n] + 1 balls, where [x] denotes the greatest 
integer less than x.  
 
Proof: We prove this by contradiction (see Unit 2, Block 1).  Suppose all the m boxes 
have at most n objects in them. Then the total number of objects is at most nm, a 
contradiction. Hence, the theorem.   
 
Applying this result, we see, for example, that suppose 479 students are enrolled in the 

course Discrete Mathematics, consisting of 6 units.  Then, at least 801
6

479
=+⎥⎦

⎤
⎢⎣
⎡  

students are studying the same unit at a given point of time.  
 
Let us consider a few more examples of the application of this principle.   
 
Example 4: Show that in any group of 30 people, we can always find 5 people who 
were born on the same day of the week.  

Solution: 30 people can be assigned to 7 days of the week. Then at least 51
7

30
=+⎥⎦

⎤
⎢⎣
⎡  

of them must have been born on the same day.  
 

* * * 
 
Example 5: 20 cards, numbered from 1 to 20, are placed face down on a table.  12 
cards are selected one at a time and turned over.  If two of the cards add up to 21, the 
player loses.  Is it possible to win this game? 
 
Solution: The pairs that can add up to 21 are (1, 20), (2, 19),…, (10,11).  So, there are 
10 such pairs.  In turning 12 cards, at least one of these pairs will be included.  
Therefore, the player will lose.  
 

* * * 
 
Example 6: Show that every sequence of n2 + 1 distinct integers includes either an 
increasing subsequence of n + 1 numbers or a decreasing subsequence of n + 1 
numbers.  
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subsequence of n + 1 numbers.  For each of these a

.a 1n2+

ks, let s(k) be the length of the 
longest increasing subsequence beginning at ak. Since all n2+1 of the s(k)’s are 

between 1 and n, at least 1n1
n

1n 2
+=+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ + of these numbers are the same.  (The 

s(k)’s are the objects and the numbers from 1 to n are the boxes.)  
 
Now, if i < j and s(i) = s(j), then ai > aj.  Otherwise ai followed by the longest 
increasing subsequence starting at aj would be an increasing subsequence of length  
s(j) + 1 starting at ai.  This is a contradiction, since s(i) = s(j).   
 
Therefore, all the n + 1 integers ak, for which s(k) = m, must form a decreasing 
subsequence of length at least   n + 1.  

 
* * * 

 
Example 7:  Take n integers, not necessarily distinct. Show that the sum of some of 
these numbers is a multiple of n.  
 
Solution: Let S(m) be the sum of the first m of these numbers. If for some r and m,   r 
< m, S(m) − S(r) is divisible by n, then ar+1 + ar+2 + … + am is a multiple of n. This 
also means that S(r) and S(m) leave the same remainder when divided by n.  So, if we 
cannot find such pairs m and r, then it means that the n numbers S(1), S(2),…, S(n) 
leave different remainders when divided by n.  But there are only n possible 
remainders, viz., 0, 1, 2,…, (n − 1). So, one of these numbers must leave a remainder 
of 0. This means that one of the S(i) s is divisible by n. This completes the proof.   
 
In fact, in this example we have proved that one of the sums of consecutive terms is 
divisible by n.  
 

* * * 
 
You may like to try some exercises now.  
 

E4) If any set of 11 integers is chosen from 1, …,20, show that we can find among 
them two numbers such that one divides the other.  

 
E5) If 100 balls are placed in 15 boxes, show that two of the boxes must have the 

same number of balls.  
 
E6) If a1, a2,…, an is a permutation of 1, 2,…, n and n is odd, show that the product 

(a1 − 1) (a2 − 2)… (an − n) must be even.  

There are several corollaries to Theorem 2. We shall present one of them here.   
 
Theorem 3: If a finite set S is partitioned into s subsets, then at least one of the 

subsets has 
k
S

 or more elements.  

Proof: Let A1, …, Ak be a partition of S. (This means that Ai  ∩ Aj = φ for i ≠ j and     

S = A1∪A2∪…∪Ak.)  Then the average value of iA  is .]...[1
1 k

S
AA

k k =++  

So the largest Ai has at least 
k
S

elements.   

 



 

 51

Some More Counting 
Principles 

A consequence of this result is the following theorem.  
 
Theorem 4:  Consider a function f: S → T, where S and T are finite sets satisfying 

.TrS >  Then at least one of the sets f−1(t), t∈T,  has more than r elements.  (f−1(t) 
denotes the inverse image of the set {t}, i.e., f−1(t) = {x ∈ S : f(x) = t}.) 
 

Proof: The family {f−1(t): t ∈ T} partitions S into k sets with k ≤ T .  By Theorem 3, 

some set in this family, say f−1(t′), has at least 
k
S

 members.  Since 
k
S

≥ r
T
S

>  

by our hypothesis, f−1(t′) has more than r elements.  
 
Corollary:  If f: S → T and ,TS > then f is not injective. 
 
Proof: Putting r = 1 in Theorem 4, we see that at least one of the sets f−1(t) has more 
than one element.    
 
We conclude this section with some more extensions of the pigeonhole principle.  
 
Theorem 5: Suppose we put an infinity of objects in a finite number of boxes.  Then 
at least one box must have an infinity of objects.  
 
Proof: If every box contains only a finite number of objects, then the total number of 
objects must be finite. Hence the theorem.  
 
Theorem 6 (A generalisation of Theorem 3): Let A1, A2,…, Ak be subsets of a finite 
set S such that each element of S is in at least t of the sets Ai.  Then the average 

number of elements in the Ais is at least ..
k
S

t   (Note that, in this statement, the sets 

Ai may overlap.) 
 
We leave the proof to you to do, and give you some related exercises now.  
 

E7) Every positive integer is given one of the seven colours in VIBGYOR.  Show 
that at least one of the colours must have been used infinitely many times.  

 
E8) Let A be a fixed 10-element subset of {1, 2,…, 50}. Show that A possesses two 

different 5-element subsets, the sum of whose elements are equal.  
 
E9) The positive integers are grouped into 100 sets. Show that at least one of the sets 

has an infinity of even numbers.  Is it necessary that at least one set should have 
an infinity of even numbers and an infinity of odd numbers? 

Let us now consider another very important counting principle.   
 

3.3 INCLUSION-EXCLUSION PRINCIPLE 

Let us begin with considering the following situation: In a sports club with 54 
members, 34 play tennis, 22 play golf, and 10 play both. There are 11 members who 
play handball, of whom 6 play tennis also, 4 play golf also, and 2 play both tennis and 
golf. How many play none of the three sports? 
 
To answer this, let S represent the set of all members of the club.  Let T represent the 
set of tennis playing members, G represent the set of golf playing members, and H 
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elements in A by A . Consider the number .HGTS −−−  Is this the answer to 
the problem? No, because those who are in T as well as G have been subtracted twice.  
To compensate for this double subtraction, we may now consider the number 

.THHGGTHGTS ∩+∩+∩+−−−  Is this the answer? No, because those 
playing all the three games have been subtracted thrice and then added thrice. But 
those members have to be totally excluded also.  Hence, we now consider the number 

.HGTTHHGGTHGTS ∩∩−∩+∩+∩+−−−  This is the correct 
answer. This reduces to 54 − 34 − 22 − 11 + 10 + 6 + 4 − 2 = 5.  
 
