

MCS-014
SYSTEMS ANALYSIS

AND DESIGN

Block

2
PLANNING AND DESIGNING SYSTEMS

UNIT 5

Process of Systems Planning 5

UNIT 6
Modular and Structured Design 17

UNIT 7
System Design and Modeling 31

 Indira Gandhi
 National Open University
 School of Computer and
 Information Sciences

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur
Prof. M. Balakrishnan, IIT , Delhi
Prof. Harish Karnick, IIT, Kanpur
Prof. C. Pandurangan, IIT, Madras
Dr. Om Vikas, Sr. Director, MIT
Prof P. S. Grover, Sr. Consultant
SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences
Shri Shashi Bhushan
Shri Akshay Kumar
Prof Manohar Lal
Shri V.V. Subrahmanyam
Shri P. Venkata Suresh

Block Preparation Team

Shri M.P.Goel (Content Editor)
Principal Systems Analyst (Retd)
National Informatics Centre
New Delhi

Ms.Huma Anwar
Dept. of Computer Science
Institute of Management & Research
Ghaziabad

Shri K.L.Sarkar
Manager
NSIC
New Delhi

Ms.Tamanna Siddiqui
Dept. of Computer Science
Jamia Hamdard
New Delhi

Shri P. Venkata Suresh
SOCIS, IGNOU

Prof. M.R.Dua (Language Editor)
New Delhi

Course Coordinator : P. Venkata Suresh

Block Production Team

Shri H.K Som, SOCIS

Acknowledgements

To all the faculty of SOCIS, IGNOU for their comments on the course material;
to Shri Vikas Kumar for help in finalizing the CRC.

May, 2004

©Indira Gandhi National Open University, 2004

ISBN-81-266-1230-4

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means,
without permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the
University’s office at Maidan Garhi, New Delhi-110 068.

Printed and published on behalf on the Indira Gandhi National Open University, New Delhi by The Director,
SOCIS.

9

Thinking about Learning

BLOCK INTRODUCTION

This block is on the planning and designing information systems.

Every organization processes information. When the organization intends to automate these
processes, it has to plan accordingly. The automation may be done by the built in information
technology division or the job may be outsourced. When it is outsourced, the company which is
going to build the information system has to plan the project. It will do this task by finding
various facts in the organization (i.e. tracking the flow of information in the absence of
automation as well as obtaining clarity about various processes). Ultimately, it has to prepare the
schedule for the job and start gathering requirements. After requirements are gathered and a
consensus is reached on the requirements that are to be considered for the information system, a
modular and structured design for the system has to be explored and ultimately, system has to be
designed.

This block consists of 3 units and is organized as follows:

Unit-5 focuses on various fact finding techniques such as Interviews, Group Discussions,
Presentations etc. Also, various issues involved in the study of feasibility of developing such a
system are discussed. The process of doing a cost benefit analysis is explained and various
requirements gathering techniques are discussed.

Unit-6 deals with various design principles such as Top down design and Bottom up design. Also,
various symbols that are used in the Structure charts are indicated and explained. The concepts of
Cohesion and Coupling are explained in this unit.

Unit-7 deals with the design of information system. Various modeling techniques such as Data
Flow Diagrams and E-R diagrams are explained. Also, various process specification tools such as
Decision Tables, Decision Trees and Structured English notation are also explained with
examples in this unit.

 5

Process of Systems
PlanningUNIT 5 PROCESS OF SYSTEMS PLANNING

Structure Page Nos.

5.0 Introduction 5
5.1 Objectives 5
5.2 Fact Finding Techniques 5
 5.2.1 Interviews

5.2.2 Group Discussions
5.2.3 Site Visits

 5.2.4 Presentations
 5.2.5 Questionnaires
5.3 Issues involved in Feasibility Study 9
 5.3.1 Technical Feasibility
 5.3.2 Operational Feasibility
 5.3.3 Economic Feasibility
 5.3.4 Legal Feasibility
5.4 Cost Benefit Analysis 11
5.5 Preparing Schedule 12
5.6 Gathering Requirements of System 13
 5.6.1 Joint Application Development
 5.6.2 Prototyping
5.7 Summary 15
5.8 Solutions/Answers 16
5.9 Further Readings 16

5.0 INTRODUCTION

In this unit, you will learn the process of planning the development of systems. You
will also learn various techniques used in it. Here, you will learn about the various
techniques of fact finding and getting appropriate information about system which is
currently in place. Based on the information gathered, a list of requirements has been
compiled. The same is sent to the customer for his/her review and comments. The
topic of feasibility study is discussed in depth in this unit. The process of cost benefit
analysis is also discussed in this unit. Lastly, we shall discuss about the Joint
Application Development (JAD).

5.1 OBJECTIVES

After going through this unit, you will be able to:

• know the various fact finding techniques and also their advantages and
disadvantages;

• identify check points in system life cycle to conduct feasibility study;
• know the process of doing cost benefit analysis of the project;
• know various issues related with system development; and
• learn the process of preparing schedule.

5.2 FACT FINDING TECHNIQUES

To learn the functions of the existing system, systems analyst needs to collect data
related to the existing system. Usually, the data related to organization, staff,
documents used, formats used in the input and output processes is collected. This
information is obtained through interviews, group discussions, site visits,
presentations, and questionnaires.

 6

Planning and Designing
Systems

Need for Fact Finding

Normally, each and every business house or any organization has its own rules and
procedures to run and manage it. When a system needs to be developed, the systems
analyst needs to know the requirements of the system. Depending on these
requirements, the system has to be developed.

5.2.1 Interviews

Personal interview is a recognized and most important fact finding technique, where
the systems analyst gathers information from individual through face to face
interaction. Interviews are used to find the facts, verify facts, clarify facts, get the
customer involved, identify the system requirements and know all options. The
interview is usually conducted by the systems analyst. To conduct interview, the
interviewer must have personality which helps him/her to be social with strangers or
different types of people. Always and for all situations, interviews are not appropriate
fact finding methods. It has both advantages and disadvantages.

Advantages

• Interviews permit the systems analyst to get individual’s views and get the
specific problem work wise and operation wise.

• Interviews allow the systems analyst to obtain a better clarity of the problem due
to feedback from the interviewees.

• In the process of interviews, the interviewer has time and scope to motivate the
interviewee to respond freely and openly.

• Interviews allow the systems analyst to understand the user requirements and to
know the problems faced by the user with the current system.

• It is an effective technique to gather information about complex existing systems.

Disadvantages

• Interviews are very time consuming.
• Success of interviews, in most of the cases, depends on the systems analyst’s
 interpersonal relationship skills.
• Some times, interviews may be impractical due to the location of interviewees.

Types of Interviews

There are two types of interviews:

• Structured; and
• Unstructured.

In structured interviews, there is a specific set of questions to be asked to an
interviewee. In the case of unstructured interviews, there are few specific questions
pertaining to an interviewee. But, you have questions which are common to all
interviewees. Unstructured interviews are conducted with only a general goal or
subject in mind.

Conducting Interview is an art. The success in interview depends on selecting the
individual, preparing for the interview, creating situation in which the answers
offered are reliable and creating a situation in which opinion can be given without
any fear of being criticized by others.

Arranging Interview

The system analyst should prepare properly for the interview. S/he should select place
of interview, time of interview in such a way so that there will be minimal

 7

Process of Systems
Planning

interruption. Always, it is important to take appointment with the interviewee. Time to
be spent during interview varies from project to project. The higher the management
level of the interviewee, the less the time to be scheduled for the interview.

Guidelines for conducting interviews :

For a successful interview, the steps to be followed are given below:

Introduction

During introduction, the analyst should introduce himself by focusing on purpose of
the interview and the confidential nature of interview. Also, this is the phase wherein
first impressions are formed and pave way for the success of the remaining part of the
interview.

Asking questions

Questions should be asked exactly as these are worded in case of structured interview.
Rewording may modify or bias the response. Always, questions have to asked in the
same sequence as prepared.

Recording the interview

Record of the interview must be kept mentioning the source of the data and its time of
collection. Sometimes, the analyst cannot remember the source of the data which
may attribute to the invalid sources.

Doing a final check

After the interview has been completed, the deliberations made during the interview
should be put in the form of a report. The report of the interview has to be sent to the
interviewee for his/her signature. If any discrepancies are found or any modifications
are to be done, these can be done at this point of time.

5.2.2 Group Discussions

In this method, a group of staff members are invited who are expected to be well
versed in their own wings of the organization. The analysts will have a discussion
with the members for their views and responses to various queries posed by them.

In this process, individuals from different sections gather together and will discuss the
problem at hand. Ultimately, they come to an optimum solution. In this process, the
problems of all sections are taken care of most of the cases, solutions are found which
are acceptable to everyone. The main disadvantage of this process is that it is very
difficult to get all the concerned people together at a time. But, the major advantage is
that a mutually acceptable solution can be found.

5.2.3 Site Visits

The engineers of the development organization visit the sites. Usually, the systems
analysts visit sites to get first hand information of the working of the system. In this
technique, systems analyst watches the activities of different staff members to learn
about the system. When there is confusion about the validity of data collected from
other sources, the systems analyst uses the method of site visits. The main objective of
site visit is to examine the existing system closely and record the activities of the
system.

Advantages

1. The process of recording facts site visits is highly reliable.

 8

Planning and Designing
Systems

2. Sometimes, site visits take place to clear doubts and check the validity of the
data.

3. Site visit is inexpensive when compared to other fact finding techniques.
4. In this technique, systems analyst will be able to see the processes in the

organization at first hand.
5. The systems analyst can easily understand the complex processes in the

organization.

Disadvantages

1. People usually feel uncomfortable when being watched; they may unwillingly
perform their work differently when being observed.

2. Due to interruptions in the task being observed, the information that is collected
may be inaccurate.

3. Site visits are done during a specific period and during that period, complexities
existing in the system may not be experienced.

4. There may be scheduling problems for the systems analysts when the activities
take place during odd hours.

5. Sometimes, people may be more careful to adopt the exact procedure which they
do not typically follow.

Guidelines for site visit

Site visits are to be conducted where the work load is normal. After studying the work
and normal work load, systems analyst can observe the work at peak hours to see the
effect caused by increased volumes. The systems analyst should collect the input
/output form, documents at the time of his/her visit. The following guidelines need to
be followed at the time of observation and site visit:

1. Keep a low profile at the time of site visit.
2. Take necessary permissions from appropriate officials to conduct site visit.
3. Inform the individuals who will be observed at the time of site visit.
4. Take notes of the study of site visit immediately.
5. Do not make any assumptions.

5.2.4 Presentations

It is another way of finding the facts and collecting data. Presentation is the way by
which the systems analyst gathers first hand knowledge of the project. The customer
makes a presentation of the existing system or about the organization. Participants in
the meeting are representatives from the IT company and key personnel of the client
organization. When a company needs to develop a software project, it may present its
requirements for IOE (interest of expression) from the interested IT Company. In that
case, the client presents his/her requirements. Based on the requirements, the IT
companies make prototype and show the demo of the prototype. It is very difficult to
obtain information in detail from a presentation. But, information available through
presentation is sufficient to develop a prototype. Presentation is made by the
concerned department in consultation from other departments and senior officials.

5.2.5 Questionnaires

Questionnaires are special purpose documents that allow the analyst to collect
information and opinion from respondents. By using questionnaires, it is possible to
collect responses or opinion from a large number of people. This is the only way to
get response from a large audience.

Advantages

1. It is an inexpensive means of collecting the data from a large group of individuals.
2. It requires less skill and experience to administer questionnaires.

 9

Process of Systems
Planning

1.
2.

3.
4.

3. Proper formulation and interaction with respondents leads to unbiased response
 from the customers.
4. Customers can complete it at their convenience.
5. Responses can be tabulated and analyzed quickly.

Disadvantages

1. Sometimes, the number of respondents is low.
2. There is no guarantee that the respondents will answer all the questions.
3. Sometimes, the individual may misunderstand the question. In that situation, the
 analyst may not get correct answer.

Types of questionnaires

There are two types of questionnaires:

• Free formed questionnaires are questionnaires where questions are mentioned
along with blank spaces for response.

• Fixed formed questionnaires are questionnaires which consist of multiple
choices and the respondent can select only from the choices provided.

The following are various types of Fixed format questions:

True / False or yes/no type questions.
Questions whose response will be one of the choices: strongly agree, agree,
disagree..
Ranking type questions (ranking items in order of importance).
Multiple choice questions (select one response or all the relevant responses).

Check Your Progress 1

1. ………………… and ………….…… are two types of interviews.
2. ……………… are special purpose documents that allow the analyst to collect

information and opinion from respondents.
3. The engineers of the …..………… organization make site visits.

5.3 ISSUES INVOLVED IN FEASIBILITY STUDY

Feasibility study consists of activities which determine the existence of scope of
developing an information system to the organization. This study should be done
throughout the life cycle. In a project, at one point of time, it may seem that the
project is feasible. But, after proceeding one or two phases, it may become infeasible.
So, it is necessary to evaluate the feasibility of a project at the earliest possible time.
Months or years of efforts, huge finances could be saved if an infeasible system is
recognized at earlier stage.

Feasibility study starts from the preliminary investigation phase. At this stage, the
analyst estimates the urgency of the project and estimates the development cost.

The next check point is problem analysis. At this stage, the analyst studies current
system. S/he does it to understand the problem in the better way. It helps him/her to
make better estimates of development cost, and also to find out the benefits to be
obtained from the new system. In feasibility analysis, we have to study the following:

• Technical feasibility,
• Operational feasibility,
• Economic feasibility, and
• Legal Feasibility.

 10

Planning and Designing
Systems

5.3.1 Technical Feasibility

Technical feasibility is concerned with the availability of hardware and software
required for the development of the system, to see compatibility and maturity of the
technology proposed to be used and to see the availability of the required technical
manpower to develop the system. These three issues are addressed during this study.

Is the proposed technology proven and practical? At this stage, the analyst has to see
or identify the proposed technology, its maturity, its ability or scope of solving the
problem. If the technology is mature, if it has large customer base, it will be preferable
to use as large customer base already exists and problems that stem from its usage
may be less when compared to other technologies which don’t have a significant
customer base. Some companies want to use the state of art new technology
irrespective of the size of customer base.

The next question is: does the firm possess the necessary technology it needs. Here,
we have to ensure that the required technology is practical, and available. Now, does it
have the required hardware, and software? For example, we need ERP software, and
hardware which can support ERP. Now, if our answer is no for either of the questions,
then the possibility of acquiring the technology should be explored.

The last issue related to technical feasibility is the availability of technical expertise.
In this case, Software and Hardware are available. But, it may be difficult to find
skilled manpower. The company might be equipped with ERP software, but the
existing manpower might not have the expertise in it. So, the manpower should be
trained in the ERP software. This may lead to slippage in the delivery schedules.

5.3.2 Operational Feasibility

Operational feasibility is all about problems that may arise during operations. There
are two aspects related with this issue:

• What is the probability that the solution developed may not be put to use or may
not work?

• What is the inclination of the management and end users towards the solution?
Though, there is very least possibility of management being averse to the solution,
there is a significant probability that the end users may not be interested in using
the solution due to lack of training, insight, etc.

Also, there are other issues related with operational feasibility.

Information

The system needs to provide adequate, timely, accurate and useful information. It
should be able to supply all the useful and required information to all levels and
categories of users.

Response time

It needs to study the response time of the system in term of throughput. It should be
fast enough to give the required output to the users.

Accuracy

A software system must operate accurately. It means that it should provide value to
its users. Accuracy is the degree to which the software performs its required functions
and gives desired output correctly.

 11

Process of Systems
Planning

Security

There should be adequate security to information and data. It should be able to protect
itself from fraud.

Services

The system needs to be able to provide desirable and reliable services to its users.

Efficiency

The system needs to be able to use maximum of the available resources in an efficient
manner so that there are no delays in execution of jobs.

5.3.3 Economic Feasibility

It is the measure of cost effectiveness of the project. The economic feasibility is
nothing but judging whether the possible benefit of solving the problems is
worthwhile or not. At the feasibility study level, it is impossible to estimate the cost
because customer’s requirements and alternative solutions have not been identified at
this stage. However, when the specific requirements and solutions have been
identified, the analyst weighs the cost and benefits of all solutions, this is called “cost
benefit analysis”. This is discussed below. A project which is expensive when
compared to the savings that can be made from its usage, then this project may be
treated as economically infeasible.

5.3.4 Legal Feasibility

Legal feasibility studies issues arising out of the need to the development of the
system. The possible consideration might include copyright law, labour law, antitrust
legislation, foreign trade, regulation, etc. Contractual obligation may include the
number of users who will be able to use the software. There may be multiple user’s
licences, single user licences, etc. Legal feasibility plays a major role in formulating
contracts between vendors and users. If the ownership of the code is not given to the
user, it will be difficult to install it without proper permission to other systems.
Another important legal aspect is that whenever an IT company and the user company
do not belong to the same country then the tax laws, foreign currency transfer
regulations, etc., have to be taken care of.

5.4 COST BENEFIT ANALYSIS

In economic feasibility, cost benefit analysis will be done. There are two types of
costs associated with a project: The costs involved with development of the system
and costs associated with operation and maintenance of the system. System
development cost can be estimated at the time of planning of the system and it should
be refined in different phases of the project. Maintenance and operation costs are to be
estimated before hand. At the same time, these estimations are bound to change as the
requirements change during the development process. After the implementation, these
costs may increase or decrease depending on the nature of updations done to the
system. System development cost is one time cost, but maintenance and operating
costs are recurring costs. Different costs are:

Cost of human resources

It includes the salaries of system analysts, software engineers, programmers, data
entry operators, operational, and clerical staff. In other words, the amount that is going
to be spent on all the people involved.

 12

Planning and Designing
Systems

Cost of infrastructure

The cost of infrastructure including those of computers, cables, software, etc., comes
under this head.

Cost of training

Both the developing staff and operating staff need to be trained for new technologies
and new system. So, the training cost has to be considered for calculating the cost of
the system.

There are two components in economic feasibility: costs and benefits. The cost
consists of tangible hardware, software costs, cost of human resources and some
intangible costs. Tangible costs are saved by the usage of the system. Intangible costs
are saved by the quality of the system. Also, application of system should lead to
efficiency. When the quality of the system is high, the effectiveness of the services
provided by the organizations increase. If a choice has to be made between efficiency
and effectiveness then it is better to do the right thing inefficiently than to do wrong
thing efficiently. The tangible benefits are those which can be quantified easily. They
can be measured in terms of savings or profits. On the other hand, in the case of
intangible benefits, it is difficult to quantify. Examples of intangible benefits are
improving company goodwill, improving employee moral, better decision making,
etc.

We may consider the case of an insurance company’s branch office. There are 15
employees in the office which include one manager, two business development
officers, one accounts officer, one administrative officer, seven clerical staffs, two
security guards, one peon. If the branch is converted to a fully computerized branch,
the total hardware and software cost will be Rs.10 lakhs. Training of the existing
manpower will be Rs.50,000.Total investment is 10.5 lakhs. Total maintenance cost of
software and hardware is Rs.1.5 lakhs per year. Interest of the investment is
Rs.1,26,000 per year. So, the total expenditure is increased by Rs.2, 76,000 per year.
But the branch can reduce the clerical staff. Now it needs two clerical staffs and two
data entry operators. Total cost saving by reducing 3 staffs will be Rs.4.5 lakhs per
year. Here, it is clear that the tangible benefit is more than the expenditure. Besides,
the tangible benefit also improves the customer’s satisfaction. So, it is clear that the
project is feasible.

Check Your Progress 2

1. ………………... consists of activities which determine the existence of scope of
developing an information system to the organization.

2. ………….………. is all about problems that may arise during operations.
3. .………………… and ………….…… are two components of economic

feasibility.

5.5 PREPARING SCHEDULE

A system development process scheduling is an activity that distributes estimated
effort according to the planned project duration by allocating the effort to specific
software engineering tasks. But, at the early stage of the project, macroscopic
schedule is developed. This schedule identifies all major activities of the project. As
the project progresses, each entity of macroscopic schedule is refined into a detailed
schedule. For a systems development, scheduling is meant for setting an end date to
the project(s).

Now, the feasibility of following the schedule is directly related to the time table
made. Systems analysts have to take care of schedule feasibility of the system. The

 13

Process of Systems
Planning

purpose of schedule feasibility is to understand the time frames and dates of
completion of different phases of the project. It means that the project can be
completed and be operational so that it will meet the needs of the user requirements.

In most cases, missing the deadline may invite penalties. A systems analyst has to
remember the schedule feasibility at the time before entering into any agreement with
client regarding the delivery schedules. At the project planning stage, feasibility of
conforming to the schedule will be studied by the analyst. To take a decision, factors
such as expected team size, availability of resources, sub-contracting or outsourcing
of activities have to be considered. Scheduling feasibility will be reassessed during the
commencement of each phase.

5.6 GATHERING REQUIREMENTS OF SYSTEM

Finalizing the requirements of the system to be built forms the backbone for the
ultimate success of the project. It not only includes ascertaining the functions, but also
the constraints of the system. The later part is very important as the customer needs to
be very clear about the services that are going to be offered by the system. This will
avoid any conflicts during the delivery or intermediate meetings with the client as the
client assumes that the system provides those functions which are actually constraints
of the system.