To solve this problem we have made inclusions and exclusions alternately to arrive at 
the correct answer.  This is a simple case of the principle of inclusion and exclusion.  
It is also known as the sieve principle because we subject the objects to sieves of a 
progressively finer mesh to arrive at a certain grading.  
 
Let us state and prove this principle now.   
 
Theorem 7 (The inclusion-exclusion formula): Let A1, A2,…, An be n sets in a 
universal set U consisting of N elements.  Let Sk denote the sum of the sizes of all the 
sets formed by intersecting k of the Ais at a time. Then the number of elements in 
none of the sets A1, A2,…, An is given by   

Ac, or  , denotes the 
complement of  the set 

_
A

A

.S)1(...S)1(...SSSNA...AA n
n

k
k

321n
_

2
_

1
_

−++−++−+−=∩∩∩   

 
Proof: The proof is on the same lines of the counting argument given in the ‘sports 
club’ example at the beginning of this section. If an element is in none of the Ais, then 
it should be counted only once, as part of ‘N’ in the RHS of the formula above.  It is 
not counted in any of the Sks since it is in none of the Ais.    

RHS is short for ‘right-
hand side’.  

 
Next, an element in exactly one Ai, say Ar, is counted once in N, and once in S1, and 
in none of the other Sks.  So the net count is 1−1 = 0.   
 
Finally, take an element x in exactly m of the Ais. This is counted once in N, m times 
in S1, C(m, 2) times in S2 (since x is in C(m, 2) intersections Ai∩Aj),…, C(m, k) times 
in Sk for k ≤m.  x is not counted in any Sk for k > m.  So the net count of x in the RHS 
of the formula is  

1− C(m,1) + C(m,2) − … + (−1)k C(m, k) + … + (−1)m C(m, m) = 0, by Identity 2 in 
Sec. 2.5.  

So the only elements that have a net count of 1 in the RHS are those in The rest 

have a net count of 0. Hence the formula. 

.
_

1
i

n

i
A

=
∩

 
From this result, we immediately get the following one.  
 
Corollary: Given the situation of Theorem 7,  

.S)1(...S)1(...SSA...AA n
1n

k
1k

21n21
−− −++−++−=∪∪∪   

 
Why don’t you try and prove this result? (see E 10.)   
 
What the inclusion-exclusion principle tells us is that to calculate the size of 
A1∪A2∪…∪An, calculate the size of all possible intersections of the sets A1, 
A2,…,An. Add the results obtained by intersecting an odd number of the sets, and then 
subtract the results obtained by intersecting an even number of the sets. Therefore, this 
principle is ideally suited to situations in which  
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i)   we just want the size of A1∪A2∪… ∪An, not a listing of its elements, and  

ii)  multiple intersections are fairly easy to count. 

Now let us consider some examples in which Theorem 7 is applied.  
 
Example 8: How many ways are there to distribute r distinct objects into five 
(distinct) boxes with  

i)   at least one empty box? 

ii)  no empty box (r ≥ 5)? 

 
Solution: Let U be all possible distributions of r distinct objects into five boxes.  Let 
Ai denote the set of possible distributions with the ith box being empty.   
 
i) Then the required number of distributions with at least one empty box is  

.A...AA 521 ∪∪∪   We have N = 5r.  Also, ,)15(A r
i −=  the number of 

distributions in which the objects are put into one of the remaining four boxes.  
Similarly, ,)25(AA r

ji −=∩ and so forth.  Thus, by the corollary above, we 

have  

5432151 SSSSSA...A +−+−=∪∪  

           01)4,5(C2)3,5(C3)2,5(C4)1,5(C rrrr +−+−=
 

ii) ,1)4,5(C2)3,5(C3)2,5(C4)1,5(C5A...AA rrrrr
5

_
2

_
1

_
+−+−=∩∩∩ by  

Theorem 7. 
* * * 

 
Example 9: How many solutions are there to the equation x + y + z + w = 20, where 
x, y, z, w are positive integers such that x ≤ 6, y ≤ 7, z ≤ 8, w ≤ 9? 
 
Solution: To use inclusion-exclusion, we let the objects be the solutions (in positive 
integers) of the given equation. A solution is in A1 if x > 6, in A2 if y > 7, in A3 if  

z > 8, and in A4 if w > 9. Then what we need is .AAAA 4
_

3
_

2
_

1
_

∩∩∩  

 
Now, to find the total number of positive solutions to the given equation, we rewrite it 
as x1+y1+z1+w1 = 16, where x1 = x+1, y1 = y+1, z1 = z+1, w1 = w+1.  Any non-
negative solution of this equation will be a positive solution of the given equation.  So, 
the number of positive solutions is  
 
N = C(16+4−1, 16) (see Example 11 of Unit 2)     
    = C(19, 3).    
 
Similarly, ),3,11(CA),3,12(CA),3,13(CA 321 ===  

),3,5(CAA),3,6(CAA),3,10(CA 32214 =∩=∩= and so on. Note that for a 
solution to be in 3 or more Ai s, the sum of the respective variables would exceed 20, 
which is not possible. By inclusion- exclusion, we obtain 

=∩∩∩ 4
_

3
_

2
_

1
_

AAAA C(19, 3) − C(13, 3) − C(12, 3) − C(11, 3) − C(10, 3)  

+ C(6, 3) + C(5, 3) + C(4, 3) + C(4, 3) + C(3, 3) = 217. 

* * * 
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Basic Combinatorics Now you may try the following exercises. 
  

E10) Prove the corollary to Theorem 7.  

 
E11) How many numbers from 0 to 999 are not divisible by either 5 or 7? 

Let us now consider applications of the inclusion-exclusion principle to some specific 
problem types.  
 

3.4 APPLICATIONS OF INCLUSION-EXCLUSION 

In this section we shall consider three broad kinds of applications ⎯ for counting the 
number of surjective functions, finding probability and finding the number of 
derangements.  
 
3.4.1 Application to Surjective Functions 

Let us first recall that a function f : S → T is called surjective (or onto) if f(S) = T, 
that is, if for every t∈T∃ s∈S such that f(s) = t. Now let us prove a very useful result 
regarding the number of such functions. 
 
Theorem 8: The number of functions from an m-element set onto a k-element set is 

 where 1 ≤ k ≤ m.  ,)ik)(i,k(C)1( mi
k

0i
−−∑

=
 
Proof: We will use the inclusion-exclusion principle to prove this.   For this, we  
define the objects to be all the functions (not just the onto functions) from M, an m-
element set, to K, a k-element set.  For these objects, we will define Ai to be the set of 
all f: M → K for which the ith element of K is not in f(M).  Then what we want is 

.A....A k
_

1
_

∩∩    

 
Now, the total number of functions from M to K is km.  Also, the number of mappings 
that exclude a specific set of i elements in K is (k − i)m, and there are C(k, i) such sets.  
Therefore, m

ji
m

i )2k(AA,)1k(A −=∩−= , and so on.   
 