When the requirements of the system are inaccurate, it may lead to the following
problems:

1. Delivery schedules may be slipped.
2. Developed system may be rejected by the client leading to the loss of reputation

and amount spent on the project.
3. System developed may be unreliable.
4. Overall cost of the project may exceed the estimates.

There are different ways of finding the system requirements. Two of them are joint
application development and prototyping.

5.6.1 Joint Application Development

It is a process in which group meetings are held to analyze the problem and define the
requirements of the desired system. In the process of Joint Application Development
(JAD), each participant is expected to attend and actively participate. The group
includes: sponsor, the facilitator, the user manager and IT staff. When JAD technique
is used to find the requirements, it is known as Joint Requirements Planning.

Participants of Joint Application Development

The following are the various participants of Joint Application Development:

Sponsor is a person in top management. The sponsor plays a vital role in the process
of JAD. S/he works closely with JAD leader to plan the session by identifying
individuals from the user community.

Facilitator is a single individual who plays an important role as leader. S/he leads all
the session that held for system development. S/he must have good communication
skill, negotiation skill, ability to remove group conflicts, possess good knowledge of
business, has strong organising power, quick and impartial decision making
capability. The facilitator plans session for JAD, conducts the session and follows the
decision of the session.

Representatives of the Clients will also attend the JAD session. They are chosen by
the project sponsor based on their knowledge of the business system. The role of the

 14

Planning and Designing
Systems

representatives of the clients is to communicate the business rules and the
requirements of the desired system.

Scribe records proceedings of the meeting. The proceedings are published and
demonstrated to the attendees immediately after the meeting. Scribes need to have a
good knowledge of systems analysis Systems analysts frequently play this role.

IT staff such as programmer also participate in the session. IT staff listen and take
notes regarding issues and requirements mentioned by the clients and analysts. They
can contribute their ideas related to technical limitations of the current system.

JAD session spans from 3-7 days, but in special cases, it may continue up to two
weeks. Success of JAD session depends upon proper planning. For a successful JAD
session, all the participants should be informed about the schedule of the session
before hand and they should come prepared. The analyst must work closely with the
sponsor to determine the scope of the issues that will be discussed in JAD session.
There are three steps that are to be followed for a successful JAD session:

• Selection of a location for JAD session.
• Selection of JAD participants.
• Preparation of agenda items for JAD session.

JAD sessions are usually held in a location different from the work place. The meeting
room should be equipped with white board, overhead projector, data projector, laptop,
printer, scanner, etc. There should be name tags for all the participants.

Preparation of the agenda is the key for the success of JAD session. Agenda must be
brief, should mention the objective of the session. It must mention the item to be
discussed in each session and time allotted to each item. Agenda contains three parts
namely, the opening, the body and conclusion.

Process of conducting a JAD session successfully

For successful session, the facilitator should adhere to the following guidelines:

1. Agenda should be followed strictly.
2. Topic should be completed within allotted time.
3. Ensure that the scribe is able to take notes.
4. Avoid the use of technical jargon unless essential.
5. Try to get group consensus.
6. Ensure that the participants follow the rules.

Disadvantages of Joint Application Development (JAD)

• Since it is a meeting of many people, there may not be sufficient time for
everyone to speak.

• Only a few people may dominate the discussion. So, the outcome of the meeting
will be the view of those who spoke most during the meeting.

• The problem with such meetings is that some people are afraid to speak out for
fear that they may be criticised.

5.6.2 Prototyping

Designing and building a scaled down, but functional version of a desired system is
known as prototype. In other words, it is the model of the software to be built. It can
be developed using appropriate software such as 3GL, 4GL with query, screen, report,
form, etc. The analyst builds a prototype as per the preliminary or basic requirements
of the user. Whenever the prototype is displayed to the clients, they give their
suggestions regarding improvement of features, etc., or they may accept it. Of course,

 15

Process of Systems
Planning

there is every possibility of rejection also. Based on the user feedback, the analyst
improves the prototype and makes a new version of the prototype. This process
continues till the client is satisfied and fulfils his/her needs. In some cases, prototypes
are further scaled upwards to become full fledged software to be delivered to the
customer. This model is useful for determining requirements for the software to be
built in the following situations:

1. Requirements are not clear.
2. For any complex systems, prototypes are more useful.
3. In the cases where communication problems exist between customer and analysts,

this model is useful.
4. Tools and data are readily available for building the working system.

There are some disadvantages of the prototype model:

1. In case of prototyping, formal documentation is avoided.
2. Usually, prototypes are stand alone systems. Building prototypes is difficult in

cases where data has to be shared.
3. Important issues, such as security and validation, are not given importance

Check Your Progress 3

1. ……………..… is nothing but a model of the software to be built.
2. In most of the projects, missing the delivery schedules will lead to …………... .
3. ………………… is a process in which group meetings are held to analyse the

problem and define the requirements of the desired system.

5.7 SUMMARY

The process of systems planning is a critical activity in the life of a project. Here, we
have focused on determination of requirements, gathering of information about the
existing system. There are many techniques for requirements determination which
include interviews, questionnaires, group discussions, site visits, and presentations.
One or more of the above techniques are used to gather adequate information about
the current system. Each technique has its own advantages and disadvantages. In
personal interview, the systems analyst gathers information through face to face
interaction. It is very common and simple method of fact finding. In a group
discussion, a group of individuals is called from different work groups. In this
method, problems of all the sections are discussed and a suitable and acceptable
solution is arrived at. In the process of site visits, the systems analyst watches the
activities and learns about the system. Questionnaires are special type of documents
which allow the system analyst to collect information from the respondent.

In this unit, the process of study of feasibility of developing the system is examined.
In feasibility study, it is stated whether the project assessment can be accepted for
development or is to be rejected for its infeasibility. The key activity in the project
planning is the assessment of different feasibility issues associated with the project. It
includes economic, technical, operational and legal issues. The economic feasibility
judges the cost effectiveness of the project. There are two types of costs involved in a
project:

• System Development Costs.
• Operation and Maintenance Costs.

The benefit consists of saving the tangible costs by using the system and the
intangible costs by improving the quality of service. In operational feasibility,
systems analyst assesses the degree to which the proposed system solves business
problem or takes advantage of business opportunity. The legal issues to be considered
are copyright law, antitrust legislation, foreign trade legislation, etc.

 16

Planning and Designing
Systems

There are several modern information gathering techniques used by the systems
analyst. Some of them are: Joint Application Development (JAD) and Prototyping.
JAD is a structured process in which users, managers, and analysts work together
through a series of meetings to specify system requirements.

5.8 SOLUTIONS/ANSWERS

Check Your Progress 1

1. Structured interviews, Unstructured interviews.
2. Questionnaires.
3. Development.

Check Your Progress 2

1. Feasibility Study.
2. Operational Feasibility.
3. Costs and benefits.

Check Your Progress 3

1. Prototype.
2. Penalties.
3. Joint Application Development.

5.9 FURTHER READINGS

• Jeffrey A.Hoffer, Joey F.George and Joseph S.Valacich;
 Modern Systems Analysis and Design; Pearson Education; Third Edition; 2002.
• Jeffrey L. Whitten, Lonnie D. Bentley, Kevin C. Dittman; Systems Analysis and

Design Methods; Tata McGraw Hill; Fifth Edition;2001.
• Elias M. Awad; Systems Analysis and Design; Galgotia Publications;
 Second Edition; 1994.
• Perry Edwards; Systems Analysis and Design;McGraw Hill Publication;1993.

Reference Websites

http://www.rspa.com
http://www.cbpa.csusb.edu/flin/info609/sysplan

http://www.rspa.com/
http://www.cbpa.csusb.edu/flin/info609/sysplan

17

Modular and
Structured DesignUNIT 6 MODULAR AND STRUCTURED DESIGN

Structure Page Nos.

6.0 Introduction 17
6.1 Objectives 17
6.2 Design Principles 18

6.2.1 Top Down Design
6.2.2 Bottom Up Design

6.3 Structure Charts 20
6.4 Modularity 23

6.4.1 Goals of Design
6.4.2 Coupling
6.4.3 Cohesion

6.5 Summary 29
6.6 Solutions/Answers 29
6.7 Further Readings 30

6.0 INTRODUCTION

In this unit, you will learn the process of designing system’s internals. We will begin
at an abstract level, taking system’s processes, in the form of data flow diagrams, and
convert them to structure charts. Structure charts represent design graphically. You
will learn the process of drawing structure charts and how to derive them from
dataflow diagrams. The structure charts you create will form the basis for the structure
of the system you design and build. Decisions made at this point will influence the
overall design and implementation of the information system (IS). So, you need to be
aware of what constitutes a good design. You will learn about some guidelines that
will help you achieve it. The primary goal behind good design is to make your system
easy to read and easy to maintain. The primary way to do this is to divide the problem
solutions into smaller and smaller pieces or modules. The smaller the pieces or
modules the easier it is to program, to read and to revise due to changing users’
requirements. Modularisation, therefore promotes ease of coding and maintenance. On
the other hand, modularisation is not simply reduction of size but it is also a reflection
of function that is what particular piece of a system i.e. a module supposed to do. One
guideline for good design is to maximize cohesion, the extent to which a part of the
system is designed to perform one and only one function or task. Modules that perform
single task are easier to write and maintain than those performing different tasks. As
modularisation also involves how different parts of the system work in conjunction
with each other, another guideline for good design is to minimize coupling, the extent
to which different parts of the system are dependent on each other.

6.1 OBJECTIVES

After going through this unit, you should be able to:

• know the meaning of design;
• learn the process of top down design and bottom up design;
• learn the process of drawing a structure chart;
• learn the goals of design;
• differentiate between five types of coupling and apply them in programs; and
• differentiate between seven types of cohesion and apply them in programs.

Design bridges the gap between specifications and coding. The design of the system is
correct if the system is built according to the design that satisfies the requirements of
that system.

 18

Some of the properties of design are: Planning and Designing
Systems

Verifiability: It is concerned with how easily the correctness of design can be argued.
Traceability: It helps in design verification. It requires that all design must be
traceable to the requirements.
Completeness: The software must be complete in all respects.
Consistency: It requires that there are no inherent inconsistencies within the system.
Efficiency: It is concerned with proper usage of resources by the system.
Simplicity: It is related to simple design so that user can easily understand and use it.
Simple designs are easy to maintain in the long run or through the lifecycle of a
software system.

6.2 DESIGN PRINCIPLES

There are certain principles that can be used for the development of the system. These
principles are meant to effectively handle the complexity of process of design. These
principles are:

Problem Partitioning: It is concerned with partitioning the large problems. Divide
and Conquer is the policy adopted here. The system is divided into modules that are
self dependent. It improves the efficiency of the system. It is necessary that all
modules have interaction between them.

Abstraction: It is an indispensable part of design process and is essential for problem
partitioning. Abstraction is a tool that permits the designer to consider a component at
an abstract level (outer view) without worrying about details of implementation of the
component. Abstraction is necessary when the problem is divided into smaller parts so
that one can proceed with one design process effectively and efficiently. Abstraction
can be functional or data abstraction. In functional abstraction, we specify the module
by the function it performs. In data abstraction, data is hidden behind functions/
operations. Data abstraction forms the basis for object-oriented design.

Design principles are necessary for efficient software design. Top down and bottom
up strategies help implement these principles and achieve the objectives.

A system consists of components called modules, which have subordinate modules. A
system is a hierarchy of components and the highest-level module called super
ordinate module corresponds to the total system. To design such a hierarchy, there are
two approaches namely top down and bottom up approaches.

The top down approach starts from the highest-level module of the hierarchy and
proceeds through to lower level. On the contrary, bottom up approach starts with
lower level modules and proceeds through higher levels to the top-level module.

6.2.1 Top Down Design

This approach starts by identifying major components of the system decomposing them
into their own subordinate level components and interacting until the desired level of
detail is achieved. Top down design methods often result in some form of stepwise
refinement, starting from an abstract design, in each step, the design is refined to a more
concrete level until we reach a level where no more refinement is required and the
design can be implemented directly. This approach is explained by taking an example of
“Library Information System” depicted in figures 6.1,6.2 and 6.3 below:

 Figure 6.1: The top (root) of software system

Library Information System

19

Modular and
Structured Design

Quit Reports Processing Queries Data Entry

Library Information System

Figure 6.2: Further decomposition of the “top” of software system

Now, we can move further down and divide the system even further as shown in Figure
6.3.

Quit Reports Processing Queries Data Entry

Student member Faculty member Issue Return

Fine calculation

Library Information System

 Figure 6.3: Hierarchy Chart of Library Information System

This iterative process can go on till we have reached a complete software system. A
complete software system is a system that has been coded completely using any
front-end tool (ex Java, Visual Basic, VC++, Power Builder etc).

Top down design strategies work very well for system that is made from the scratch.
We can always start from the main menu and proceed down the hierarchy designing
data entry modules, queries modules, etc.

6.2.2 Bottom Up Design

In bottom up strategy, we start from the bottom and move upwards towards the top of
the software.

This approach leads to a style of design where we decide the process of combining
modules to provide larger ones, to combine these to provide even larger ones and so
on till we arrive at one big module. That is, the whole of the desired program.
This method has one weakness. We need to use a lot of intuition to decide the
functionality that is to be provided by the module. If a system is to be built from
existing system, this approach is more suitable as it starts from some existing
modules.

Check Your Progress 1

1 ……..…………… is a tool that permits the designer to consider a component at
an abstract level (outer view) without worrying about details of implementation of
the component.

 20

2. ………………..… starts by identifying major components of the system
decomposing them into their own subordinate level components and interacting
until the desired level of detail is achieved.

Planning and Designing
Systems

3. ………………..… starts from the bottom and move upwards towards the top of
the software.

6.3 STRUCTURE CHARTS

A structure chart depicts the modular organization of an information system. The
organization is hierarchical. A structure chart graphically shows the way the
components of a program or a system are related. The relationships are shown in
terms of parameter passing mechanisms applied and the basic structured
programming operations namely sequence, selection and repetition. A structure chart
depicts the division of a system into programs along with their internal structure.
However, the internal structure of those programs which are written in third and
fourth generation languages can be depicted.

A structure chart depicts various modules across different levels of the hierarchical
organisation. Always, it has one coordinating module at the top. The modules at the
next level are called by the coordinating module. If a menu based system is
concerned, the main menu may be considered as the coordinating module and the
options in it may be considered as subordinate modules. Even, the calling mechanism
is hierarchical. The coordinating module at the top calls the modules at the next level
and the modules at this level call the modules at the next level to them. A module
calls a subordinate module whenever there is a need for the operation to be performed
by the subordinate module. Now, the following question arises: What about those
modules at the lowest level? Whom do they call, as there are no modules after that
level? The answer is: Modules at lower level perform various tasks. They don’t call
any other module.

Consider Figure 6.4. It depicts a structure chart. System is the top module. It’s
subordinate modules are Get X and Make Y. The subordinate modules of Get X are
Get W and Make X. There are no subordinate modules for Make Y. It is very
important that the function of a module can be easily grasped from its name. So,
naming of the modules is critical to understand the system as a whole. Since a
module should not perform more than one task, there will be no use of and in the
name of a module as it means that the module is performing multiple tasks. But, it is
common to find modules which perform multiple tasks and this can be easily realised
from the conjunctions used in their names. In the case of such modules, it is advisable
to divide them into multiple modules with each module performing a single task.
These modules can be executed from left to right.

Make X Get W

Make Y Get X

 System

 Figure 6.4: Hierarchy of a Structure Chart

The communication between various modules in a Structure chart takes place by
passing the requisite data items as parameters. Data is represented as data couples
and flags. A data couple is a symbol which consists of an empty circle with an arrow

21

coming out of it. The direction of the arrow indicates the direction of data
communication. A control flag is indicated by using the same symbol as that of a data
couple except that the circle is filled. A control flag gives information about the data
being communicated. It may indicate EOF etc. Figure 6.5 shows the symbols for data
couples and Figure 6.6 show the symbols for control flag.

Modular and
Structured Design

Figure 6.5: Data couples Figure 6.6: Control Flag

A module is indicated by a rectangle. The name of the module may be indicated with
in the module. Figure 6.7 shows the symbol for module.

Module A

Figure 6.7: Symbol for Module

Figure 6.8 depicts a set of superordinate and subordinate modules. Here A is
superordinate module and B is subordinate module. So, A will call B whenever
necessary.

Module A

 Module B

Figure 6.8: Symbols for superordinate module A and subordinate module B

Figure 6.9 depicts a total of three modules namely A, B and C. A is the
superordinate module and B, C are subordinate modules. The curved arrow over
the two communication lines connecting module A to B and C indicates that B and
C are repeatedly called by A.

Module B

Module A

Module C

Figure 6.9: Repeated calls of Modules B and C by Module A

 Figure 6.10: Subordinate modules are called on condition

Figure 6.10 depicts the diamond symbol. It indicates the subordinate module to be
called on the result of the execution of a conditional statement. Though, there can
be a number of subordinate modules for a superordinate module, not all of them are
called when a diamond symbol exists.

 22

Figure 6.11 depicts a module A flanked by two vertical bars. Presence of these bars
indicate that the module is predefined. It is analogous to predefined functions or
built in functions (Of course, not always). These modules exist at the bottom level
of a Structure chart.

Planning and Designing
Systems

Module A

Figure 6.11: Predefined module A

Figure 6.12: Module B is embedded in Module A

Figure 6.12 depicts the hat symbol for an embedded module. Though, B is
logically shown separately from A, since A and B are connected by the embedded
module symbol hat, it means that B is in fact a part of A and physically the module
does not exist separately. This is often done due to the size of such modules which
is very smaller and don’t fit to be called a separate module. In such cases, they
become part of superordinate module.

Consider the structure chart of Figure 6.13. The system module calls Get Marks A
module. This module in turn calls Read Marks A . This module sends the requisite
marks to Get Marks A. Then, Get Marks A calls Validate Marks A and also sends
Marks A to it for validation. Validated marks A are sent back from Validate Marks
A to Get Marks A. The process repeats again in the case of Marks B also. After
obtaining validated marks in A and B, the system module calls Make Result R to
compute the result. It sends marks in A and B to it. Make Result R sends the result
R to system. Finally, the system module calls Put Result R module and passes the
result to it.

 MA
 R R
 MA MB
 MB

 MA VMA MB VMB

 Figure 6.13: Reading a Structure chart

Module A

Module B

System

Get Marks A

Read
Marks A

Validate
Marks A

Get Marks B

Read
Marks B

Validat
Marks B

e

Make
Result R

Put Result R

MA: Marks A
MB: Marks B
VMA : Valid MA
VMB : Valid MB

23

Modular and
Structured Design

Check Your Progress 2

1. A ………………..…… depicts the modular organization of an information system.
2. If a menu based system is concerned, the main menu may be considered as the

…………….. and the menu options in it may be considered as subordinate modules.
3. Modules at ……….. don’t call any other modules.

6.4 MODULARITY

According to C. Mayers, Modularity is a single attribute of software that allows a
program to be intellectually manageable”. It increases the design clarity that results in
easy implementation, testing, debugging, documentation and maintenance of software
product. Modularity means “decomposing a system into smaller components that can
be coded separately”. Modularity does not mean simply chopping off system into
smaller components but certain concepts like coupling and cohesion needs to be
followed while breaking a system into different modules.

6.4.1 Goals of Design

If there is a system which can be read easily, code easily and maintain easily, then we
can come to a conclusion that the design is fine. Any design which achieves the goals
given below can be termed as good design:

1. The design of the system should be module based. It means there are modules
which together make up the system and the organization of these modules is
hierarchical.

2. Each module controls the functions of a suitable number of subordinate modules
at the next hierarchical level.

3. One of the important features of good design is that the modules, which make up
the system don’t communicate intensively. The communication should be kept at
minimum level. The reason for this imposition is that modules should be
independent of each other to the maximum extent possible. Independence means,
“one module’s functionality should not be dependent on the internal functions of
other module”.

4. The size of module should be appropriate as required for the features it should
possess like being relatively independent of other modules etc. Basically, no
specific size of range of size can be defined on modules though it is done
occasionally. The size varies from module to module and from project to project.

5. A module should not be assigned the duty of performing more than one function.
6. The coding of modules should be generic. It enables the system to use the module

as frequently as possible.

Based on the above listed goals, a set of guidelines for good design can be arrived at.
They are given below:

• A system should be divided into as many relatively independent modules as
possible. This is known as factoring.

• A superordinate module should control not more than seven subordinate modules.
Of course, this guideline is not strict and varies from system to system.

• The dependency levels between modules should be minimum. This automatically
leads to the design of modules, which don’t communicate, frequently with each
other. Also, the communication between modules should be through parameters.
Of course, Boolean variables or flags can be used for the purpose of
communication. This is called coupling.

• Usually, a module if of not more than 100 lines. It may be a minimum of 50 lines.
But, these sizes are not to be strictly followed and they may vary from system to
system. It is notable here that lesser the lines of code, easier to read.