Now, applying Theorem 7, we get 

m1kmmm
k

_
1

_
1)1k,k(C)1(...)2k)(2,k(C)1k)(1,k(CkA...A −−+−−+−−=∩∩ −   

Hence the result.  

 
For example, the number of functions from a five-element set onto a three-element set 

are  for m = 5 and k = 3, that is, 3mi
k

0i
)ik)(i,k(C)1( −−∑

=

5 −3.25 + 3.15 = 150. 

  
Why don’t you try some exercises now? 
 

E12) Eight people enter an elevator.  At each of four floors it stops, and at least one 
person leaves the elevator.  After four floors the elevator is empty.  In how 
many ways can this happen?  
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E13) How many six-digit numbers contain exactly three different digits? 

 
Now we look at another application.  
 
3.4.2 Application to Probability  

An important application of the principle of inclusion-exclusion is used in probability.  
We have the following theorem.  
 
Theorem 9: Suppose A1,A2,…, An are n events in a probability space. Then  

P(A1∪ A2∪… ∪An) =  )A...AA(P)1(
r21

r21
iii

ni...ii1

1r
n

1r
∩∩∩∑−∑

≤<<<≤

+

=

 
Proof: Let us begin by observing that A1 ∪A2 ∪… ∪An means that at least one of the 
events A1, A2,…, An occurs. Now, let the ith property be that an outcome belongs to 

the event Ai.  By De Morgan’s law, n21 A...AA ∩∩∩  is the complement of 

A1 ∪A2 ∪…∪An. But the principle of inclusion-exclusion gives 

r
n N )1(A...AA

_

2

_

1

_

−∑−=∩∩∩
r

r

iii
niii

AAA ∩∩∩∑
≤<<<≤

...
21

21 ...1
, where N is 

the total number of outcomes.  
 
Now, we divide throughout by N and note that  

P( ) = 1 − P( ), to get the result.  nAAA ∪∪∪ ...21 n
_

2
_

1
_

A...AA ∩∩∩
 
Let us consider an example of the use of this result.  
 
Example 12: Find the probability of a student in a college studying Japanese, given 
the following data:  

All students have to study at least one language out of Hindi, Spanish and Japanese.  
65 study Hindi, 45 study Spanish and 42 study Japanese. Further, 20 study Hindi and 
Spanish, 25 study Hindi and Japanese, 15 study Spanish and Japanese, and 8 study all 
3 languages.  
 

Solution: The total number of students is JSH ∪∪ , where H, S and J denote the 
number of students studying Hindi, Spanish and Japanese, respectively.  By the 
inclusion-exclusion principle,  

⏐H ∪ S ∪ J⏐ = ⏐H⏐+⏐S⏐+⏐J⏐−⏐H ∩ S⏐−⏐H ∩ J⏐−⏐S ∩ J⏐+⏐H ∩ S ∩ J⏐ 
            = 65 + 45 + 42 − 20 − 25 −15 + 8 = 100 

Therefore, the required probability is .42.0
100

=
J

 

 
 

* * * 
 
You could do the following exercises now. 
  

E14) What is the probability that a 13-card hand has at least one card in each suit? 
 
E15) What is the probability that a number between 1 and 10,000 is divisible by 

neither 2, 3, 5 nor 7? 
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Basic Combinatorics Let us now come to the use of inclusion-exclusion for counting the number of a 
particular kind of permutation.  
 
3.4.3 Application to Derangements 

As you know, a permutation of a set is an arrangement of the elements of a set.   
 
So, for example, a rearrangement 1 → 1, 2 → 2, 4 → 3, 3 → 4 is a permutation of the 
4-element set {1, 2, 3, 4}.  In this permutation, the position of the elements 1 and 2 are 
fixed, but the positions of 3 and 4 have been interchanged.  Now consider the 
permutation 1 → 4, 2 → 1, 3 → 2, 4 → 3, of {1, 2, 3, 4},  in which the position of 
every element has been changed.  This is an example of a derangement, a term we 
shall now define.   
 
Definition: A derangement of a set S is a permutation of the elements of S which 
does not fix any element of S, i.e., it is a rearrangement of the elements of S in which 
the position of every element is altered.  
 
So, if we treat a permutation as a 1-to-1 function from S to S, then a derangement is a 
function f:S → S such that f(s) ≠ s ∀ s∈S. 
 
We have the following theorem regarding the number of derangements.  

Theorem 10: The number of derangements of an n-element set is Dn = n! 
!i
)1( in

0i

−
∑
=

. 

Proof: Let Ai be the set of all permutations of the n-element set that fix i ∀ i = 1, …, 
n. Then 

 Dn = n
n

ji
ji

i
i

i
n

i
AAAAAnA ∩∩−+−∩∑+∑−=∩

<=
...)1(...! 1

_

1
 

                = n! − C(n, 1) (n − 1)! + C(n, 2) (n − 2)! − … + (−1)nC(n, n)0! 

          = n! ⎟
⎠
⎞

⎜
⎝
⎛ −++−+−

!n
1)1(...

!3
1

!2
1

!1
11 n , which is the expression we wanted.  

Remark: The expression ⎟
⎠
⎞

⎜
⎝
⎛ −++−+−

!n
1)1(...

!3
1

!2
1

!1
11 n  is the beginning of the 

expansion for e−1.  Even for moderately large values of n, Dn is very close to 
n!e−1=0.36788 n!.  
 
As an extension of Theorem 10, we have the following results.   
 
Theorem 11: For a set of n objects, the number of permutations in which  
 

(i)  only r of these n objects are deranged is   

      n! − C(r, 1) (n − 1)! + C(r, 2) (n − 2)! − … + (−1)r C(r, r) (n −r)!; 
 
(ii) exactly r elements are fixed is C(n, r) Dn−r. 
 
We will not prove these formulae here, but shall consider some examples of their 
applications.  
 
Example 12: Let n books be distributed to n children. The books are returned and 
distributed to the children again later on. In how many ways can the books be 
distributed so that no child will get the same book twice? 
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Solution: The required number is (n!)2e−1, since corresponding to each first 
distribution, there are (n!)e−1 ways of distributing again.  

 
* * * 

 
Example 13: Suppose 10 people have exactly the same briefcases, which they leave at 
a counter.  The cases are handed back to the people randomly.  What is the probability 
that no one gets the right case? 
 
Solution: The number of possibilities favourable to the event is D10. The total number 
of possibilities is 10!. Thus, the probability that none will get the right briefcase is 
D10/10! = 0.36788.  
 

* * * 
 
Note that, since Dn ≈ n!e−1, the possibility in all such examples is essentially e−1, 
which is independent of n.  
 
You may now try the following exercises.  
 