 24

Planning and Designing
Systems

• A module should not perform more than one function. There should be no line in
the code of the module, which is concerned with a function that is not the objective
of that particular module. One easy check for this conformance is that the module’s
function should be describable easily in a few words. This is called cohesion.

• Modules at the lower level of the design are called by more than one
superordinate module. It means that multiple superordinate modules use most of
the modules at the lower level.

6.4.2 Coupling

The dependency levels between modules should be minimum. This automatically
leads to the design of modules that don’t communicate frequently with each other.
Also, the communication between modules should be through parameters. Of course,
Boolean variables or flags can be used for the purpose of communication. This is
called coupling.

The coupling between the modules should be minimum. The reason for stressing the
need for minimum dependence between modules is that, if a module-1 is largely
dependent on another module-2, then, any error in module-2 will affect the
functionality of module-1. This is the case of two modules that are largely dependent
on each other. But, in the case of multiple modules being largely dependent among
themselves, the consequences of errors in one or more modules will be drastic. The
other problem with the dependency of one module on another module is related to
maintenance. If a programmer has to change the functionality of a module then he
should also make necessary changes to the internals of the modules on which the
module in question is largely dependent. It automatically leads to the disturbance of
the entire system. Such modular design usually leads to the need for development of
the system from the scratch which is going to have significant implications in terms
of efforts to be put, amount to be spent etc. If modules are independent to the extent
possible then it will become easy for the programmers to make changes in a
particular module with out making any changes in other modules. Also, it leads to a
greater reuse of the modules in multiple projects wherever the functionality of the
module is needed. Though it is desirable, it is highly possible to minimize coupling
among the modules.

There are five types of coupling. They are explained below:

Data Coupling: In this type of coupling, the communication between the modules is
through passing of data as parameters. The other alternative in this type of coupling is
the usage of flags. So, one module will not be and need not be aware of the internal
structure of the module with which it is communicating.

Consider the Figure 6.14. Prepare the salary of employee is the superordinate
module. Calculate Salary is the subordinate module. It is coupled with Calculate
Salary. But, Prepare the salary of employee need not be aware of the internal
structure of Calculate Salary . Calculate Salary needs to know the data being
passed to it for doing the requisite task and the data that has to be returned by it to the
superordinate module.

 EOF Salary Salary Status
 details amount

Figure 6.14: Example of Data Coupling

Prepare the salary of employee

Calculate Salary

25

Stamp Coupling: The mechanism of communication in Stamp Coupling is achieved
by passing data structures . Alternatively, records consisting of requisite data are sent.
The problem with this type of coupling is that any changes in the data structure will
lead to a chain reaction and all the modules that use this data structure have to be
change. Sending data as stated in the technique of data coupling is ideal. Stamp
coupling increases the dependency levels among the modules. All the modules, which
are using the same data structure, should be aware of the internal functions of each
other. This is required to avoid errors due to the usage of the same data structure. Since
the same data structure is being used, the entire data is passed to the subordinate
module, which leads to redundant increased communication and more scope for data
corruption.

Modular and
Structured Design

Figure 6.15 demonstrates Stamp coupling. Obviously, the entire Employee record will
contain more data than data required by the Calculate Total Salary module. The
process Format Payslip then uses data structure Employee record. Once again
Employee record contains too much data for this process. It would be better for both
superordinate, subordinate modules and for the system as a whole if only the relevant
data elements were passed instead of the entire record.

 Salary details Salary amount Salary Formatted
 payslip

Figure 6.15: Example of Stamp Coupling

Control Coupling: In this technique of coupling, the superordinate module
communicates with subordinate module by passing control information. The control
information conveys the functions to the subordinate module that are to be performed
by it. In this type of coupling, interdependence between the superordinate and
subordinate modules is high as the superordinate module should definitely know the
internal functions of the subordinate module to invoke it for a particular task.
Figure 6.16 depicts an example of Control coupling. The signal that control
information is being passed is that the label of the flag starts with the verb Prepare
Payslip. It is to be noted that, in some cases, control information may be passed from
the subordinate module to superordinate module. But, this rarely occurs.

Calculate Total Salary Format Pay Slip

EMPLOYEE RECORD

Calculate Total
Salary

Write “Salary is
seven days late”

Prepare Payslip

EMPLOYEE RECORD

Prepare Pay Slip

Figure 6.16: Example of Control Coupling

 26

Planning and Designing
Systems

Common Coupling: In this technique of coupling, global data areas are used by the
multiple modules. Usage of global variables is permitted in most of the High level
languages. A variable can be declared at appropriate level so that it is treated as global
variable. All modules which use this data area will be accessing the data in that area
that is present there at that point of time. If any module performs invalid operation on
the data in the global data area then the data area holds the resultant wrong value. But,
this wrong value will be used by the module which subsequently accesses this global
data area resulting in further invalid processing. In this type of coupling,
interdependence among the modules is very high as they are sharing the data area and
any wrong doing by any of the modules on this global area is going to impact the
processing of all the subsequent modules which use the data in this global data area.

Content Coupling: This is the technique of coupling which has to be used when none
of the above are possible. The major drawback of this technique is that one module
can access the data inside another module and alter it. Also, it is possible to change the
code of one module by another module. This is the technique of coupling in which
independence among the modules is not even slightly visible. Fortunately, most of the
High level languages don’t support content coupling.

All the coupling techniques that are discussed above rate from top to bottom in terms
of priority. In other words, data coupling should be most sought after technique of
coupling followed by stamp coupling and then control coupling followed by common
coupling and lastly content coupling.

6.4.3 Cohesion

Cohesion reflects the degree to which a module conforms itself to the performance of
a single task. A simple way to check if a module is cohesive or not, is to examine each
instruction in it. If every instruction is related to the performance of a single task, then
the module is said to be cohesive. Modules should be highly cohesive. Two objectives
can be achieved if we strive to make a module cohesive. First is that the module will
perform single task. It leads to a larger degree of portability and we can directly plug
in the module in an application which requires the performance of this task. The
second is that module will be loosely coupled. Since the module is performing the
single task, it will accept the data from a superordinate module , does the requisite
function and returns the results. So, there is no need or minimum need to know the
internal function of any other module.

There are seven types of cohesion. They are explained below:

Functional Cohesion: A module is functionally cohesive if every instruction in the
module is related to a single task. One easy way to know whether the module is
functionally cohesive or not is to examine its name. The name of the module will
usually indicate the task that is performed by it. For example, Print Grade Cards,
Generate payslips etc. are names of modules that perform a single function.

Sequential Cohesion: In this type of cohesion, all instructions in the module are
related to each other through the data that is passed to the module. If each instruction
is examined individually, it is difficult to know whether the module is performing
single function or not. But, if the module is simulated and instruction wise simulation
is examined, then we can conclude that the module is sequentially cohesive if each
instruction’s input data is the output data of the previous immediate instruction. In
other words, the concept of sequential cohesion is similar to the concept of pipeline
processing. So, in sequential cohesion, sequencing of instructions plays a major role
in the cohesiveness of the module.

Consider the following example of sequential cohesion:

Produce purchase order,

27

Prepare shipping order, Modular and
Structured DesignUpdate inventory,

Update accounts.

Purchase order is the initial input for this set of instructions. Produce purchase order
is the input to the second instruction where the shipping order is prepared. This
instruction will serve as an input to the third instruction to update inventory and this
will serve as input to update accounts. So, in this way, the output of first instruction
has become the input for the second instruction, the output of the second instruction
has become the input for the third instruction and so on.

Communicational cohesion: This type of cohesion shares an analogy with
sequential cohesion regarding the aspect that all instructions in the module are related
by the data used by the module. But, at the same time, it differs from the sequential
cohesion with no restriction on the sequencing pattern of the instructions. So, in
communicational cohesion, the ordering of instructions is irrelevant. The most
important thing is that, input data for each instruction is same.

 Employee service

 Employee designation

 Employee name

EMPLOYEE RECORD

Find Employee
Details

Figure 6.17: An example of a Communicational Cohesion module

Figure 6.17 depicts an example of Communicational Cohesion. Find Employee
Details is a subordinate module which receives an Employee record as input from the
superordinate module and finds the employee’s name, designation and service. To
find each of name, designation and service, Employee record is used. So, the input for
all the three instructions is same. Also, sequencing does not matter here because any
of the name, designation and service details can be found at any point in the order
and the input to any of these instructions is not dependent on the output of the other
instructions.

It is also possible to use two functionally cohesive modules than one
communicational cohesive module. Figure 6.18 depicts two functionally cohesive
modules instead of one communicational cohesive module in Figure 6.17.

 Employee designation

 Employee name

EMPLOYEE RECORD

 (a)

Find Employee
Details

 28

 Planning and Designing
Systems Employee salary

 Employee name

EMPLOYEE RECORD

Find Employee
Details

 (b)
Figure 6.18 (a) & (b): An example of two functionally cohesive modules which resulted due to the

split of one communicational cohesive module

Procedural Cohesion: Any module which is not functionally cohesive is difficult to
maintain. In this type of cohesion, the sequence of instructions is important and they
are related to each other by the control flow. It is possible to make a change in
sequence, but it cannot be arbitrarily done. The execution of instructions in the
module which is procedurally cohesive usually leads to the calls to other modules.
So, the instructions in a procedurally cohesive module are related to the instructions
in other modules.

Consider the following example:

Pick the course material from MPDD,
Check the enrolment number on the Hall ticket,
Attend counselling sessions at Study Centre,
Submit assignments at Study Centre.

In the above example, instructions are not related to each other in terms of sequence.
In some cases, sequence may be of importance. But, at the same time, each
instruction is separate in functionality and leads to the execution of instructions in
other modules.

Temporal Cohesion: In this type of cohesion, instructions in a module are related to
each other only by flow of control and are totally unrelated to their sequence. In a
temporally cohesive module, execution of all the instructions may take place at a
time.

Consider the following example:

Delete duplicate data from inventory file,
Reindex inventory file,
Backup of inventory file.

All these operations have nothing in common except that they are end of the day
clean up activities.

Logical Cohesion: In this type of cohesion, the relation between various instructions
in the module is either nil or at a bare minimum. A logically cohesive module consists
of instructions in the form of sets. So, execution takes place in terms of set of
instructions rather than individual instructions. But, the superordinate module which
calls the logically cohesive subordinate module will determine the set of instructions
to be executed. This mechanism is handled with the help of a flag which is passed to

29

Modular and
Structured Design

the subordinate module by the superordinate module indicating the set of instructions
to be executed.
Consider the following example:

Study in home,
Study in library,
Study in garden.

This is bad type of cohesion. It is very difficult to maintain logically cohesive
modules.

Coincidental Cohesion: In this type of cohesion, there is no relationship between
the instructions. This is worse type of cohesion among the discussed. The reason for
placing such type of totally unrelated instructions may be to save time from
programming, to fix errors in the existing modules etc.