E16) Each of the n guests at a party puts on a coat when s/he leaves.  None of them 
gets the correct coat.  In how many ways can this happen?  In how many ways 
can just one of the guests get the right coat? 

 
E17) In how many ways can the integers 1, 2, 3,…,9 be permuted such that no odd 

integer will be in its natural position.  
 
E18) Find the number of permutations in which exactly four of the nine integers 1, 

2,…,9 are fixed.  

With this we come to the end of this unit.  In the next unit we shall continue our 
discussion on ‘counting’ from a slightly different perspective. Let us now summarise 
what we have covered in this unit.  
 

3.6 SUMMARY 

In this unit, you have studied the following points.  

1. The pigeonhole principle, stated in several forms, its proof, and its applications. 
 
2. The generalized pigeonhole principle, its proof, and applications. 
 
3. The inclusion-exclusion principle, and its proof.  
 
4. Finding the number of surjective functions, the discrete probability and the 
 number of derangements, by using the inclusion-exclusion principle.   
 

3.7 SOLUTIONS /ANSWERS 

E1) By drawing lines parallel to the sides and through the points trisecting each 
side, we can divide the equilateral triangle into 9 equilateral triangles of side 1 
cm. Thus, if 10 points are chosen, at least two of them must lie in one of the 9 
triangles.  

 
E2) 5 persons can be paired in C(5, 2) =10 ways. Hence, if pairs are invited 11 
 times, at least one pair must have been invited twice or more times, by the 
 pigeonhole principle.  
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Basic Combinatorics E3) Four persons can be arranged in a line in 4! = 24 ways. Hence, if we consider 
25 occasions, at least on two occasions the same ordering in the queue must 
have been found, by the pigeonhole principle.   

 
E4) Consider the following grouping of numbers:  

{1, 2, 4, 8, 16}, {3, 9, 18}, {5, 15}, {6, 12}, {7, 14}, {10, 20}, {11}, {13}, 
{17}, {19}.  

 
 There are 10 groupings, exhausting all the 20 integers from 1 to 20.  If 11 
 numbers are chosen it is impossible to select at most one from each group.  So 
 two numbers have to be selected from some group.  Obviously one of them 
 will divide the other.  
 
E5) Suppose x1, x2,…, x15 are the number of balls in the 15 boxes, listed in 

increasing order, assuming that all these numbers are different. Then, clearly, xi 

≥ i − 1 for i = 1, 2,…,15. But then,   .1052/15.14xi

15

1i
=≥∑

=

 
But the total number of balls is only 100, a contradiction. Thus, the xis cannot 
all be different.  

 
E6) In the sequence a1, a2,…,an, there are (n+1)/2 odd numbers and (n−1)/2 even 

numbers because n is odd. Hence, it is impossible to pair all the ais with 
numbers from 1, 2,…, n with opposite parity (evenness and oddness). Hence, in 
at least one pair (i, ai), both the numbers will be of the same parity. This means 
that the factor (ai−i) will be even, and hence the product will be even.  

 
E7) Consider the seven colours as containers, and the integers getting the respective 

colour as their contents.  Then we have a distribution of an infinite number of 
objects among 7 containers.  Hence, by Theorem 5, at least one container must 
have an infinity of objects, that is, the colour of that container must have been 
used an infinite number of times.  

 
E8) Let H be the family of 5-element subsets B of A.  For each B in H, let f(B) be 

the sum of the numbers in B. Obviously, we must have  

f(B) ≥ 1 + 2 + 3 + 4 + 5 = 15, and f(B) ≤ 46 + 47 + 48 + 49 + 50 = 240.  
 

Hence, f: H → T where T = {15, 16,…, 240}.   
 
Since T  = 226 and⏐H⏐= C(10,5) = 252, by Theorem 4, H contains different 
sets with the same image under f, that is different sets, the sums of whose 
elements are equal.  

 
E9) The 100 collections can be considered as containers. There are an infinity of 

even numbers.  When these even numbers are distributed into 100 containers, at 
least one container must have an infinity of them, by Theorem 5.  

 
E10) The inclusion-exclusion formula can be rewritten as 

.S)1(...SS(NA...A n
1n

21n
_

1
_

−−++−−=∩∩   

Also, we know that .A...ANA...A n1n
_

1
_

∪∪−=∩∩    

 
Hence the result.  
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E11) Let the objects be the integers 0, 1,…, 999.  Let A1 be the set of numbers 
divisible by 5, and A2 the set of numbers divisible by 7.  Now, N = 1000, 1A  = 
200, 2A =143 and .29AA 21 =∩   So, by Theorem 7, the answer is 1000 − 
200 − 143 + 29 = 686.  

E12) The answer to this problem is clearly the number of functions from an 8-
element set (the set of people) onto a set of 4-elements (the set of floors).  This 
number is  

  .1.42.63.44)i4)(i,4(C 88888
4

0i
−+−=−∑

−

 
E13) We can choose three digits in C(10,3) = 120 ways.   

The number of 6-digit numbers, using all the three digits, is the same as the 
number of functions from a 6-set onto a 3-set. This number is  

36−3.26 + 3.16 = 540.   
 
Hence, the answer is 120.540 = 64800. This will include numbers starting with 
0 also.  

 
E14) The total number of ways in which 13 cards can be chosen from a deck of 52 

cards is C(52, 13).  
 

If Ai is a choice of cards, none of which are from the ith suit, for i = 1,2,3,4,  
then ),13,26(CAA),13,39(CA jii =∩= and C(Ai∩Aj ∩Ak) = C(13,13). 

 So, )13,26(C)2,4(C)13,39(C4)13,52(CAi
_

+−=∩ − C(4,3) C(13, 13) 

 Hence, the required probability is .
)13,52(C

Ai
_

∩

 

 
E15) If A,B,C,D are the integers divisible by 2, 3, 5, 7, respectively, then  
 

 ⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡−=∩∩

7
10000

5
10000

3
10000

2
10000000,10...

__

DA  

   

 +  ⎥⎦
⎤

⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡

10
10000

21
10000

14
10000

35
10000

15
10000

6
10000  

 

 − ⎥⎦
⎤

⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡

210
10000

70
10000

105
10000

42
10000

30
10000  

 
 =  2285, where [x] denotes the greatest integer ≤ x.  
 

 Hence, the required probability is .23.0
10000
2285

=  

 
E16) If Ar is the event that the rth person gets the right coat, then by Theorem 7,  

 ...AAA!nA sr
s,r

r
r

i
_

−∩∑+∑−=∩  

            = n! − n(n−1)! + C(n,2)(n−2)! − C(n,3)(n−3)!+… 
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Basic Combinatorics             = C(n,2)(n−2)! − C(n,3)(n−3)!+… 

            = n! ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

= !r
1)1( r

n

0r
 

The number of ways in which only one person receives the correct coat is the 

sum of all possible intersections of (n−1) . This is  sAi
_

n! n(n−1)! ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

−

= !r
1)1( r

1n

0r
 = n! ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∑

−

= !r
1)1( r

1n

0r
. 

E17) 1, 3, 5, 7, 9 are the odd integers.  

 By Theorem 11(i), the required number of ways is  

 9! − C(5, 1)8! + C(5, 2)7! − C(5,3)6! + C(5, 4)5! − C(5, 5)4! 
 
E18) By Theorem 11(ii), the required number of permutations is 

C(9,4)D9−4=C(9,4)D5.  
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4.0 INTRODUCTION 

In the last two units we have exposed you to a variety of combinatorial techniques. In 
this unit we look at a few more ways of counting arrangements of objects when order 
matters, and when it doesn’t.  
 
In Sec. 4.2, we focus on the ways in which a natural number can be written as a sum 
of natural numbers. In the process you will be introduced to a useful ‘recurrence 
relation’. 
 
We link this, in Sec. 4.3, with the different ways in which n objects can be distributed 
among m containers. As you will see, there are four broad possible kinds of 
distributions. In each case, we consider ways of counting all the distributions. In the 
process you will also be introduced to Stirling numbers.  
 
With this unit we come to the end of our discussion on counting techniques. Some of 
the problems you have studied here will be looked at from different approaches in our 
later course MCS-033.  
 
You should attempt the assignment based on the course after studying this unit, and 
this block.  
 

4.1 OBJECTIVES 

After going through this unit, you should be able to:  

• define an integer partition, and count the number of partitions of an integer;   
• count the number of ways of distributing distinguishable and indistinguishable 

objects, respectively, into distinguishable containers;   
• count the number of ways of distributing distinguishable and indistinguishable 

objects, respectively, into indistinguishable containers.   
 

4.2 INTEGER PARTITIONS 

Suppose a detergent manufacturer wants to promote her product by giving a gift token 
with 100 bars out of the whole stock. The lucky persons among her customers will get 
the gift.  Some of them may buy more than one bar at a time with the hope of getting 
gifts. In how many ways can the 100 gift tokens get distributed?  One possible way is 
that all the 100 bars with gifts are bought by 100 different customers. We can indicate 
this situation by .1...11100

times100
43421 +++=  Another possibility is that somebody buys 2 bars, 

    61



 

Basic Combinatorics somebody else buys 3 bars, and the remaining 95 bars are distributed amongst 95 
different people. We are not interested in the order in which the bars are bought. For 
example, here we are not interested in whether the person who bought 2 bars bought 
them before the person who bought the 3 bars. So, we can indicate this situation by 

321...11100
times95

+++++= 43421 . More generally, we can indicate each way of distributing 

the 100 bars with gifts by 100 = p1 + p2 + p2 + … + pk, where the pi are natural 
numbers, and p1 ≤ p2 ≤ … ≤ pk. Each way of writing 100 in this form is called an 
integer partition of 100. More generally, we have the following definition.   
 
Definition:  Any representation of n∈N as a sum of positive integers in non-
increasing order is called a partition (or integer partition) of n. Each such partition   
can be written in the form n = p1 + p2 + …+ pk, where p1 ≤ p2 ≤ … ≤ pk.   
 
Here, p1, p2,…, pk are called the parts of the partition, and the number of parts of the 
partition is k.  
 
While we chose 100 in the example above, it is really a huge number in the context of 
integer partitions. Let us consider a smaller number, say 5.  How many partitions of 5 
can you think of?  There are 7 altogether, namely, 5, 1+4, 2+3, 1+1+3, 1+2+2, 
1+1+1+2 and 1+1+1+1+1.   
 In books, you will often 

come across the notation 
p(n) for the number  of 
partitions of n.  

If we represent the number of partitions of the integer n by Pn, we have shown 
that P5 = 7. These partitions have 1, 2, 2, 3, 3, 4 and 5 parts, respectively.    
 
If we represent the number of partitions of n with exactly k parts by then we 

have  

,Pk
n

.1P,1P,2P,2P,1P 5
5

4
5

3
5

2
5

1
5 =====

 
To check your understanding of the material so far, try the following exercises.  
 

E1) Write down all the partitions of 7.  Also find  .PandP 5
7

4
7

 
E2) Let us consider the situation of the detergent manufacturer again.  Suppose she 

only wants to distribute 10 gift tokens in 5 specific sales districts, where the 
sales are low.  What is the number of ways of doing this?    

You may wonder if you’ve found all the partitions in E2. One way to check is by 
finding out the required number in terms of partitions of smaller numbers, which may 
be easier to find.  One such relation between partitions of n and n+1, n+2, etc. is given 
in the following theorem.     
 

Theorem 1:  that is, the number 
of partitions of n with at most k parts is the same as the number of partitions of 
n+k with exactly k parts.  

,nk1for,1PP,PP...PP n
n

1
n

k
kn

k
n

2
n

1
n ≤≤===+++ +

 
Before we begin the proof of this theorem, let us consider an example. Let us take n = 
4, k = 3. According to Theorem 1, we must have  Note that 

 is the total number of partitions of 4 with 1, 2 or 3 parts, i.e., the number 
of partitions with at most 3 parts. There is one partition of 4 with one part, 4 = 4. Let 
us write this as a 3-tuple, (4, 0, 0), adding two more zeroes since we are considering 
partitions with at most 3 parts.  If we add 1 to all the entries of this 3-tuple, we get 
(4+1,0+1,0+1) = (5,1,1) and (1+1+5 is a partition of 7 with three parts. Similarly, 
consider the partition 4 = 1+3 of 4 into two parts. Again, we can write this as (1, 3, 0).   

.PPPP 3
7

3
4

2
4

1
4 =++

3
4

2
4

1
4 PPP ++
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Now, if we add 1 to each of the entries, we get (2, 4, 1) and 1+2+4 is a partition of 7 
into three parts. Conversely, if we take the partition 7 = 1 + 3 +3 of 7 into three parts, 
write it as (1, 3, 3) and subtract 1 from all the entries, we get (0, 2, 2) which 
corresponds to the partition 4 = 2+2 of 4 into 2 parts.  In this way, we can match every 
partition of 4 with at most 3 parts with a partition of 7 with exactly 3 parts, and vice 
versa. This is the basic idea behind our proof of Theorem 1, which we now give.   
 

Proof of Theorem 1: The cases  follow from the definition.  n
n

1
n P1P ==

 
We will prove the general formula now. Let M be the set of partitions of n having k or 
less parts. We can consider each partition belonging to M as a k-tuple after adding as 
many zeroes as necessary. Define the mapping 
 
(p1, p2,…, pm, (p)0,...,0,0

times
)mk(
321

−

a 1+1,p2+1,…,pm + 1, m ≤ k ),1,...,1,1

times
)mk(
321

−

from M into the set M′ of partitions of n+k into exactly k parts. This mapping is 
bijective, since 

i)   two distinct k-tuples in M are mapped onto two distinct k-tuples in M′; 

ii)  every k-tuple in M′ is the image of a k-tuple of M.  This is because, if  

(p1, p2,…,pk) is a partition of n+k with k parts, then it is the image of  

(p1 − 1, p2 − 1,…, pk − 1) under the mapping above.  
 