The priority of all the seven types of cohesion discussed moves from top to bottom.
So, Functional cohesion is the best and Coincidental cohesion is the worse type of
cohesions. The order of priority is as follows: Functional cohesion, Sequential
cohesion, Communicational cohesion, Procedural cohesion, Temporal cohesion,
Logical cohesion and Coincidental cohesion.

Check Your Progress 3

1. A module should not be assigned the duty of performing more than ……. function.
2. The coupling between the modules should be ………...
3. ……………. is the best and …………. is the worse type of cohesions.

6.5 SUMMARY

This unit focussed on the requirements of a good design. We have studies various
principles of good design. The two design techniques, namely, Top Down Design
and Bottom Up Design have been explained. The process of depicting the
modular organization of a system has been explained using Structure charts.
Different symbols used in Structure charts have been discussed. An example
structure chart for reading the marks in various courses and computing the result
has been demonstrated. The issue of the degree of communication that should be
present between various modules has been discussed through Coupling and
Cohesion. There are 5 types of coupling namely Data coupling, Stamp coupling,
Control coupling, Common coupling and Content coupling. There are a total of 7
types of cohesion namely, Functional cohesion, Sequential cohesion,
Communicational cohesion, Procedural cohesion, Temporal cohesion, Logical
cohesion and Coincidental cohesion.

6.6 SOLUTIONS/ANSWERS

Check Your Progress 1

1. Abstraction
2. Top Down Design
3. Bottom Up Design

Check Your Progress 2

1. Structure Charts
2. Coordinating module , Subordinate modules
3. Lower level

 30

Planning and Designing
Systems

Check Your Progress 3

1. One
2. Minimum
3. Functional cohesion, Coincidental cohesion

6.7 FURTHER READINGS

Joey George, J. Hoffer and Joseph Valacich; Modern Systems Analysis and Design;
Pearson Education;Third Edition;2001.

Alan Dennis, Barbara Haley Wixom; Systems Analysis and Design;John Wiley &
Sons;2002.

Reference Websites

http://www.rspa.com

http://www.rspa.com/

31

System Design and
Modeling

UNIT 7 SYSTEM DESIGN AND MODELING

Structure Page Nos.

7.0 Introduction 31
7.1 Objectives 31
7.2 Logical and Physical Design 31
7.3 Process Modeling 36

7.3.1 Data Flow Diagrams
7.4 Data Modeling 38

7.4.1 E-R Diagrams
7.5 Process Specification Tools 39

7.5.1 Decision Tables
7.5.2 Decision Trees
7.5.3 Structured English Notation

7.6 Data Dictionary 43
7.7 Summary 44
7.8 Solutions/Answers 44
7.9 Further Readings 47

7.0 INTRODUCTION

System Design is the specification or construction of a technical, computer based
solution for the business requirements identified in system analysis phase. During
design, system analysts convert the description of the recommended alternative
solution into logical and then physical system specifications. S/he must design all
aspects of the system from input and output screens to reports, databases, and
computer processes. Databases are designed with the help of data modeling tools (for
example, E-R diagrams) and computer processes are designed with the help of
Structured English notation, Decision Trees and Decision Tables. Logical design is
not tied to any specific hardware and software platform. The idea is to make sure that
the system functions as intended. Logical design concentrates on the business aspects
of the system. In physical design, logical design is converted to physical or technical
specifications. During physical design, the analyst’s team takes decisions regarding
the programming language, database management system, hardware platform,
operating system and networking environment to be used. At this stage, any new
hardware or software can also be purchased. The final output of design phase is the
system specifications in a form ready to be turned over to programmers and other
system builders for construction (coding).

7.1 OBJECTIVES

After going through this unit, you should be able to:

• design major components of the system;
• identify tools for every component;
• to learn the process of using tools; and
• integrate component designs into a whole system specification.

7.2 LOGICAL AND PHYSICAL DESIGN

Logical Design is the phase of system development life cycle in which system analyst
and user develops concrete understanding of the operation of the system. Figure 7.1
depicts various steps involved in the logical design. It includes the following steps:

• designing forms (hard copy and computer displays) and reports, which describe
how data will appear to users in system inputs and outputs;

 32

Planning and Designing
Systems

• designing interfaces and dialogues, which describe the pattern of interaction
between users and software; and

• designing logical databases, which describe a standard structure for the database
of a system that is easy to implement in a variety of database technologies.

 Inputs and
 Outputs

 Menus, icons, etc.,
 Interface and dialogue
 specifications

 Normalized relations

Design
Interfaces &
Dialogues

Project Repository

Design Forms
and Reports

Data flows, data stores, E-R
models, inputs and outputs

Data flows, E-R
models, prototypes

Media choices
for inputs and
outputs, layout
of each form and
report

Design
Logical

Databases

Figure 7.1: Steps in Logical Design

In logical design, all functional features of the system chosen for development in
analysis are described independently of any computer platform. Logical design is
tightly linked to previous system development phases, especially analysis. The three
sub phases mentioned in the figure 7.1 are not necessarily sequential. The project
dictionary or CASE repository becomes an active and evolving component of system
development management during logical design. The complete logical design must
ensure that each logical design element is consistent with others and satisfactory to the
end user.

Form Design

System inputs are designed through forms. The general principles for input design are:

1. Capture only variable data.
2. Do not capture data that can be calculated or stored in computer programs.
3. Use codes for appropriate attributes.
4. Include instructions for completing the form.
5. Data to enter should be sequenced.

Common GUI controls for Inputs

Text Box

It can allow for single or multiple lines of characters to be entered.

33

System Design and
Modeling

Radio Button

Radio buttons provide the user with an easy way to quickly identify and
select a particular value from a value set. A radio button consists of a small circle and
an associated textual description those responses to the value choice. Radio buttons
normally appear in groups as one radio buttons per value choice.

Check Box

It consists of a square box followed by a textual description of the input field for
which the user is to provide the Yes/No value.

List Box

A list box is a control that requires the user to select a data item’s value from the list
of possible choices. It is rectangular and contains one or more rows of possible data
values. The values may appear as either a textual description or graphical
representation.

Dropdown List

It is like a list box, but is intended to suggest the existence of hidden list of possible
values for a data item.

Combination Box

It is also known as combo box. It combines the capabilities of a text box and list box.
A combo box gives the user, the flexibility of entering a data item’s value or selecting
its value from a list.

Spin Box

A spin box is used to allow the user to make an input selection by using the buttons to
navigate through a small set of meaningful choices.

The following steps are to be followed during the process of input design are given
below:

1. Identify system inputs and review logical requirements.
2. Select appropriate GUI (Graphical User Interface) controls.
3. Design, validate and test inputs using some combination of:

i) Layout tools (e.g., hand sketches, printer/display layout chart, or CASE)
ii) Prototyping tools (e.g., spreadsheet, PC DBMS, 4GL)

4. If necessary, design the source document.

Reports Design

System outputs are designed through Reports. Outputs can be classified according to
two characteristics:

i) Their distribution inside or outside the organization and the people who read and
use them; and

ii) Their implementation method.

Types of outputs

i) Internal outputs: Internal outputs are intended for the owners of the system and
users within the organization. There are three sub-classes of internal outputs:

 Detailed reports—Present information with little or no filtering or restrictions;
 Summary reports—Categorize information for managers who do not want to go
 through details; and

 34

Planning and Designing
Systems

Exception reports—Filter data before it is presented to the manager as
information.

ii) External outputs: These are intended for customers, suppliers, partners and

regulatory agencies. They usually conclude or report on business transactions.
Examples of external outputs are invoices, account statements, paycheques,
course schedules, telephone bills, etc.

Implementation methods for outputs

The following are commonly used output formats.

i) Tabular output: It presents information as rows and columns of text and
numbers.

ii) Zoned output: It places text and numbers into designated areas or boxes of a
form or screen.

iii) Screen output: It is the online display of information on a visual display device,
such as CRT terminal or PC monitor.

iv) Graphic output: It is the use of a picture to convey information in ways that
demonstrate trends and relationships not easily seen in tabular output.

The following are various guidelines for output design:

i) Computer outputs should be simple to read and interpret.
ii) The timing of computer outputs is important.
iii) The distribution of (or access to) computer outputs must be sufficient to assist all

relevant system users.
iv) The computer outputs must be acceptable to the system users who will receive

them.

The steps to be followed during process of output design are given below:

i) Identify system outputs and review logical requirements.
ii) Specify physical output requirements.
iii) As necessary, design any pre-printed external forms.
iv) Design, validate and test outputs using some combination of:

a. Layout tools (e.g., hand sketches, printer/display layout chart, or CASE).
b. Prototyping tools (e.g., spreadsheet, PC DBMS, 4GL).
c. Code generating tools (e.g., report writer).

User interface design

User interface design is concerned with the dialogue between a user and the computer.
It is concerned with everything from starting the system or logging into the system to
the eventually presentation of desired inputs and outputs. The overall flow of screens
and messages is called a dialogue.

The following are various guidelines for user interface design:

i) The system user should always be aware of what to do next.
ii) The screen should be formatted so that various types of information,

instructions and messages always appear in the same general display area.
iii) Messages, instructions or information should be displayed long enough to allow

the system user to read them.
iv) Use display attributes sparingly.
v) Default values for fields and answers to be entered by the user should be

specified.
vi) A user should not be allowed to proceed without correcting an error.
vii) The system user should never get an operating system message or fatal error.

35

System Design and
Modeling

viii) If the user does something that could be catastrophic, the keyboard should be
locked to prevent any further input, and an instruction to call the analyst or
technical support should be displayed.

Logical Database Design

Data modeling is used for logical database design. A conceptual model of data used in
an application is obtained by using an entity relationship model (E-R model). E-R
model assists in designing relational databases. A relational database consists of a
collection of relations relevant for a specified application. A relation is a table which
depicts an entity set. Each column in the relation corresponds to an attribute of the
entity. Each row contains a member of the entity set.

Normalization is a procedure used to transform a set of relations into another set
which has some desirable properties. Normalization ensures that data in the database
are not unnecessarily duplicated. It also ensures that addition and deletion of entity
rows (or tuples) or change of individual attribute values do not lead to accidental loss
of data or errors in database.

The steps to be followed during physical design are given below:

• Designing physical files and databases — describes how data will be stored and
accessed in secondary computer memory and how the quality of data will be
ensured.

• Designing system and program structure — describes the various programs and
program modules that correspond to data flow diagrams and other documentation
developed in earlier phases of lifecycle.

• Designing distributed processing strategies — describes how your system will
make data and processing available to users on computer networks within the
capabilities of existing computer networks.

Figure 7.2 depicts various steps involved in physical design.

 Field, Record,
 File specifications

 and Action diagrams

Normalized relations Data flow diagrams,
,Data flow diagrams Prototypes
and Interview notes

 Action diagrams,

 Data usage and Structure charts
 Network architecture and Pseudo code

 Location of data & processing
 Functions and Client/Server design

Project Repository

Select
distributed
processing

environment

Design
System &
Program
Structure

Design Files
& Databases

Figure 7.2: Steps in Physical Design

 36

Planning and Designing
Systems 7.3 PROCESS MODELING

Process modeling involves graphically representing the functions or processes, which
capture, manipulate, store and distribute data between a system and its environment
and between components within a system. A common form of a process model is data
flow diagram. It represents the system overview.

7.3.1 Data Flow Diagrams

A DFD can be categorized in the following forms:

Context diagram: An overview of an organizational system that shows the system
boundaries, external entities that interact with the system and the major information
flows between the entities and the system. In this diagram, a single process represents
the whole system.

First level DFD: A data flow diagram that represents a system’s major processes, data
flows, and data stores at a high level of detail.

Functional decomposition diagram: Functional decomposition is an iterative
process of breaking the description of a system down into finer and finer detail which
create a set of charts in which one process on a given chart is explained in greater
detail on another chart. In this diagram, sub-processes of first level DFD are explained
in detail.

There is no limit on the number of levels of Data Flow Diagrams that can be drawn. It
depends on the project at hand.

The following are various components of a Data Flow Diagram:

1. Process

During a process, the input data is acted upon by various instructions whose result is
transformed data. The transformed data may be stored or distributed. When modeling
the data processing of a system, it doesn’t matter whether the process is performed
manually or by a computer. People, procedures or devices can be used as processes
that use or produce (transform) data.

The notation (given by Yourdon) for process is

2. Data Flow

Data moves in a specific direction from a point of origin to point of destination in the
form of a document, letter, telephone call or virtually any other medium. The data
flow is a “packet” of data.

The notation (given by Yourdon) for data flow is

3. Source or sink of data

The origin and /or destination of data some times referred to as external entities. These
external entities may be people, programs, organization or other entities that interact
with the system but are outside its boundaries. The term source and sink are
interchangeable with origin and destination.

37

System Design and
Modeling

The notation (given by Yourdon) for source or sink is

4. Data store

A data store is data at rest, which may take the form of many different physical
representations. They are referenced by a process in the system. The data store may
reference computerized or non-computerized devices.
Notation (given by Yourdon) for data store is

Rules for drawing a data flow diagram:

1. For process:

i. No process can have only outputs.
ii. No process can have only inputs.
iii. A process has a verb phrase label.

2. For Data Store:

i. Data cannot move directly from one data store to another data store. Data
must be moved through a process.

ii. Data cannot move directly from an outside source to data store. Data must be
moved through a process that receives data from the source and places it into
the data store.

iii. Data cannot move directly to an outside sink from a data store. Data must be
 moved through a process.

 A data store has a noun phrase label.

3. For source/sink:

i. Data cannot move directly from a source to a sink. It must be moved by a
process

ii. A source/sink has a noun phrase label

4. For data flow:

i. A data flow has only one direction of flow between symbols. It may flow in
both directions between a process and a data store to show a read operation
before an update.

ii. A data flow cannot go directly back to the same process it leaves. There must
be at least one other process which handles the data flow, produces some
other data flow and returns the original data flow to the beginning process.

iii. A data flow to a data store means update (delete or change).
iv. A data flow from a data store means retrieve or use.
v. A data flow has a noun phrase label.

Check Your Progress 1

1. Develop a context level DFD and First level DFD for the hospital pharmacy
system describe in the following case study: “The pharmacy at Sanjeevni
Hospital fills medical prescriptions for all patients and distributes these
medications to the nurse stations responsible for the patient’s care. Medical
prescriptions are written by doctors and sent to the pharmacy. A pharmacy
technician reviews the prescriptions and sends them to the appropriate pharmacy

 38

Planning and Designing
Systems

station. At each station, a pharmacist reviews the order, checks the patient file to
determine the appropriateness of the prescriptions and fills the order. If the
pharmacist does not fill the order, the prescribing doctor is contacted to discuss
the situation. In this case the order may ultimately be filled or the doctor may
write another prescription, depending on the outcome of the discussion. Once
filled, a prescription level is generated listing the patient’s name, the drug type
and dosage, an expiration date and any special instruction. The level is placed on
the drug container and the order is sent to the appropriate nurse station. The
patient’s admission number, the drug type, and the cost of the prescription are
then sending to the billing department”.

7.4 DATA MODELING

It is a technique for organizing and documenting a system’s data. Data modeling is
sometimes called database modeling because a data model is eventually implemented
as database. It is also some times called information modeling. The tool for data
modeling is entity relationship diagram.

7.4.1 ER Diagram

It depicts data in terms of entities and relationships described by the data. Martin gives
the following notations for the components of ERD.

1. Entities: An entity is something about which the business needs to store data. An

entity is a class of persons, places, objects, events or concepts about which we
need to capture and store data. An entity instance is a single occurrence of an
entity. The notation is given below:

Student i

2. Attribute: An attribute is a descri
Synonyms include element, prope
A compound attribute is one that a
known as a composite attribute. A
compound attribute as shown in th

3. Relationships: A relationship is a

one or more entities. The relations
entities.

The following are some important term

Cardinality defines the minimum and
that may be related to a single occurre
are bidirectional, cardinality must be d
Figure 7.4 depicts various types of car

Degree: The degree of a relationship
relationship.

Recursive relationship: A relationsh
same entity is called recursive relation
between the instances of the Course e

Student
s the name of entity.

ptive property or characteristic of an entity.
rty and field.
ctually consists of other attributes. It is also
n attribute “Address” is the example of
e following illustration.

 natural business association that exists between
hip may represent an event that links the

s related to ER diagrams:

 maximum number of occurrences of one entity
nce of the other entity. Because all relationships
efined in both directions for every relationship.
dinality.

is the number of entities that participate in the

ip that exists between different instances of the
ship. Figure 7.3 depicts recursive relationship

ntity.

39

System Design and
Modeling

Figure 7.3: Example of Recursive relationship

Cardinality

Interpretation
Minimum
Instances

Maximum
Instances

Graphic Notation

Exactly one
(One and only

one)

1

1

or

Zero or one

0

1

One or more

1

Many (>1)

Zero, one or

more

0

Many (>1)

More than one

>1

>1

Course

Figure 7.4: Different types of cardinality

Check Your Progress 2

1. Draw an E-R diagram for the following case study:
 “ In a purchasing department at one company, each purchase request is assigned

to a “case worker” within the purchasing department. This caseworker follows the
purchase request through the entire purchasing process and acts as the sole contact
person with the person or unit buying the goods or services. The purchasing
department refers to its fellow employees buying goods and services as
“customers”. The purchasing process is such that purchase request must go to
vendors. The product or service can simply be bought from any approved vendor,
but the purchase request must still be approved by the purchasing department.”

7.5 PROCESS SPECIFICATION TOOLS

Processes in Data Flow Diagrams represent required tasks that are performed by the
system. These tasks are performed in accordance with business policies and
procedures.

Policy

A policy is a set of rules that govern some task or function in the business. Policies
consist of rules that can often be translated into computer programs. Systems Analyst

 40

Planning and Designing
Systems

along with representatives from the policy making organization can accurately convey
those rules to the computer programmer for programming purposes.

Procedures

Procedures put the policies into action. Policies are implemented by procedures.
Procedures represent the executable instructions in a computer program.

There are tools with the help of whom specification for policies can be created. They
are Decision Table, Decision Tree and Software Engineering notations.

7.5.1 Decision Tables

Decision Table is very useful for specifying complex policies and decision-making
rules. Figure 7.5 depicts a Decision table.

The following are various components of a Decision table:

Condition stubs: This portion of table describes the conditions or factors that will
affect the decision or policy making of the organisation.
Action stubs: This portion describes the possible policy actions or decisions in the
form of statements.
Rule: Rules describe which actions are to be taken under a specific combination of
conditions.
Decision tables use a standard format and handle combinations of conditions in a very
concise manner. Decision table also provides technique for identifying policy
incompleteness and contradictions.

Rules

Process Name 1 2 3 4 5 6 7 8

Conditions

X __

Actions

__ X ?

X— Action (condition is true)
__ — Condition is irrelevant for this rule
? — Unknown rule

Figure 7.5: An example Decision Table

7.5.2 Decision Trees

Decision tree is a diagram that represents conditions and actions sequentially, and thus
shows which conditions to consider first, and so on. It is also a method of showing the
relationship each condition and permissible subsequent actions. The diagram
resembles branches on a tree.

The root of the tree is the starting point of the decision sequence. The particular
branch to be followed depends on the conditions that exist and decision that will be
made. Progression from the left to right along a particular branch is the result of
making a series of decisions. Following each decision point is the next set of decisions
to be considered. The nodes of the tree thus represent conditions and indicate that a
determination must be made about which condition exists before the next path can be
chosen. Figure 7.6 depicts a Decision tree.

41

 System Design and
Modeling

Pay by Cash Count and deliver article 3

2 <= Rs.1000
Check validity and deliver article on valid
coupons Redeem

coupons
4

1
Check date, amount and deliver article on valid
cheque

Pay by
Cheque

6

>=Rs.1000
5

Call bank for approval and deliver
article on approval and signature

Pay by Credit
card 7

Figure 7.6: An Example Decision tree for a Customer Bill Payment System

7.5.3 Structured English Notation

It is a tool for describing process. There are three valid constructs in this notation. .
They are:

1. A sequence of single declarative statements.
2. The selection of one or more declarative statements based on a decision,
 e.g., if-then-else, switch, case.
3. The repetition of one or more declarative statements,
 e.g., looping constructs such as do-while, for-do

The following are the guidelines usage of Structured English notation:

1. Avoid computer programming language verbs such a move, open or close.
2. The statement used in the Structured English Notation should always specify the

formula to be used.

Structured English notation is based on the principles of structured programming.
Process specification logic consists of a combination of sequences of one or more
imperative sentences with decision and repetition constructs.

Consider the following:

1. An imperative sentence usually consists of an imperative verb followed by the
contents of one or more data stores on which the verb operates.

 For example, add PERSONS-SALARY TO TOTAL SALARY
2. In imperative sentences, verbs such as “process”, “handle” or “operate” should

not be used.
3. Verbs should define precise activities such as “add” or compute average etc.
4. Adjectives that have no precise meaning such as “some” or “few” should also not

be used in imperative sentences, because they cannot be used later to develop
programs.

5. Boolean and arithmetic operations can be used in imperative statements. Table 7.1
 lists the arithmetic and Boolean operators.