Therefore, ,PMP...PM k

kn
k
n

1
n +=′=++= and the theorem is proved.   

 
Note that if n < k, since there is no partition of n with k parts if n < k. Also, 

 

0Pk
n =

.1PP 1
n

n
n ==

 
The formula in Theorem 1 is an identity which allows us to find  from values of 

, where m < n, k ≤ r. This is why it is also called a recurrence relation for  

r
nP

k
mP .Pk

n
 
Theorem 1 is every useful.  For instance, to verify your count in E2, you can use it 
because  .7P...PPP 5

5
2
5

1
5

5
10 =+++=

 
From Theorem 1, the  may be calculated recursively as shown in Table 1.   sPk

n
 

Table 1 : for 1 ≤ n, k ≤ 6 k
nP

 
           k  

n 
 

1     2      3       4     5      6 
1 
2 
3 
4 
5 
6 

1     0      0       0     0      0 
1     1      0       0     0      0 
1     1      1       0     0      0 
1     2      1       1     0      0 
1     2      2       1     1      0 
1     3      3       2     1      1 

 
In this table, the second entry in the row corresponding to n = 4 is  By Theorem 1, 

 which is the sum of the entries in the row corresponding to n = 2.   

.P2
4

,PPP 2
2

1
2

2
4 +=

 

Similarly,  is the sum of the entries in the row corresponding to n = 3.  3
6P
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Basic Combinatorics Now, here is an exercise for you.  
 

E3) Use Table 1 to find the values of  .6k1,Pk
7 ≤≤

The partition of a number n into k parts also tells us how n objects can be distributed 
among k boxes.  We will now consider all possibilities of such distributions.  
 

4.3 DISTRIBUTIONS 

By a distribution we mean a way of placing several objects into a number of 
containers. For example, consider the distribution of 6 balls among 3 boxes. We may 
have all 6 balls of different shapes, sizes and colours, i.e., they are all distinguishable.  
Or, all the balls could be exactly the same, i.e., they are all indistinguishable.    

Similarly, all 3 boxes may look different, or all 3 could be exactly the same. So, we 
see that there are 4 possibilities here.  
 
In fact, we have the following possibilities for any set of n objects and m boxes.  

Case 1: The objects are distinguishable, and so are the boxes; 

Case 2: The objects are distinguishable and the boxes are indistinguishable; 

Case 3: The objects are indistinguishable and the boxes are distinguishable; 

Case 4: The objects are indistinguishable, and so are the boxes.  

You may be surprised to know that in each of the cases the number of such 
distributions is different. In fact, the distribution problem is to count all possible 
distributions in any of these situations, or in a combination of these cases.    
 
A general guideline for modelling a ‘distribution problem’ is that a distribution of 
distinct objects corresponds to an arrangement, and a distribution of identical objects 
corresponds to a selection. Let us consider examples of each of the four cases given 
above.  

(a) There are twenty students and four colleges. In how many ways can the students 
be accommodated in the four colleges? 
 
In this example the students, as well as the colleges, are clearly distinguishable. 
This comes under Case (1).  

 
(b) Suppose we want to group 100 students into 10 groups of 10 each for the purpose 

of a medical examination. In how many ways can this be done?  
 
 Here the groups are indistinguishable, though the students in them are 

distinguishable. Hence, this falls under Case (2).    
 
(c) An employer wants to distribute 100 one-rupee notes among 6 employees. What 

is the number of ways of doing this? 
 

Though the one-rupee notes can be distinguished by their distinct numbers, we 
don’t consider them to be distinguishable as far as their use is concerned. The 
employees, of course, are distinguishable. Hence, this is an example of Case (3).  

 
(d) There are 1000 one-rupee notes. In how many ways can they be bundled into 20 

bundles? 
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 As before, the rupee notes are treated as indistinguishable. Clearly, the bundles 
are, by themselves, not distinguishable. Only the quantity in each may vary.  
Hence, this falls under Case (4).  

 
Let us consider each case in some detail now.  
 
4.3.1 Distinguishable Objects into Distinguishable Containers 

Let us consider the example (A) above. Since any number of students can be put in a 
college, there are 20 × 20 × 20 × 20 possibilities, by the multiplication principle.   
 
More generally, suppose we are distributing n objects into m containers, both being 
distinguishable. Then the total number of such distributions is nm.  
 
Let us look at an example.  
 
Example 1: Show that the number of words of length n on an alphabet of m letters is 
mn.  
 
Solution:  The m letters of the alphabet can be used any number of times in a word of 
n letters.  The word can be considered as n ordered boxes, each holding a letter from 
the alphabet. The boxes become distinguishable because they are ‘ordered’. The 
letters of the alphabet are clearly distinguishable.  So, the number of ways of doing 
this is mn.  

* * * 
 
Several people are confused while solving the problem above. They tend to take the m 
letters as the containers instead! Let’s consider another example.  
 
Example 2: Suppose we have a set S with n objects.  An m-sample from this set S is 
an ordered arrangement of m letters taken from S, with replacement at every draw, in 
m draws. Find the number of m-samples from an n-element set.  
 
Solution:  Every m-sample is a word of length m from the ‘alphabet’ S containing n 
letters. Hence, the required number is nm.  
 

* * * 
 
Now here are some exercises for you to solve.  
 

E4) Find the number of three-letter words that can be formed using the letters of the 
English alphabet. How many of them end in x? How many of them have a 
vowel in the middle position? 

 
E5) How many five-digit numbers are even? How many five-digit numbers are 

composed of only odd digits? 
 
E6) There are 4 women and 5 men. A committee of three, a president, a vice-

president, and a secretary, has to be formed from them. In how many ways can 
this be done if  

i)   the vice-president should be a woman? 

ii)  exactly one out of the vice-president and the secretary should be a woman? 

iii) there is at least one woman in the committee?  

Now suppose, we want to find the number of distributions of n distinguishable objects 
into m distinguishable containers, with the extra condition that no container should 



 

Basic Combinatorics contain more than one object.  It is clear that this requires m ≥ n.  Then we can get all 
these arrangements by first choosing n containers to contain exactly one object, and 
then permuting the n objects among the chosen containers.  This can be done in  
C(m, n).  n! = P(m, n) ways.   
So, we have proved the following result.  
 
Theorem 2: The number of ways of distributing n distinguishable objects into m 
distinguishable containers such that no container contains more than one object is 
P(m, n).  
 
For example, the cardinality of the set of 5-digit numbers with all digits being distinct 
odd numbers is P (5,5).  This is because the possible digits are 1, 3, 5, 7, 9.   
 
Why don’t you try an exercise now? 
 

E7) Find the number of m-letter words with distinct letters, all taken from an 
alphabet with n letters, where n ≥ m.  Is this different from the number of 
injective mappings from an m-element set into an n-element set, where        
n ≥ m?  Give reasons for your answer.  