 42

Planning and Designing
Systems

Table 7.1: Arithmetic and Boolean Operators

Arithmetic Boolean
Multiply (*) AND
Divide (/) OR
Add (+) NOT

Substract (-) Greater Than (>)
Exponentiate (**) Less Than (<)

 Less Than or Equal To (<=)

 Greater Than or Equal to (>=)

 Equals to (=)

 Not equal to (≠)

6. Structured English logic:

Structured English uses certain keywords to group imperative sentences and
define decision branches and iterations. These keywords are:

(BEGIN, END), (REPEAT, UNTIL), (IF, THEN, ELSE), (DO, WHILE), FOR,
CASE, etc.

7. Grouping imperative sentences:

1) Sequence Construct

A sequence of imperative statements can be grouped by enclosing them with BEGIN
and END keywords

2) Decision (Selection)

a) A structure, which allows a choice between two groups of imperative sentences.
The key words IF, THEN and ELSE are used in this structure. If a condition is
‘true’, then group 1 sentences are executed. If it is false, then group 2 sentences
are executed.

b) A structure which allows a choice between any number of groups of imperative

sentences. The keywords CASE and OF are used in this structure. The value of a
variable is first computed. The group of sentences that are selected for execution
depends on that value.

3) Repetition

This structure shows two ways of specifying iterations in structured English.

a) One way is to use the WHILE…DO structure. Here, the condition is tested before

a set of sentences is processed.

Alternative to WHILE…DO is FOR structure.

b) REPEAT…UNTIL structure. Here, a group of sentences is executed first then the

condition is tested. So, in this structure, the group of sentences are executed at
least once.

Table 7.2 depicts the criteria to be used for deciding the notation among Structured
English, Decision Tables and Decision Trees. Table 7.3 depicts the criteria to be used
for deciding the notation among Decision Tables and Decision Trees.

43

System Design and
Modeling

Table 7.2: Criteria for deciding the notation to be used

Criteria Structured
English

Decision Tables Decision Trees

Determining condition
& actions

2 3 1

Transforming
conditions & actions

into sequence

1 2 1

Checking consistency
& completeness

2 1 1

 Table 7.3: Criteria for deciding the notation to be used between Decision tables and Decision

trees
Criteria Decision Tables Decision Trees

Portraying complex logic Best Worst
Portraying simple problems Worst Best

Making decisions Worst Best
More compact Best Worst

Easier to manipulate Best Worst

Check Your Progress 3

1. Draw a decision table for following policy statement:

 “A bank offers two types of savings accounts, regular rate and split rate.
The regular rate account pays dividends on the account balance at the end of each
quarter. Funds withdrawn during the quarter earn no dividends. There is no
minimum balance on the regular account. Regular rate account may be insured.
Insured account gets 5.75 percent annual interest. Uninsured regular rate accounts
get 6.00 percent annual interest.

For split rate accounts, dividends are paid monthly on the average daily balance
for that month. Daily balances go up and down in accordance with deposits and
withdrawls. The average daily balance is determined by adding each days closing
balance and dividing this sum by the number of days in the month.

If the balance dropped below Rs.2000/- during month then no dividend is paid.
So, if the average daily balance is less than Rs.2000/-, then no dividend is paid.
Otherwise, if the average daily balance is Rs.2000/- or more, then an interest of
6% per annum is paid on the first Rs.5000/-, 6.5% on the next Rs.20000/- and 7%
on funds over Rs.25000/-. There is no insurance on split rate.”

2. Draw a Decision Tree for the policy statement stated above in question no.1.

7.6 DATA DICTIONARY

A Data Dictionary consists of data about data. The major elements of data dictionary
are data flows, data stores and processes. The data dictionary stores details and
descriptions of these elements. It does not consist of actual data in the database. But,
DBMS cannot access data in database with out accessing data dictionary.
If analysts want to know the other names by which a data item is referenced in the
system or where it is used in the system, they should be able to find the answers in
properly developed data dictionary. Data dictionaries are hidden from users so that
data in it is not tampered.

Analysts use data dictionaries for the following reasons:

1. To manage the detail in large systems.
2. To communicate a common meaning for all system elements.
3. To document the features of the system.

 44

Planning and Designing
Systems

4. To facilitate analysis of the details in order to evaluate characteristics and
determine changes that should be made to the system.

5. To locate errors and omissions in the system.

The dictionary contains two types of descriptions for the data flowing through the
system: Data elements and Data structures. Data elements are grouped together to
make up a data structure.

Data elements are recorded in data dictionary at the fundamental data level. Each item
is identified by a data name, description, alias and length and has specific values that
are permissible for it in the system.

A data structure is a set of data items that are related to one another and then
collectively describe a component in the system. Data is arranged in accordance with
one of the relationships namely sequence, selection, iteration and optional
relationship.

7.7 SUMMARY

Design is the phase that precedes coding. All the components of system are designed
logically. Then physical aspects of the system are designed. Form design, report
design, database design and program design etc. are designed with the help of GUI
controls, process modeling tools, data modeling tools and process specification tools.
These tools reduce the complexity of the design process. A Data Dictionary is data
about data. These elements centre around data and the way they are structured to meet
user requirements and organization’s needs.

7.8 SOLUTIONS/ANSWERS

Check Your Progress 1

1. The following is the context level DFD:

Doctor

Hospital

Pharmacy
System

Nurse Station

45

System Design and
Modeling

The following is the first level DFD:

 Prescription

 Unfilled order

 Info.
 Response Prescription

 Patient

 Information

 Order Information

 Orders fill
 Information

Drug label Patient’s no.
 Information Drug type and cost

 Medications & Drug
 label Information

Check Your Progress 2

Billing Dept.

Review by
Pharmacy

Station

Fill Order

Nurse’s Station

Patient file

Generate
Label

Doctor

Review by
Pharmacy
Technician

1. The following is the ER diagram:

 Submits Is Submitted by
 Wants to Buy

 Is bought on

 Has approved
 supplier
 Has Assigned Awarded to
 Is Approved
 to supply
 Is Assigned to Is Awarded to

Customer Purchase
Request

Vendor Case
Worker

Product /
Service

Check Your Progress 3

1. We have to identify conditions and values.

Data Elements Condition Values

1. Account type R = Regular
 S = split
2. Insurance Y = Yes
 N = No

 46

Planning and Designing
Systems

3. Balance Dropped below Rs.2000/- during month? Y = Yes
Steps for Decision Table
To identify conditions (Data Elements) and their values.
1. To determine the maximum number of rules. The maximum number of rules in a

decision table is calculated by multiplying the number of values for each
condition data element.
Example: Condition 1 offers two values
 Condition 1 offers two values
 Condition 1 offers two values
then, total number of rules = 2×2×2 = 8

2. To identify the possible actions. It means to identify each independent action to be
taken for the decision or policy.

3. To enter all possible rules and record all conditions and actions in their respective
places in the decision table.

4. The way of defining rules:
a. For the first condition, to alternate its possible values Example: If Y and N are

two possible values and there are 8 rules in the table then we will define these
rules as:
YN YN YN YN

b. For condition two,
 size of pattern that repeats in step (a) i.e. 2
=> YY NN YYNN

 c. For condition three,
size of pattern that repeats in step (b) i.e., 4 so the possible combination is:
YYYY NNNN

5. After arranging all conditions, actions and rules
Now action will be taken according to rule i.e.
╴X : Action (correct rule)
╴ : Irrelevant or indifference symbol
? : Unknown rule

6. To verify the policy. Analyst can resolve any rules for which the actions are not
specified. Analyst can also resolve apparent contradictions such as one rule with
two possible actions.

8. Finally, Analysts must simplify the decision table:
 * To eliminate impossible rules.
 * The rules can be consolidated into a single rule for indifferent conditions

 where indifferent condition is a condition whose values do not affect the
decision and always result in the same action.

The resultant Decision Table is given below:
Dividend rate Rules Process Name

1 2 3 4 5 6 7
Account type R R S S S S S
Insurance Y N -- -- N N N
Balance dropped below Rs.2000/- during
month

-- -- Y N N N N

Conditions

Average daily balance -- -- -- 1 2 3 4
Pay no dividend X X
5.75% ÷ 4 quarterly dividend on entire balance. X
6.000% ÷ 4 quarters X
6.000% ÷ 12 monthly dividend on balance up
to Rs.5000/-

 X X X

6.500% ÷12 monthly dividend on balance
between Rs.5001/- to Rs.20000/-

 X X

Actions

7.000% ÷12 monthly dividend on a balance of
above Rs.25000/-

 X

47

System Design and
Modeling

2.
 Insured

Regular

Account Un-insured Yes No
 Dividend
 Split Monthly balance dropped
 below Rs.2000/- during month

 No *

 1 No dividend

 2 6% ÷12 on balance up to Rs.5000/-
* Average daily
 Balance 3 6/100/12* Rs.5000 + 6.5/10/12*(balance-
 Rs.5000)
 4 6% on balance up to Rs.5000 + 6.5% on

balance between Rs.5001 and Rs.25000 + 7%
on balance above 25000/-.

7.9 FURTHER READINGS

Jeffrey L.Whitten, Lonnie D.Bentley and Kevin C.Dittman; Systems Analysis and
Design Methods;Tata McGraw Hill Publishing Company Limited;Fifth Edition;2000.

Jeffrey A. Hoffer , Joey F. George and Joseph S. Valacich; Modern Systems Analysis
and Design; Pearson Education Publishing Company Limited; Third Edition;2001.

V. Rajaraman; Analysis and Design of Information Systems;Prentice-Hall of India
Private Limited; Second Edition.

Reference Websites

http://www.rspa.com
http://www.ieee.org

http://www.rspa.com/
http://www.ieee.org/

	MCS-014 Planning and Designing Systems
	Index
	Credit Page
	Block Introduction
	UNIT 5 Process of Systems Planning
	5.0 Introduction
	5.1 Objectives
	5.2 Fact Finding Techniques
	5.3 Issues Involved in Feasibility Study
	5.4 Cost Benefit Analysis
	5.5 Preparing Schedule
	5.6 Gathering Requirements of System
	5.7 Summary
	5.8 Solutions
	5.9 Further Reading

	UNIT 6 Modular and Stuctured Design
	6.0 Introduction
	6.1 Objectives
	6.2 Design Principles
	6.3 Structure Charts
	6.4 Modularity
	6.5 Summary
	6.6 Solutions
	6.7 Further Readings

	UNIT 7 System Design and Modeling
	7.0 Introduction
	7.1 Objectives
	7.2 Logical and Physical Design
	7.3 Process Modeling
	7.4 Data Modeling
	7.5 Process Specification Tools
	7.6 Data Dictionary
	7.7 Summary
	7.8 Solutions