Let us now consider the second type of distribution.  
 
4.3.2 Distinguishable Objects into Indistinguishable Containers 

Here we shall find the number of ways of distributing n distinguishable objects into m 
indistinguishable containers. For this, we first find the number when exactly k of the 
containers are occupied. This brings us to Stirling numbers of the second kind, named 
after James Stirling (1692-1770).   
 
Suppose n ≥ m. The number of distributions of n distinguishable objects into m 
indistinguishable containers such that no container is empty is represented by   
This number is called the Stirling number of the second kind.  As you can see, this is 
also the number of partitions of a set of n objects into m classes.   

.m
nS

 
Definition: For natural numbers n and m, the Stirling number of the second kind, 

, is the number of partitions of an n-element set into exactly m parts.  m
nS

 
Note that:  

i)  = 0 if n < m, for, if the number of containers exceeds the number of objects, 
then it is impossible to have all the containers non-empty.  

m
nS

 
ii)  since there is only one way of putting n distinguishable objects in n 

indistinguishable boxes so that no box is empty.  
,1Sn

n =

 
iii)  .1S1

n =
 
Now, we shall use the inclusion exclusion principle to find the value of  .Sm

n

Theorem 3:  = m
nS nk

m

0k
)km)(km,m(C)1(

!m
1

−−−∑
=

, n  ≥ m.    

 
Proof: If the m classes are distinguishable, the number of partitions is the same as the 
number of functions from an n-element set onto an m-element set. As the classes are 
distinguishable here, we have to divide this number by m!. The result follows from 
Theorem 8, Unit 3.  
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Distributions For example, to obtain the Stirling number,  we know that the number of functions 

from a 5-element set onto a three-element set is 150.  So, by Theorem 3, 150/3!  
= 25.  

,S3
5

=3
5S

 
Remark: You may be wondering how we have jumped straightaway to the Stirling 
numbers of the second kind.  What about the first kind?  We won’t be using them in 
any way here.  However, for a the sake of completeness, we define Stirling numbers 
of the first kind, s(n, k), as follows.   
 
For a positive integer n, and 0 ≤ k ≤ n, s(n, k) is the coefficient of xk in the expansion 
of the multinomial x(x −1)(x −2)…(x − n + 1). 
 

Getting back to you may feel that the formula in Theorem 3 is a little 

cumbersome. Sometimes, the following recurrence relation for  may be more 
useful.  

,Sm
n

m
nS

 
Theorem 4: If 1 < m ≤ n, then  .mSSS m

n
1m

n
m

1n += −
+

 
Proof: Let us take n+1 objects, mark one of them, and consider the distribution of 
these n+1 objects into m indistinguishable containers. Then we have 2 situations.  
 
Case (1)  (The marked object is placed in one container without any other objects.): In 
this case, the remaining n objects can be placed in (m − 1) containers in  ways.  1m

nS −

 
Case (2)  (The marked object is placed with at least one more object in a container.): 
In this case, we can first distribute the n unmarked objects into m containers, and then 
put the marked objects m to one of these m containers.  So, the number of such 
partitions is m    .Sm

n

Therefore, by the addition principle, we get  .mSSS m
n

1m
n

m
1n += −
+

 
There is a generalisation of Theorem 4 that is of independent interest, which we now 
state.   

Theorem 5:   1m
k

n

0k

m
1n S).k,n(CS −

=
+ ∑=

 
Proof: Let us mark one object in a set of (n+1) objects. Suppose the marked object is 
present in a box with (n − k + 1) elements, where m − 1 ≤ k ≤ n. Then we can choose 
n − k more objects to go with the marked object in C(n, n − k) ways. The remaining k 
objects can be distributed into (m − 1)n boxes in ways. So the number of ways of 

distributing the n − k objects is C(n, n − k) . The result now follows from the 
addition principle by allowing k to vary from 0 to n.  

1m
kS −

1m
kS −

 
Let us see some examples of the use of these recurrences.   
 
Example 3: Calculate and    2

3S .S2
4

Solution: Using Theorem 4, we get   and  2
3S  = ,3121S2S 2

2
1
2 =×+=×+

2
4S  =  + 2  = 1 + 2 × 3 = 7. 1

3S 2
3S

 
* * * 

 
Now let us find what we had started with in this sub-section.  
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Basic Combinatorics Theorem 6: The number of ways of distributing n distinguishable objects into m 
indistinguishable containers is + +…+ , where n ≥ m. (Note that here we do 
not insist that no container is empty.) 

1
nS 2

nS m
nS

 
Proof: When we distribute n distinguishable objects into m indistinguishable 
containers there are m cases.  Case (k) is that exactly k containers are non-empty.  
Here k varies from 1 to m.  The number of distributions in Case (k) is The result 
now follows from the addition principle.   

.Sk
n

 
Let us consider an example.  
 
Example 4: In how many ways can 20 students be grouped into 3 groups? 
 

Solution: Theorem 6 says that this can be done in  +  +  ways.   1
20S 2

20S 3
20S

 
Now, using Theorem 3, we get this number to be  

20k
3

0k

20k
2

0k
)k3)(k3,3(C)1(

6
1)k2)(k2,2(C)1(

2
11 −−−∑+−−−∑+

==
 

= 581,130,734.  
 

* * * 
 
Try some exercises now.  
 

E8) Find the number of surjective functions from an n-element set onto an m-
element set. 

 
E9) Find the number of ways of placing n people in n − 1 rooms, no room being 

empty.  

Let us now consider the third possibility for distributing objects into containers.   
 
4.3.3  Indistinguishable Objects into Distinguishable Containers 

Suppose there are n indistinguishable objects and m distinguishable containers. As the 
objects are indistinguishable, the distributions depend only on the number of objects 
in each container. As the containers are distinguishable, they can be assumed to be 
arranged in a line. Hence, the number of distributions is the number of ways of writing 
the number n as the sum x1+x2+…+xm, where the xi’s are non-negative integers.   
 
We have covered this situation in Theorem 5 of Unit 2.  Over there we have shown 
that the number of distributions of n indistinguishable objects into m 
distinguishable containers is C (m+n−1, n).  In particular, the number of non-
negative integral solutions of the equation x1+x2+…+xm = n is C (m+n−1, n).  
 
Incidentally, we note that the number of distributions of n indistinguishable objects 
into m distinguishable containers with at most one object per container is C (m, n).  
 
Let us consider an example.  
 
Example 5: How many distinct solutions are there of x + y + z + w = 10 

i)  in non-negative integers? 

ii) in positive integers? 
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Solution: 

i)   From the result quoted above, the answer is C(4 + 10 − 1, 10) = 286. 

ii)  We want x, y, z, w to be positive. Hence, we can write them respectively as X+1, 
Y+1, Z+1, W+1, where X, Y, Z, W are non-negative. Hence we want the number of 
non-negative solutions of the equation X+1+Y+1+Z+1+W+1=10, i.e., X+Y+Z+W= 6. 
The answer, now, is C (4 + 6 − 1, 6) = 84. 
Try some exercises now.  
 

E10) Show that the number of positive solutions of the equation x1+x2+…+ xn = m is 
C(m − 1, m − n). 

 
E11) In how many ways can an employer distribute 100 one-rupee notes among 6 

employees so that each gets at least one note? 

Let us now consider the fourth case.  
 
4.3.4  Indistinguishable Objects into Indistinguishable Containers 

Suppose there are n indistinguishable objects and m indistinguishable containers. Any 
distribution is determined purely by an unordered m-tuple of non-negative integers 
with sum n. This is equivalent to the number of increasing sequences of length m of 
non-negative integers with sum n.  But this is precisely the number of partitions of the 
integer n with at most m parts, viz., from Theorem 1 of 
this unit.  

,PP...PP m
mn

m
n

2
n

1
n +=+++

 
Let us consider an example of this case.  
 
Example 6:  In how many ways can 20 identical books be placed in 4 identical boxes? 
 

Solution:  The answer is  +  + +  =   1
20P 2

20P 3
20P 4

20P 4
24P

 
Why don’t you try some exercises now? 
 

E12) In how many ways can 1000 one-rupee notes be bundled into a maximum of 20 
bundles? 

 
E13) A car manufacture has 5 service centres in a city.  10 identical cars were served 

in these centres for a particular mechanical defect.  In how many ways could 
the cars have been distributed at the various centres? 

With this we have come to the end of this unit. Let us take a quick look at what we 
have studied in this unit. 
 

4.4 SUMMARY 

1. A partition of n∈N into k parts is x1+x2+…+xk = n, where x1 ≤ x2 ≤ …≤ xk.  Pn 
is the set of all partitions of n, and is the set of all partitions into exactly k 
parts.  

k
nP

 
2. The proof and applications of the recurrence relation, 

 .nk1,1PP,PP...PP n
n

1
n

k
kn

k
n

2
n

1
n ≤≤===+++ +

 
3. The number of ways of distributing n objects into m containers is : 
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 i) nm, if the objects and containers are distinguishable.  Basic Combinatorics 

 ii)  if the objects are distinguishable but the containers are not.   ,Si
n

m

1i=
∑

  (Here i
jS is a Stirling number of the second kind).  

iii) C(m+n−1, n) if the objects are not distinguishable but the containers are 
distinguishable.   

iv) if neither the objects nor the containers are distinguishable.  ,Pm
mn+

 
Further, in (i) above, if there is an extra requirement that each container contain at 
most one object, then the number of distributions is P(m, n). Again, in (iii) above, 
with the same extra requirement, the number of distributions is C(m, n).  
 

4.5 SOLUTIONS /ANSWERS 

E1) In the table below we give all possible partitions of 7.  
 

Table 2 
 

Number of 
parts 

Partitions 

1 
2 
3 
4 
5 
6 
7 

7       
1+6, 2+5, 3+4 
1+1+5, 1+2+4, 1+3+3, 2+2+3 
1+1+1+4, 1+1+2+3, 1+2+2+2 
1+1+1+1+3, 1+1+1+2+2 
1+1+1+1+1+2 
1+1+1+1+1+1+1  

 
 From the table, we see that  .2P,3P 5

7
4
7 ==

 
E2) The required number is  .7P5

10 =
 
E3)  .P1P 7

7
1
7 ==

 , from Table 1.  3

,

21PPP 2
5

1
5

2
7 =+=+=

 from Table 1. 4121PPPP 3
4

2
4

1
4

3
7 =++=++=

  
 Similarly,  .1PPand2PPP,3PPPPP 1

1
6
7

2
2

1
2

5
7

4
3

3
3

2
3

1
3

4
7 ===+==+++=

 
E4) The 26 letters are distinguishable objects.  We have to fill then in three 

distinguishable containers, viz., the first, second, and third positions of a three-
lettered word. The solution is 263.  

  
If the last letter is to be x, the number is only 262 × 1. 

 
If the middle letter is a vowel, then by the multiplication principle, the answer is 
26 × 5 × 26. 

 
E5) The total number of even numbers is 9 × 10 × 10 × 10 × 5 = 45,000, since the 

last digit can only by 0, 2, 4, 6 or 8.   
 

The number of 5-digit numbers composed of only odd digits (i.e., 1, 3, 5, 7, 9) 
is clearly 55 = 3125.  
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E6) i)  We can choose a woman for vice-president in 4 ways. To fill the  
 remaining 2 positions we can select 2 from the remaining 8 persons in 8 × 7 = 

56 ways. Hence, the required number is 4 × 56 = 224.  
 

ii) If the vice-president is a woman (chosen in 4 ways), others can be selected in 
5 × 4 = 20 ways. Similarly, if the woman is a secretary, the others can be 
chosen in 20 ways. Hence, by the addition and multiplication principles, the 
answer is 20 × 4 + 20 × 4 = 160.  

 
iii)  Without any restriction, three can be selected in 9 × 8 × 7 = 504 ways. If no 
woman is to be selected, then it can be done in 5 × 4 × 3 = 60 ways. What we 
need is the complement of this. Thus, the required answer is 504 − 60 = 444.  

 
E7) If the alphabet has n letters, the m-letter words with distinct letters can be 

formed in n (n − 1)(n − 2)…(n − m + 1) = P(n, m) ways.  
 
 Now, in an injective mapping, images of distinct elements should be distinct 

(see Unit 1). There are n possible images for the first element of the m-set, n−1 
possible images for the second, and so on.  Hence, the number of such 
mappings is also P(n, m).    

 
E8) Suppose N = {1, 2, …,n} and M = {1, 2, …, m}.  If f is an onto function from 

N to M, then the inverse images, f−1(1), f−1(2),…, f−1(k) constitute a partition of 
N into m classes.  The number of ways in which this can be done is where 
the order of partition is immaterial.  But, in functions, the order cannot be 
ignored.  So, the distribution can be done in m!. ways. 

,Sm
n

m
nS

 
E9) This is  This can be done by putting one person each in n − 2 rooms and 2 

persons in 1 room. This can be done in C(n, 2) ways.  So  

.S 1n
n
−

).2,n(CS 1n
n =−

 
E10) If a positive solution is x1, x2, …, xn, then it can be written as X1+1, X2+1,…, 

Xn + 1, where the Xi’s are non-negative.  Thus, the required number is the 
number of non-negative solutions of X1+X2+…+Xn+n = m, which is  
C(n + m − n − 1, m − n) = C(m − 1, m − n).  

 
E11) This is the number of positive solutions of x1+…+x6 = 100.  
 So, the required number is C(100 − 1, 100 − 6) = C(99, 94) = 71,523,144. 
 
E12) .  PPP 20

1020
20

1000
1
1000 ++

 
Had the requirement been that there be exactly 20 bundles, then the number 
would have been  .P20

1000
 
E13)  .PPPPPP 5

15
5
10

4
10

3
10

2
10

1
10 =++++
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